Evaluation of Approaches for Automatic E-Assessment Item Annotation with Levels of Bloom's Taxonomy

The classification of e-assessment items with levels of Bloom’s taxonomy is an important aspect of effective e-assessment. Such annotations enable the automatic generation of parallel tests with the same competence profile as well as a competence-oriented analysis of the students’ exam results. Unfo...

Full description

Saved in:
Bibliographic Details
Published inLearning Technologies and Systems Vol. 12511; pp. 57 - 69
Main Authors Meissner, Roy, Jenatschke, Daniel, Thor, Andreas
Format Book Chapter
LanguageEnglish
Published Switzerland Springer International Publishing AG 2021
Springer International Publishing
SeriesLecture Notes in Computer Science
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The classification of e-assessment items with levels of Bloom’s taxonomy is an important aspect of effective e-assessment. Such annotations enable the automatic generation of parallel tests with the same competence profile as well as a competence-oriented analysis of the students’ exam results. Unfortunately, manual annotation by item creators is rarely done, either because the used e-learning systems do not provide the functionality or because teachers shy away from the manual workload. In this paper we present an approach for the automatic classification of items according to Bloom’s taxonomy and the results of their evaluation. We use natural language processing techniques for pre-processing from four different NLP libraries, calculate 19 item features with and without stemming and stop word removal, employ six classification algorithms and evaluate the results of all these factors by using two real world data sets. Our results show that 1) the selection of the classification algorithm and item features are most impactful on the F1 scores, 2) automatic classification can achieve F1 scores of up to 90% and is thus well suited for a recommender system supporting item creators, and 3) some algorithms and features are worth using and should be considered in future studies.
AbstractList The classification of e-assessment items with levels of Bloom’s taxonomy is an important aspect of effective e-assessment. Such annotations enable the automatic generation of parallel tests with the same competence profile as well as a competence-oriented analysis of the students’ exam results. Unfortunately, manual annotation by item creators is rarely done, either because the used e-learning systems do not provide the functionality or because teachers shy away from the manual workload. In this paper we present an approach for the automatic classification of items according to Bloom’s taxonomy and the results of their evaluation. We use natural language processing techniques for pre-processing from four different NLP libraries, calculate 19 item features with and without stemming and stop word removal, employ six classification algorithms and evaluate the results of all these factors by using two real world data sets. Our results show that 1) the selection of the classification algorithm and item features are most impactful on the F1 scores, 2) automatic classification can achieve F1 scores of up to 90% and is thus well suited for a recommender system supporting item creators, and 3) some algorithms and features are worth using and should be considered in future studies.
Author Thor, Andreas
Meissner, Roy
Jenatschke, Daniel
Author_xml – sequence: 1
  givenname: Roy
  orcidid: 0000-0003-4193-8209
  surname: Meissner
  fullname: Meissner, Roy
  email: roy.meissner@uni-leipzig.de
– sequence: 2
  givenname: Daniel
  surname: Jenatschke
  fullname: Jenatschke, Daniel
  email: d.jenatschke@gmx.de
– sequence: 3
  givenname: Andreas
  orcidid: 0000-0003-2575-2893
  surname: Thor
  fullname: Thor, Andreas
  email: andreas.thor@htwk-leipzig.de
BookMark eNpFkEtPAjEUhauiEZBf4KY7V9W-Z7ocCSoJiRtM3DWl0xF0ZjpOC-q_t4CJyU3uK-ck5xuBQetbB8A1wbcE4-xOZTliCDOMpFRYIqHlCRixdDjs-SkYEkkIYoyrs_-HeB2AYZopUhlnF2BEKBNC5ZTgSzAJ4R1jTDnNSS6GwM52pt6auPEt9BUsuq73xq5dgJXvYbGNvklPC2eoCMGF0Lg2wnl0DSza1sej8GsT13Dhdq4Oe5P72vvmJsCl-fatb36uwHll6uAmf30MXh5my-kTWjw_zqfFAnWU44gok6UgK0NKx6WpyhV1JZOCcsIrp5SprBVMUctzgVWWkVxJJTKSsRTV2oqyMSBH39D1m_bN9Xrl_UfQBOs9T514aqYTGX3gpxPPpKFHTcr9uXUharcX2RSzN7Vdmy66PmjJZULGdIZTsV_PDXV0
ContentType Book Chapter
Copyright Springer Nature Switzerland AG 2021
Copyright_xml – notice: Springer Nature Switzerland AG 2021
DBID FFUUA
DEWEY 371.33
DOI 10.1007/978-3-030-66906-5_6
DatabaseName ProQuest Ebook Central - Book Chapters - Demo use only
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Education
Computer Science
EISBN 3030669068
9783030669065
EISSN 1611-3349
Editor Chen, Guanliang
Li, Qing
Hao, Tianyong
Gao, Yunjun
Pang, Chaoyi
Zhang, Bailing
Chen, Lu
Navarro, Silvia Margarita Baldiris
Popescu, Elvira
Editor_xml – sequence: 1
  fullname: Chen, Guanliang
– sequence: 2
  fullname: Li, Qing
– sequence: 3
  fullname: Hao, Tianyong
– sequence: 4
  fullname: Gao, Yunjun
– sequence: 5
  fullname: Pang, Chaoyi
– sequence: 6
  fullname: Zhang, Bailing
– sequence: 7
  fullname: Chen, Lu
– sequence: 8
  fullname: Navarro, Silvia Margarita Baldiris
– sequence: 9
  fullname: Popescu, Elvira
EndPage 69
ExternalDocumentID EBC6462423_70_70
GroupedDBID AABBV
AABLV
ABNDO
ACWLQ
AEDXK
AEJLV
AEKFX
AELOD
AIYYB
ALMA_UNASSIGNED_HOLDINGS
BAHJK
BBABE
CZZ
DBWEY
FFUUA
I4C
IEZ
OCUHQ
ORHYB
SBO
TPJZQ
TSXQS
Z81
Z83
-DT
-GH
-~X
1SB
29L
2HA
2HV
5QI
875
AASHB
ABMNI
ACGFS
ADCXD
AEFIE
EJD
F5P
FEDTE
HVGLF
LAS
LDH
P2P
RIG
RNI
RSU
SVGTG
VI1
~02
ID FETCH-LOGICAL-p240t-236d51ba1de46afdb2ed3652414fe99afcc5392c48509771896957173302ccf23
ISBN 303066905X
9783030669058
ISSN 0302-9743
IngestDate Tue Jul 29 20:36:38 EDT 2025
Thu May 29 16:43:42 EDT 2025
IsPeerReviewed true
IsScholarly true
LCCallNum LB1028.43-1028.75
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-p240t-236d51ba1de46afdb2ed3652414fe99afcc5392c48509771896957173302ccf23
Notes This work was supported by the German Federal Ministry of Education and Research for the tech4comp project under grant No 16DHB2102.
OCLC 1235598210
ORCID 0000-0003-4193-8209
0000-0003-2575-2893
PQID EBC6462423_70_70
PageCount 13
ParticipantIDs springer_books_10_1007_978_3_030_66906_5_6
proquest_ebookcentralchapters_6462423_70_70
PublicationCentury 2000
PublicationDate 2021
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – year: 2021
  text: 2021
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Cham
PublicationSeriesSubtitle Information Systems and Applications, incl. Internet/Web, and HCI
PublicationSeriesTitle Lecture Notes in Computer Science
PublicationSeriesTitleAlternate Lect.Notes Computer
PublicationSubtitle 19th International Conference on Web-Based Learning, ICWL 2020, and 5th International Symposium on Emerging Technologies for Education, SETE 2020, Ningbo, China, October 22-24, 2020, Proceedings
PublicationTitle Learning Technologies and Systems
PublicationYear 2021
Publisher Springer International Publishing AG
Springer International Publishing
Publisher_xml – name: Springer International Publishing AG
– name: Springer International Publishing
RelatedPersons Hartmanis, Juris
Gao, Wen
Bertino, Elisa
Woeginger, Gerhard
Goos, Gerhard
Steffen, Bernhard
Yung, Moti
RelatedPersons_xml – sequence: 1
  givenname: Gerhard
  surname: Goos
  fullname: Goos, Gerhard
– sequence: 2
  givenname: Juris
  surname: Hartmanis
  fullname: Hartmanis, Juris
– sequence: 3
  givenname: Elisa
  surname: Bertino
  fullname: Bertino, Elisa
– sequence: 4
  givenname: Wen
  surname: Gao
  fullname: Gao, Wen
– sequence: 5
  givenname: Bernhard
  orcidid: 0000-0001-9619-1558
  surname: Steffen
  fullname: Steffen, Bernhard
– sequence: 6
  givenname: Gerhard
  orcidid: 0000-0001-8816-2693
  surname: Woeginger
  fullname: Woeginger, Gerhard
– sequence: 7
  givenname: Moti
  surname: Yung
  fullname: Yung, Moti
SSID ssj0002428185
ssj0002792
Score 1.9827048
Snippet The classification of e-assessment items with levels of Bloom’s taxonomy is an important aspect of effective e-assessment. Such annotations enable the...
SourceID springer
proquest
SourceType Publisher
StartPage 57
SubjectTerms Annotation
Bloom’s taxonomy
Data mining
E-assessment
Items
Knowledge based systems
Machine learning systems
Performance levels
Title Evaluation of Approaches for Automatic E-Assessment Item Annotation with Levels of Bloom's Taxonomy
URI http://ebookcentral.proquest.com/lib/SITE_ID/reader.action?docID=6462423&ppg=70
http://link.springer.com/10.1007/978-3-030-66906-5_6
Volume 12511
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LjtMwFLU6ZYNY8BbDS16wojJqXm6zLKhoNBpm1UGzsxLHWaEGTVIJseI3WPFvfAnn-pGkgc0gVVEVRW5y76lz7_W5x4y9SbRJ6ziRIpO5FCleQKKMci3MUhsEBHEqY2pO_nQpz67S8-vsejb7NWItHbrynf7-z76S__EqzsGv1CV7C8_2g-IEvsO_OMLDOE6C3-Myq-teDkWNvjqOpNcxMUcq5FZbl_7ofo_jZuDMmH3RIbd17BzXaj6iidz0dEfPH_K42vby4D6ItS1Zxso6LDaHrnEasFux6TU_7XoAxto3ntpoi78XRFeyRJL3XxC9B9ZF3i52xbeh1YIMaVo8rVvruGw6SyFbhO0owuw0Ll_E0aR8EcqXkwLoUIM7yncTynCQz2ejKRunYoGsyE2Txk3jksQZEyeG6qdmp4PtX_Jue5i_Xh9jxgjGFfRbgLGSJ-xktc7m7M5me37xuS_iIb5ZR6N8i9QY3bKVuyVqJgq37OWehkfoNbCczPHkF48ynskivY19dg_YPeqH4dSoAts9ZDOzf8TuB_Nzb_7HzAzI4E3NB2RwIIP3yOBjZHBCBh-QwQkZ3CGDBrHI-P3jZ8sDJp6wq4_b3Ycz4TfxEF8RLHYC80CVRWURVSaVRV2VsakSmSFwTGuT50WtdYYYXadrhK4rREq5zDOihsCGWmMaecrm-2ZvnjEu42IZl1VZy6JMpTZFjewmzkkfSpd1Ik_ZIphMWaqB5zdrZ6BWyZS6oRK1WuJzyt4Gqyq6uFVBwRveUImCN5T1hoI3nt_m4hfs7oD0l2ze3RzMK4SuXfnaA-gPUjOUQQ
linkProvider Library Specific Holdings
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.title=Learning+Technologies+and+Systems&rft.au=Meissner%2C+Roy&rft.au=Jenatschke%2C+Daniel&rft.au=Thor%2C+Andreas&rft.atitle=Evaluation+of+Approaches+for+Automatic+E-Assessment+Item+Annotation+with+Levels+of+Bloom%E2%80%99s+Taxonomy&rft.series=Lecture+Notes+in+Computer+Science&rft.date=2021-01-01&rft.pub=Springer+International+Publishing&rft.isbn=9783030669058&rft.issn=0302-9743&rft.eissn=1611-3349&rft.spage=57&rft.epage=69&rft_id=info:doi/10.1007%2F978-3-030-66906-5_6
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Febookcentral.proquest.com%2Fcovers%2F6462423-l.jpg