Classification of Autism Spectrum Disorder Through the Graph Fourier Transform of fMRI Temporal Signals Projected on Structural Connectome
Graph Fourier Transform (GFT) could be a key tool for analyzing brain signals. In this sense, we evaluate the application of Graph signal processing (GSP) for the analysis of neuroimaging data. Thus, a GSP-based approach is proposed and validated for the classification of autism spectrum disorder (A...
Saved in:
Published in | Computer Analysis of Images and Patterns Vol. 1089; pp. 45 - 55 |
---|---|
Main Authors | , , |
Format | Book Chapter |
Language | English |
Published |
Switzerland
Springer International Publishing AG
2019
Springer International Publishing |
Series | Communications in Computer and Information Science |
Subjects | |
Online Access | Get full text |
ISBN | 9783030299293 3030299295 |
ISSN | 1865-0929 1865-0937 |
DOI | 10.1007/978-3-030-29930-9_5 |
Cover
Loading…
Abstract | Graph Fourier Transform (GFT) could be a key tool for analyzing brain signals. In this sense, we evaluate the application of Graph signal processing (GSP) for the analysis of neuroimaging data. Thus, a GSP-based approach is proposed and validated for the classification of autism spectrum disorder (ASD). More specifically, the resting state functional magnetic resonance imaging (rs-fMRI) time series of each brain subject are characterized by several statistical metrics. Then, these measures are projected on a structural graph, which is computed from a healthy brain structural connectivity of the human connectome project. Further analysis proves that the combination of the structural connectivity with the standard deviation of fMRI temporal signals can lead to more accurate supervised classification for 172 subjects from the biggest site of the Autism Brain Imaging Data Exchange (ABIDE) datasets. Moreover, the proposed approach outperforms several approaches, based on using functional connectome or complex functional network measures. |
---|---|
AbstractList | Graph Fourier Transform (GFT) could be a key tool for analyzing brain signals. In this sense, we evaluate the application of Graph signal processing (GSP) for the analysis of neuroimaging data. Thus, a GSP-based approach is proposed and validated for the classification of autism spectrum disorder (ASD). More specifically, the resting state functional magnetic resonance imaging (rs-fMRI) time series of each brain subject are characterized by several statistical metrics. Then, these measures are projected on a structural graph, which is computed from a healthy brain structural connectivity of the human connectome project. Further analysis proves that the combination of the structural connectivity with the standard deviation of fMRI temporal signals can lead to more accurate supervised classification for 172 subjects from the biggest site of the Autism Brain Imaging Data Exchange (ABIDE) datasets. Moreover, the proposed approach outperforms several approaches, based on using functional connectome or complex functional network measures. |
Author | Hajjam El Hassani, Mehdi Brahim, Abdelbasset Farrugia, Nicolas |
Author_xml | – sequence: 1 givenname: Abdelbasset surname: Brahim fullname: Brahim, Abdelbasset email: abdelbasset.brahim@imt-atlantique.fr organization: IMT Atlantique, Brest, France – sequence: 2 givenname: Mehdi surname: Hajjam El Hassani fullname: Hajjam El Hassani, Mehdi email: mehdi.hajjam-el-hassani@imt-atlantique.net organization: IMT Atlantique, Brest, France – sequence: 3 givenname: Nicolas surname: Farrugia fullname: Farrugia, Nicolas email: nicolas.farrugia@imt-atlantique.fr organization: IMT Atlantique, Brest, France |
BookMark | eNpNkEtO5DAURc1XzadWwMQbSONPEttDVHwaCQSiirHlmJdKoGIH29kEq8aBFmLynnSv733yOUb7zjtA6IySv5QQca6ELHhBOCmYUnkqXe2gRVZ51r4ktYuOqKyrgigu9n57TPH9H4-pQ3RMKVVc0ZLUf9AixldCCGNEqpIcoY_l1sTYt701qfcO-xZfTKmPA16NYFOYBnzZRx9eIOB1F_y06XDqAN8EM3b42k-hn51gXGx9GOZ8e_90i9cwjD6YLV71G2e2ET8G_5oL4QXnK6tcbNM0-0vvXNb9AKfooM0vYfF_n6Dn66v18l9x93Bzu7y4K0ZWklRIISiosmxkU1uwglkDpaRNzSylDbdSgIFWVExIKYW1wGtCykbYpuaMK8NPEP3ujWPo3QaCbrx_i5oSPcPXGaXmOsPUX6R1hp8z7DszBv8-QUwa5pAFl_InbGfGBCHqSjGhlNQ105Xgn4kZhkI |
ContentType | Book Chapter |
Copyright | Springer Nature Switzerland AG 2019 |
Copyright_xml | – notice: Springer Nature Switzerland AG 2019 |
DBID | FFUUA |
DEWEY | 6.37 |
DOI | 10.1007/978-3-030-29930-9_5 |
DatabaseName | ProQuest Ebook Central - Book Chapters - Demo use only |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Computer Science |
EISBN | 9783030299309 3030299309 |
EISSN | 1865-0937 |
Editor | Giorgi, Daniela Matuszewski, Bogdan J Vento, Mario Colantonio, Sara Percannella, Gennaro Razaak, Manzoor Kerdegari, Hamideh |
Editor_xml | – sequence: 1 fullname: Giorgi, Daniela – sequence: 2 fullname: Vento, Mario – sequence: 3 fullname: Colantonio, Sara – sequence: 4 fullname: Percannella, Gennaro – sequence: 5 fullname: Matuszewski, Bogdan J – sequence: 6 fullname: Razaak, Manzoor – sequence: 7 fullname: Kerdegari, Hamideh |
EndPage | 55 |
ExternalDocumentID | EBC5927998_62_57 |
GroupedDBID | 38. 9-X AABBV AEJLV AEKFX ALMA_UNASSIGNED_HOLDINGS AYMPB BBABE CXBFT CZZ EXGDT FCSXQ FFUUA I4C IEZ MGZZY NSQWD OORQV SBO SNUHX TPJZQ Z5O Z7R Z7S Z7U Z7W Z7X Z7Y Z7Z Z81 Z82 Z83 Z84 Z85 Z87 Z88 AAJYQ AATVQ ABBUY ABCYT ACDTA ACDUY AEHEY AHNNE ATJMZ |
ID | FETCH-LOGICAL-p240t-8771e944b8b6cec72cae481b62c11b3c87eaef75278887cce36004b7cb63239a3 |
ISBN | 9783030299293 3030299295 |
ISSN | 1865-0929 |
IngestDate | Tue Jul 29 20:11:17 EDT 2025 Fri Apr 11 21:41:37 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
LCCallNum | TA1634 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-p240t-8771e944b8b6cec72cae481b62c11b3c87eaef75278887cce36004b7cb63239a3 |
OCLC | 1119391406 |
PQID | EBC5927998_62_57 |
PageCount | 11 |
ParticipantIDs | springer_books_10_1007_978_3_030_29930_9_5 proquest_ebookcentralchapters_5927998_62_57 |
PublicationCentury | 2000 |
PublicationDate | 2019 |
PublicationDateYYYYMMDD | 2019-01-01 |
PublicationDate_xml | – year: 2019 text: 2019 |
PublicationDecade | 2010 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Cham |
PublicationSeriesTitle | Communications in Computer and Information Science |
PublicationSeriesTitleAlternate | Communic.Comp.Inf.Science |
PublicationSubtitle | CAIP 2019 International Workshops, ViMaBi and DL-UAV, Salerno, Italy, September 6, 2019, Proceedings |
PublicationTitle | Computer Analysis of Images and Patterns |
PublicationYear | 2019 |
Publisher | Springer International Publishing AG Springer International Publishing |
Publisher_xml | – name: Springer International Publishing AG – name: Springer International Publishing |
RelatedPersons | Barbosa, Simone Diniz Junqueira Zhou, Lizhu Kotenko, Igor Filipe, Joaquim Ghosh, Ashish Yuan, Junsong |
RelatedPersons_xml | – sequence: 1 givenname: Simone Diniz Junqueira surname: Barbosa fullname: Barbosa, Simone Diniz Junqueira organization: Pontifical Catholic University of Rio de Janeiro (PUC-Rio), Rio de Janeiro, Brazil – sequence: 2 givenname: Joaquim surname: Filipe fullname: Filipe, Joaquim organization: Polytechnic Institute of Setúbal, Setúbal, Portugal – sequence: 3 givenname: Ashish surname: Ghosh fullname: Ghosh, Ashish organization: Indian Statistical Institute, Kolkata, India – sequence: 4 givenname: Igor surname: Kotenko fullname: Kotenko, Igor organization: St. Petersburg Institute for Informatics and Automation of the Russian Academy of Sciences, St. Petersburg, Russia – sequence: 5 givenname: Junsong surname: Yuan fullname: Yuan, Junsong organization: University at Buffalo, The State University of New York, Buffalo, USA – sequence: 6 givenname: Lizhu surname: Zhou fullname: Zhou, Lizhu organization: Tsinghua University , Beijing, China |
SSID | ssj0002208940 ssj0000580895 ssib054953581 |
Score | 1.9198173 |
Snippet | Graph Fourier Transform (GFT) could be a key tool for analyzing brain signals. In this sense, we evaluate the application of Graph signal processing (GSP) for... |
SourceID | springer proquest |
SourceType | Publisher |
StartPage | 45 |
SubjectTerms | Autism disorder Graph signal processing Machine learning Resting-state analysis |
Title | Classification of Autism Spectrum Disorder Through the Graph Fourier Transform of fMRI Temporal Signals Projected on Structural Connectome |
URI | http://ebookcentral.proquest.com/lib/SITE_ID/reader.action?docID=5927998&ppg=57 http://link.springer.com/10.1007/978-3-030-29930-9_5 |
Volume | 1089 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELa65YI48BbLSz5wIgpKkziOjxUqdFcUIciivVm26-xute2iJr3wE_ih_A7Gr6QpXJZL1FpJk_j76sxMZr5B6I1KUrYsiyReEpHFuQaHVYIVEoucaCV1IWrbOmHxuZif5afn5Hw0-r2XtbRr5Tv18591Jf-DKowBrqZK9hbIdj8KA_AZ8IUtIAzbA-N3GGZ1ugK-H8NAV-RkLYxogy0BsMqZmz4MDsuKa508lUbaCqzmvvh5LlYrsY5m19Ecxl2fp2ihL5dXHcBiu91duNRaSx-fVuTpZptrmrSjzgSdwo03a9vgvt3u1p3OZ1T51kDG5P1o9LJNbyfbOK8KVrQ5vl58PYkqp5x1HX27urBKz19c5AjMZLPQWfFbKxxiE3ZUG7QXzPTrZlj-0rgKRz9rLg-6q90Mi9x-FMQUXg2iICEKehBH7UN5A7cZHttAUTAMs72VvyxInDAfftH7Y06Vxq_wTvzS2wpOYfivp9B-4gmcKoZzwZZxcoSOaEnG6M50dvrpe1j3iMnxDTJ0TpO-TEpfL72yEkXw1dX2hqs0ZUrhLogTkurvqlPXcgLKBxcx8KUOXv9bq6p6gO6ZShtsSmBgOh-ikd48Qve9X4Q9IA0MBdDC2GP0a8g3fFNjxzcc-IYD37DnGwa-Ycs37PmGO76Z4w3fcOAb9nzDHd8wnKXnG-759gSdfZhV7-exbysS_wDztYXnP51olueylIXSiqZK6By8tyJVk4nMVEm10DUlqYkOUaV0Bk5BLqmSRZZmTGRP0Xhzs9HPEK5llkiliEhZmYPvIutUC7DR05KomtHsGEVhqrlNfvAZ18pNbMMJSyljJS9STugxehvQ4GbnhgdNcUCRZxxQ5BZFDig-v83OL9Dd_k_zEo1htvQrMKZb-dpz8Q8Gp8kG |
linkProvider | Library Specific Holdings |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.title=Computer+Analysis+of+Images+and+Patterns&rft.au=Brahim%2C+Abdelbasset&rft.au=Hajjam+El+Hassani%2C+Mehdi&rft.au=Farrugia%2C+Nicolas&rft.atitle=Classification+of+Autism+Spectrum+Disorder+Through+the+Graph+Fourier+Transform+of+fMRI+Temporal+Signals+Projected+on+Structural+Connectome&rft.series=Communications+in+Computer+and+Information+Science&rft.date=2019-01-01&rft.pub=Springer+International+Publishing&rft.isbn=9783030299293&rft.issn=1865-0929&rft.eissn=1865-0937&rft.spage=45&rft.epage=55&rft_id=info:doi/10.1007%2F978-3-030-29930-9_5 |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Febookcentral.proquest.com%2Fcovers%2F5927998-l.jpg |