Identifying Autism from Resting-State fMRI Using Long Short-Term Memory Networks
Functional magnetic resonance imaging (fMRI) has helped characterize the pathophysiology of autism spectrum disorders (ASD) and carries promise for producing objective biomarkers for ASD. Recent work has focused on deriving ASD biomarkers from resting-state functional connectivity measures. However,...
Saved in:
Published in | Machine Learning in Medical Imaging Vol. 10541; pp. 362 - 370 |
---|---|
Main Authors | , , , |
Format | Book Chapter Journal Article |
Language | English |
Published |
Cham
Springer International Publishing
01.09.2017
|
Series | Lecture Notes in Computer Science |
Online Access | Get full text |
ISBN | 9783319673882 3319673882 |
ISSN | 0302-9743 1611-3349 |
DOI | 10.1007/978-3-319-67389-9_42 |
Cover
Loading…
Abstract | Functional magnetic resonance imaging (fMRI) has helped characterize the pathophysiology of autism spectrum disorders (ASD) and carries promise for producing objective biomarkers for ASD. Recent work has focused on deriving ASD biomarkers from resting-state functional connectivity measures. However, current efforts that have identified ASD with high accuracy were limited to homogeneous, small datasets, while classification results for heterogeneous, multi-site data have shown much lower accuracy. In this paper, we propose the use of recurrent neural networks with long short-term memory (LSTMs) for classification of individuals with ASD and typical controls directly from the resting-state fMRI time-series. We used the entire large, multi-site Autism Brain Imaging Data Exchange (ABIDE) I dataset for training and testing the LSTM models. Under a cross-validation framework, we achieved classification accuracy of 68.5%, which is 9% higher than previously reported methods that used fMRI data from the whole ABIDE cohort. Finally, we presented interpretation of the trained LSTM weights, which highlight potential functional networks and regions that are known to be implicated in ASD. |
---|---|
AbstractList | Functional magnetic resonance imaging (fMRI) has helped characterize the pathophysiology of autism spectrum disorders (ASD) and carries promise for producing objective biomarkers for ASD. Recent work has focused on deriving ASD biomarkers from resting-state functional connectivity measures. However, current efforts that have identified ASD with high accuracy were limited to homogeneous, small datasets, while classification results for heterogeneous, multi-site data have shown much lower accuracy. In this paper, we propose the use of recurrent neural networks with long short-term memory (LSTMs) for classification of individuals with ASD and typical controls directly from the resting-state fMRI time-series. We used the entire large, multi-site Autism Brain Imaging Data Exchange (ABIDE) I dataset for training and testing the LSTM models. Under a cross-validation framework, we achieved classification accuracy of 68.5%, which is 9% higher than previously reported methods that used fMRI data from the whole ABIDE cohort. Finally, we presented interpretation of the trained LSTM weights, which highlight potential functional networks and regions that are known to be implicated in ASD. |
Author | Pelphrey, Kevin A. Dvornek, Nicha C. Duncan, James S. Ventola, Pamela |
Author_xml | – sequence: 1 givenname: Nicha C. surname: Dvornek fullname: Dvornek, Nicha C. email: nicha.dvornek@yale.edu – sequence: 2 givenname: Pamela surname: Ventola fullname: Ventola, Pamela – sequence: 3 givenname: Kevin A. surname: Pelphrey fullname: Pelphrey, Kevin A. – sequence: 4 givenname: James S. surname: Duncan fullname: Duncan, James S. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29104967$$D View this record in MEDLINE/PubMed |
BookMark | eNo1kNtOAjEQhqti5CBvYMy-QLWH3W17SYwHElDD4brZwxQRd0vaEsPbW0BuZpJ_vkxmvj7qtLYFhO4oeaCEiEclJOaYU4VzwaXCSqfsAvV5TI4BuUQ9mlOKOU_VFRpG_jyTrIN6hBOGlUh5Fw29_yaEUClykokb1GWKkjSiPfQ5rqENa7Nft6tktAtr3yTG2SaZgQ8xw_NQBEjMdDZOlv4ATWws8y_rAl6Aa5IpNNbtk3cIv9Zt_C26NsWPh-F_H6Dly_Pi6Q1PPl7HT6MJ3jKuAs6rDKraAAOZgciFqli8PpNElpkQBWQkp6VgtSkIrQhwWRpDVSpkxiVTJuUDdH_au92VDdR669ZN4fb6_FoE2AnwcdSuwOnS2o3XlOiDXx19aa6jMX3UqQ9--R-ti2eB |
ContentType | Book Chapter Journal Article |
Copyright | Springer International Publishing AG 2017 |
Copyright_xml | – notice: Springer International Publishing AG 2017 |
DBID | NPM |
DOI | 10.1007/978-3-319-67389-9_42 |
DatabaseName | PubMed |
DatabaseTitle | PubMed |
DatabaseTitleList | PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Computer Science |
EISBN | 3319673890 9783319673899 |
EISSN | 1611-3349 |
Editor | Wang, Qian Suzuki, Kenji Shi, Yinghuan Suk, Heung-Il |
Editor_xml | – sequence: 1 givenname: Qian surname: Wang fullname: Wang, Qian email: wang.qian@sjtu.edu.cn – sequence: 2 givenname: Yinghuan surname: Shi fullname: Shi, Yinghuan email: syh@nju.edu.cn – sequence: 3 givenname: Heung-Il surname: Suk fullname: Suk, Heung-Il email: hisuk@korea.ac.kr – sequence: 4 givenname: Kenji surname: Suzuki fullname: Suzuki, Kenji email: ksuzuki@iit.edu |
EndPage | 370 |
ExternalDocumentID | 29104967 |
Genre | Journal Article |
GrantInformation_xml | – fundername: NCATS NIH HHS grantid: UL1 TR001863 – fundername: NIMH NIH HHS grantid: T32 MH018268 – fundername: NINDS NIH HHS grantid: R01 NS035193 |
GroupedDBID | -DT -~X 29L 2HA 2HV ACGFS ADCXD ALMA_UNASSIGNED_HOLDINGS EJD F5P LAS LDH P2P RSU ~02 NPM |
ID | FETCH-LOGICAL-p239t-6c5ecdfe2e85e7679c23315808b577ae5061b72dfa01c0e38bff1947853829f43 |
ISBN | 9783319673882 3319673882 |
ISSN | 0302-9743 |
IngestDate | Wed Feb 19 02:44:14 EST 2025 Tue Jul 29 20:16:20 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-p239t-6c5ecdfe2e85e7679c23315808b577ae5061b72dfa01c0e38bff1947853829f43 |
Notes | This work was supported in part by T32 MH18268 and R01 NS035193. |
PMID | 29104967 |
PageCount | 9 |
ParticipantIDs | pubmed_primary_29104967 springer_books_10_1007_978_3_319_67389_9_42 |
PublicationCentury | 2000 |
PublicationDate | 20170901 |
PublicationDateYYYYMMDD | 2017-09-01 |
PublicationDate_xml | – month: 9 year: 2017 text: 20170901 day: 1 |
PublicationDecade | 2010 |
PublicationPlace | Cham |
PublicationPlace_xml | – name: Cham – name: Germany |
PublicationSeriesSubtitle | Image Processing, Computer Vision, Pattern Recognition, and Graphics |
PublicationSeriesTitle | Lecture Notes in Computer Science |
PublicationSeriesTitleAlternate | Lect.Notes Computer |
PublicationSubtitle | 8th International Workshop, MLMI 2017, Held in Conjunction with MICCAI 2017, Quebec City, QC, Canada, September 10, 2017, Proceedings |
PublicationTitle | Machine Learning in Medical Imaging |
PublicationTitleAlternate | Mach Learn Med Imaging |
PublicationYear | 2017 |
Publisher | Springer International Publishing |
Publisher_xml | – name: Springer International Publishing |
References | 26106547 - Neuroimage Clin. 2015 Apr 09;8:238-45 25685703 - Neuroimage Clin. 2014 Dec 24;7:359-66 21769991 - Hum Brain Mapp. 2012 Aug;33(8):1914-28 17849012 - PLoS One. 2007 Sep 12;2(9):e883 23774715 - Mol Psychiatry. 2014 Jun;19(6):659-67 2934210 - Cognition. 1985 Oct;21(1):37-46 28030565 - PLoS One. 2016 Dec 28;11(12 ):e0166934 24093016 - Front Hum Neurosci. 2013 Sep 25;7:599 9377276 - Neural Comput. 1997 Nov 15;9(8):1735-80 27865923 - Neuroimage. 2017 Feb 15;147:736-745 21706013 - Nat Methods. 2011 Jun 26;8(8):665-70 23803651 - JAMA Psychiatry. 2013 Aug;70(8):869-79 |
References_xml | – reference: 26106547 - Neuroimage Clin. 2015 Apr 09;8:238-45 – reference: 9377276 - Neural Comput. 1997 Nov 15;9(8):1735-80 – reference: 28030565 - PLoS One. 2016 Dec 28;11(12 ):e0166934 – reference: 27865923 - Neuroimage. 2017 Feb 15;147:736-745 – reference: 23803651 - JAMA Psychiatry. 2013 Aug;70(8):869-79 – reference: 21706013 - Nat Methods. 2011 Jun 26;8(8):665-70 – reference: 17849012 - PLoS One. 2007 Sep 12;2(9):e883 – reference: 23774715 - Mol Psychiatry. 2014 Jun;19(6):659-67 – reference: 25685703 - Neuroimage Clin. 2014 Dec 24;7:359-66 – reference: 24093016 - Front Hum Neurosci. 2013 Sep 25;7:599 – reference: 21769991 - Hum Brain Mapp. 2012 Aug;33(8):1914-28 – reference: 2934210 - Cognition. 1985 Oct;21(1):37-46 |
RelatedPersons | Kleinberg, Jon M. Mattern, Friedemann Naor, Moni Mitchell, John C. Terzopoulos, Demetri Steffen, Bernhard Pandu Rangan, C. Kanade, Takeo Kittler, Josef Weikum, Gerhard Hutchison, David Tygar, Doug |
RelatedPersons_xml | – sequence: 1 givenname: David surname: Hutchison fullname: Hutchison, David – sequence: 2 givenname: Takeo surname: Kanade fullname: Kanade, Takeo – sequence: 3 givenname: Josef surname: Kittler fullname: Kittler, Josef – sequence: 4 givenname: Jon M. surname: Kleinberg fullname: Kleinberg, Jon M. – sequence: 5 givenname: Friedemann surname: Mattern fullname: Mattern, Friedemann – sequence: 6 givenname: John C. surname: Mitchell fullname: Mitchell, John C. – sequence: 7 givenname: Moni surname: Naor fullname: Naor, Moni – sequence: 8 givenname: C. surname: Pandu Rangan fullname: Pandu Rangan, C. – sequence: 9 givenname: Bernhard surname: Steffen fullname: Steffen, Bernhard – sequence: 10 givenname: Demetri surname: Terzopoulos fullname: Terzopoulos, Demetri – sequence: 11 givenname: Doug surname: Tygar fullname: Tygar, Doug – sequence: 12 givenname: Gerhard surname: Weikum fullname: Weikum, Gerhard |
SSID | ssj0001876057 ssj0002792 |
Score | 2.4555707 |
Snippet | Functional magnetic resonance imaging (fMRI) has helped characterize the pathophysiology of autism spectrum disorders (ASD) and carries promise for producing... |
SourceID | pubmed springer |
SourceType | Index Database Publisher |
StartPage | 362 |
Title | Identifying Autism from Resting-State fMRI Using Long Short-Term Memory Networks |
URI | http://link.springer.com/10.1007/978-3-319-67389-9_42 https://www.ncbi.nlm.nih.gov/pubmed/29104967 |
Volume | 10541 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07b9swECYcdyk69N2mj4BDN0GGLZIiNXQIghRJYBtB4gTZBJGiGqCxHMROhv6j_sseeaIlu1nSRbDph6S7T_fiPQj5JqVNeSlMbDVPY255EStbwOPOTQE-UVkO_czIyTQ9uuAnV-Kq1_vTyVq6X-mB-f1oXcn_cBXWgK-uSvYJnF3_KSzAa-AvHIHDcNwyfjfDrM2EIZcGaUOHVF-ZErZdjud--NDaSn1Y3NX2V8P56yI6GISPLkHpgHeLxuTc3hStrLzxfMbinQcXFln_CKxeg4FTn2QbnQ-6yMPaX6yf2oe7X86xiOXMNfSof8bevo2qydlxhAkLYzfv6PwaHIF4BooC7mLudv6nmKGORr-jp11-HzdbHtPFymeSRWEqRRBS3SgGaMaQprUZxdyKg7ahuA23lzm5IZlS3cgoA9EOzhFKS4vSPHU9Ghn2RG0kNGuEPyp7hlNL_tEj3dQRV-blzpbFWc5B2-9IJfrk2f7hyfiyDeeBVvHDVxsjwPVlxA0svCpXVrS-amz81L7vlHQ-dsqOcbS1W--NoNkr8sIVxlBXsQLUe016tn5DXjZuDG3ov4SlwJOw9pacdjBBERPUYYJuYII6TFCPCeowQVtMUMQEDZh4Ry5-HM4OjuJmlkd8m7BsFadGWFNWNrFKWJnKzCRw_0INlRZSFlaAXallUlbFcGSGlildVaOMA6mZSrKKs_ekXy9q-5FQlmnBhNLcVCnXo1IZoUHrSM2Y0FaOdskHJFd-iw1b8gRsYg603iVRoF_unttlHpp2A9lzlgPZc0_23JH905O-_Zk8b3H9hfRXd_f2K9irK73XYGWP7ExPJ38BSoaMcg |
linkProvider | Library Specific Holdings |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.title=Machine+Learning+in+Medical+Imaging&rft.au=Dvornek%2C+Nicha+C.&rft.au=Ventola%2C+Pamela&rft.au=Pelphrey%2C+Kevin+A.&rft.au=Duncan%2C+James+S.&rft.atitle=Identifying+Autism+from+Resting-State+fMRI+Using+Long+Short-Term+Memory+Networks&rft.series=Lecture+Notes+in+Computer+Science&rft.date=2017-09-01&rft.pub=Springer+International+Publishing&rft.isbn=9783319673882&rft.issn=0302-9743&rft.eissn=1611-3349&rft.spage=362&rft.epage=370&rft_id=info:doi/10.1007%2F978-3-319-67389-9_42 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0302-9743&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0302-9743&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0302-9743&client=summon |