Classification of Autism Spectrum Disorder Through the Graph Fourier Transform of fMRI Temporal Signals Projected on Structural Connectome

Graph Fourier Transform (GFT) could be a key tool for analyzing brain signals. In this sense, we evaluate the application of Graph signal processing (GSP) for the analysis of neuroimaging data. Thus, a GSP-based approach is proposed and validated for the classification of autism spectrum disorder (A...

Full description

Saved in:
Bibliographic Details
Published inComputer Analysis of Images and Patterns Vol. 1089; pp. 45 - 55
Main Authors Brahim, Abdelbasset, Hajjam El Hassani, Mehdi, Farrugia, Nicolas
Format Book Chapter
LanguageEnglish
Published Switzerland Springer International Publishing AG 2019
Springer International Publishing
SeriesCommunications in Computer and Information Science
Subjects
Online AccessGet full text
ISBN9783030299293
3030299295
ISSN1865-0929
1865-0937
DOI10.1007/978-3-030-29930-9_5

Cover

Loading…
Abstract Graph Fourier Transform (GFT) could be a key tool for analyzing brain signals. In this sense, we evaluate the application of Graph signal processing (GSP) for the analysis of neuroimaging data. Thus, a GSP-based approach is proposed and validated for the classification of autism spectrum disorder (ASD). More specifically, the resting state functional magnetic resonance imaging (rs-fMRI) time series of each brain subject are characterized by several statistical metrics. Then, these measures are projected on a structural graph, which is computed from a healthy brain structural connectivity of the human connectome project. Further analysis proves that the combination of the structural connectivity with the standard deviation of fMRI temporal signals can lead to more accurate supervised classification for 172 subjects from the biggest site of the Autism Brain Imaging Data Exchange (ABIDE) datasets. Moreover, the proposed approach outperforms several approaches, based on using functional connectome or complex functional network measures.
AbstractList Graph Fourier Transform (GFT) could be a key tool for analyzing brain signals. In this sense, we evaluate the application of Graph signal processing (GSP) for the analysis of neuroimaging data. Thus, a GSP-based approach is proposed and validated for the classification of autism spectrum disorder (ASD). More specifically, the resting state functional magnetic resonance imaging (rs-fMRI) time series of each brain subject are characterized by several statistical metrics. Then, these measures are projected on a structural graph, which is computed from a healthy brain structural connectivity of the human connectome project. Further analysis proves that the combination of the structural connectivity with the standard deviation of fMRI temporal signals can lead to more accurate supervised classification for 172 subjects from the biggest site of the Autism Brain Imaging Data Exchange (ABIDE) datasets. Moreover, the proposed approach outperforms several approaches, based on using functional connectome or complex functional network measures.
Author Hajjam El Hassani, Mehdi
Brahim, Abdelbasset
Farrugia, Nicolas
Author_xml – sequence: 1
  givenname: Abdelbasset
  surname: Brahim
  fullname: Brahim, Abdelbasset
  email: abdelbasset.brahim@imt-atlantique.fr
  organization: IMT Atlantique, Brest, France
– sequence: 2
  givenname: Mehdi
  surname: Hajjam El Hassani
  fullname: Hajjam El Hassani, Mehdi
  email: mehdi.hajjam-el-hassani@imt-atlantique.net
  organization: IMT Atlantique, Brest, France
– sequence: 3
  givenname: Nicolas
  surname: Farrugia
  fullname: Farrugia, Nicolas
  email: nicolas.farrugia@imt-atlantique.fr
  organization: IMT Atlantique, Brest, France
BookMark eNpNkEtO5DAURc1XzadWwMQbSONPEttDVHwaCQSiirHlmJdKoGIH29kEq8aBFmLynnSv733yOUb7zjtA6IySv5QQca6ELHhBOCmYUnkqXe2gRVZ51r4ktYuOqKyrgigu9n57TPH9H4-pQ3RMKVVc0ZLUf9AixldCCGNEqpIcoY_l1sTYt701qfcO-xZfTKmPA16NYFOYBnzZRx9eIOB1F_y06XDqAN8EM3b42k-hn51gXGx9GOZ8e_90i9cwjD6YLV71G2e2ET8G_5oL4QXnK6tcbNM0-0vvXNb9AKfooM0vYfF_n6Dn66v18l9x93Bzu7y4K0ZWklRIISiosmxkU1uwglkDpaRNzSylDbdSgIFWVExIKYW1wGtCykbYpuaMK8NPEP3ujWPo3QaCbrx_i5oSPcPXGaXmOsPUX6R1hp8z7DszBv8-QUwa5pAFl_InbGfGBCHqSjGhlNQ105Xgn4kZhkI
ContentType Book Chapter
Copyright Springer Nature Switzerland AG 2019
Copyright_xml – notice: Springer Nature Switzerland AG 2019
DBID FFUUA
DEWEY 6.37
DOI 10.1007/978-3-030-29930-9_5
DatabaseName ProQuest Ebook Central - Book Chapters - Demo use only
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Computer Science
EISBN 9783030299309
3030299309
EISSN 1865-0937
Editor Giorgi, Daniela
Matuszewski, Bogdan J
Vento, Mario
Colantonio, Sara
Percannella, Gennaro
Razaak, Manzoor
Kerdegari, Hamideh
Editor_xml – sequence: 1
  fullname: Giorgi, Daniela
– sequence: 2
  fullname: Vento, Mario
– sequence: 3
  fullname: Colantonio, Sara
– sequence: 4
  fullname: Percannella, Gennaro
– sequence: 5
  fullname: Matuszewski, Bogdan J
– sequence: 6
  fullname: Razaak, Manzoor
– sequence: 7
  fullname: Kerdegari, Hamideh
EndPage 55
ExternalDocumentID EBC5927998_62_57
GroupedDBID 38.
9-X
AABBV
AEJLV
AEKFX
ALMA_UNASSIGNED_HOLDINGS
AYMPB
BBABE
CXBFT
CZZ
EXGDT
FCSXQ
FFUUA
I4C
IEZ
MGZZY
NSQWD
OORQV
SBO
SNUHX
TPJZQ
Z5O
Z7R
Z7S
Z7U
Z7W
Z7X
Z7Y
Z7Z
Z81
Z82
Z83
Z84
Z85
Z87
Z88
AAJYQ
AATVQ
ABBUY
ABCYT
ACDTA
ACDUY
AEHEY
AHNNE
ATJMZ
ID FETCH-LOGICAL-p240t-8771e944b8b6cec72cae481b62c11b3c87eaef75278887cce36004b7cb63239a3
ISBN 9783030299293
3030299295
ISSN 1865-0929
IngestDate Tue Jul 29 20:11:17 EDT 2025
Fri Apr 11 21:41:37 EDT 2025
IsPeerReviewed true
IsScholarly true
LCCallNum TA1634
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-p240t-8771e944b8b6cec72cae481b62c11b3c87eaef75278887cce36004b7cb63239a3
OCLC 1119391406
PQID EBC5927998_62_57
PageCount 11
ParticipantIDs springer_books_10_1007_978_3_030_29930_9_5
proquest_ebookcentralchapters_5927998_62_57
PublicationCentury 2000
PublicationDate 2019
PublicationDateYYYYMMDD 2019-01-01
PublicationDate_xml – year: 2019
  text: 2019
PublicationDecade 2010
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Cham
PublicationSeriesTitle Communications in Computer and Information Science
PublicationSeriesTitleAlternate Communic.Comp.Inf.Science
PublicationSubtitle CAIP 2019 International Workshops, ViMaBi and DL-UAV, Salerno, Italy, September 6, 2019, Proceedings
PublicationTitle Computer Analysis of Images and Patterns
PublicationYear 2019
Publisher Springer International Publishing AG
Springer International Publishing
Publisher_xml – name: Springer International Publishing AG
– name: Springer International Publishing
RelatedPersons Barbosa, Simone Diniz Junqueira
Zhou, Lizhu
Kotenko, Igor
Filipe, Joaquim
Ghosh, Ashish
Yuan, Junsong
RelatedPersons_xml – sequence: 1
  givenname: Simone Diniz Junqueira
  surname: Barbosa
  fullname: Barbosa, Simone Diniz Junqueira
  organization: Pontifical Catholic University of Rio de Janeiro (PUC-Rio), Rio de Janeiro, Brazil
– sequence: 2
  givenname: Joaquim
  surname: Filipe
  fullname: Filipe, Joaquim
  organization: Polytechnic Institute of Setúbal, Setúbal, Portugal
– sequence: 3
  givenname: Ashish
  surname: Ghosh
  fullname: Ghosh, Ashish
  organization: Indian Statistical Institute, Kolkata, India
– sequence: 4
  givenname: Igor
  surname: Kotenko
  fullname: Kotenko, Igor
  organization: St. Petersburg Institute for Informatics and Automation of the Russian Academy of Sciences, St. Petersburg, Russia
– sequence: 5
  givenname: Junsong
  surname: Yuan
  fullname: Yuan, Junsong
  organization: University at Buffalo, The State University of New York, Buffalo, USA
– sequence: 6
  givenname: Lizhu
  surname: Zhou
  fullname: Zhou, Lizhu
  organization: Tsinghua University , Beijing, China
SSID ssj0002208940
ssj0000580895
ssib054953581
Score 1.9198173
Snippet Graph Fourier Transform (GFT) could be a key tool for analyzing brain signals. In this sense, we evaluate the application of Graph signal processing (GSP) for...
SourceID springer
proquest
SourceType Publisher
StartPage 45
SubjectTerms Autism disorder
Graph signal processing
Machine learning
Resting-state analysis
Title Classification of Autism Spectrum Disorder Through the Graph Fourier Transform of fMRI Temporal Signals Projected on Structural Connectome
URI http://ebookcentral.proquest.com/lib/SITE_ID/reader.action?docID=5927998&ppg=57
http://link.springer.com/10.1007/978-3-030-29930-9_5
Volume 1089
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELa65YI48BbLSz5wIgpKkziOjxUqdFcUIciivVm26-xute2iJr3wE_ih_A7Gr6QpXJZL1FpJk_j76sxMZr5B6I1KUrYsiyReEpHFuQaHVYIVEoucaCV1IWrbOmHxuZif5afn5Hw0-r2XtbRr5Tv18591Jf-DKowBrqZK9hbIdj8KA_AZ8IUtIAzbA-N3GGZ1ugK-H8NAV-RkLYxogy0BsMqZmz4MDsuKa508lUbaCqzmvvh5LlYrsY5m19Ecxl2fp2ihL5dXHcBiu91duNRaSx-fVuTpZptrmrSjzgSdwo03a9vgvt3u1p3OZ1T51kDG5P1o9LJNbyfbOK8KVrQ5vl58PYkqp5x1HX27urBKz19c5AjMZLPQWfFbKxxiE3ZUG7QXzPTrZlj-0rgKRz9rLg-6q90Mi9x-FMQUXg2iICEKehBH7UN5A7cZHttAUTAMs72VvyxInDAfftH7Y06Vxq_wTvzS2wpOYfivp9B-4gmcKoZzwZZxcoSOaEnG6M50dvrpe1j3iMnxDTJ0TpO-TEpfL72yEkXw1dX2hqs0ZUrhLogTkurvqlPXcgLKBxcx8KUOXv9bq6p6gO6ZShtsSmBgOh-ikd48Qve9X4Q9IA0MBdDC2GP0a8g3fFNjxzcc-IYD37DnGwa-Ycs37PmGO76Z4w3fcOAb9nzDHd8wnKXnG-759gSdfZhV7-exbysS_wDztYXnP51olueylIXSiqZK6By8tyJVk4nMVEm10DUlqYkOUaV0Bk5BLqmSRZZmTGRP0Xhzs9HPEK5llkiliEhZmYPvIutUC7DR05KomtHsGEVhqrlNfvAZ18pNbMMJSyljJS9STugxehvQ4GbnhgdNcUCRZxxQ5BZFDig-v83OL9Dd_k_zEo1htvQrMKZb-dpz8Q8Gp8kG
linkProvider Library Specific Holdings
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.title=Computer+Analysis+of+Images+and+Patterns&rft.au=Brahim%2C+Abdelbasset&rft.au=Hajjam+El+Hassani%2C+Mehdi&rft.au=Farrugia%2C+Nicolas&rft.atitle=Classification+of+Autism+Spectrum+Disorder+Through+the+Graph+Fourier+Transform+of+fMRI+Temporal+Signals+Projected+on+Structural+Connectome&rft.series=Communications+in+Computer+and+Information+Science&rft.date=2019-01-01&rft.pub=Springer+International+Publishing&rft.isbn=9783030299293&rft.issn=1865-0929&rft.eissn=1865-0937&rft.spage=45&rft.epage=55&rft_id=info:doi/10.1007%2F978-3-030-29930-9_5
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Febookcentral.proquest.com%2Fcovers%2F5927998-l.jpg