Crystal structure of CC3 (TIP30): implications for its role as a tumor suppressor

CC3 (TIP30) is a protein with pro-apoptotic and anti-metastatic properties. The tumor suppressor effect of CC3 has been suggested to result from inhibition of nuclear transport by binding to importin betas or by regulating transcription through interaction in a complex with co-activator independent...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of biological chemistry Vol. 280; no. 18; pp. 18229 - 18236
Main Authors El Omari, Kamel, Bird, Louise E, Nichols, Charles E, Ren, Jingshan, Stammers, David K
Format Journal Article
LanguageEnglish
Published United States 06.05.2005
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:CC3 (TIP30) is a protein with pro-apoptotic and anti-metastatic properties. The tumor suppressor effect of CC3 has been suggested to result from inhibition of nuclear transport by binding to importin betas or by regulating transcription through interaction in a complex with co-activator independent of AF-2 function (CIA) and the c-myc gene. Previous biochemical studies indicated that CC3 has protein kinase activity, and a structural similarity to cAMP-dependent protein kinase catalytic subunit was proposed. By contrast, bioinformatics studies suggested a relationship of CC3 to the short chain dehydrogenase reductase family. To clarify details of the CC3 structural family and ligand binding properties, we have determined the crystal structure of CC3 at 1.7-A resolution. CC3 has a short chain dehydrogenase reductase fold and binding specificity for NADPH, yet it is unlikely to be normally enzymatically active because it is monomeric. These structural results, in conjunction with data from earlier mutagenesis work on the nucleotide binding motif, suggest that NADPH binding is important for the biological activity of CC3, including interaction with importins and with the CIA/c-myc system. CC3 provides an example of the adaptation of a metabolic enzyme fold to include a regulatory role, as also seen in the case of the NADH-binding co-repressor CtBP.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0021-9258
1083-351X
DOI:10.1074/jbc.M501113200