Identifying Autism from Resting-State fMRI Using Long Short-Term Memory Networks

Functional magnetic resonance imaging (fMRI) has helped characterize the pathophysiology of autism spectrum disorders (ASD) and carries promise for producing objective biomarkers for ASD. Recent work has focused on deriving ASD biomarkers from resting-state functional connectivity measures. However,...

Full description

Saved in:
Bibliographic Details
Published inMachine Learning in Medical Imaging Vol. 10541; pp. 362 - 370
Main Authors Dvornek, Nicha C., Ventola, Pamela, Pelphrey, Kevin A., Duncan, James S.
Format Book Chapter Journal Article
LanguageEnglish
Published Cham Springer International Publishing 01.09.2017
SeriesLecture Notes in Computer Science
Online AccessGet full text
ISBN9783319673882
3319673882
ISSN0302-9743
1611-3349
DOI10.1007/978-3-319-67389-9_42

Cover

Loading…
Abstract Functional magnetic resonance imaging (fMRI) has helped characterize the pathophysiology of autism spectrum disorders (ASD) and carries promise for producing objective biomarkers for ASD. Recent work has focused on deriving ASD biomarkers from resting-state functional connectivity measures. However, current efforts that have identified ASD with high accuracy were limited to homogeneous, small datasets, while classification results for heterogeneous, multi-site data have shown much lower accuracy. In this paper, we propose the use of recurrent neural networks with long short-term memory (LSTMs) for classification of individuals with ASD and typical controls directly from the resting-state fMRI time-series. We used the entire large, multi-site Autism Brain Imaging Data Exchange (ABIDE) I dataset for training and testing the LSTM models. Under a cross-validation framework, we achieved classification accuracy of 68.5%, which is 9% higher than previously reported methods that used fMRI data from the whole ABIDE cohort. Finally, we presented interpretation of the trained LSTM weights, which highlight potential functional networks and regions that are known to be implicated in ASD.
AbstractList Functional magnetic resonance imaging (fMRI) has helped characterize the pathophysiology of autism spectrum disorders (ASD) and carries promise for producing objective biomarkers for ASD. Recent work has focused on deriving ASD biomarkers from resting-state functional connectivity measures. However, current efforts that have identified ASD with high accuracy were limited to homogeneous, small datasets, while classification results for heterogeneous, multi-site data have shown much lower accuracy. In this paper, we propose the use of recurrent neural networks with long short-term memory (LSTMs) for classification of individuals with ASD and typical controls directly from the resting-state fMRI time-series. We used the entire large, multi-site Autism Brain Imaging Data Exchange (ABIDE) I dataset for training and testing the LSTM models. Under a cross-validation framework, we achieved classification accuracy of 68.5%, which is 9% higher than previously reported methods that used fMRI data from the whole ABIDE cohort. Finally, we presented interpretation of the trained LSTM weights, which highlight potential functional networks and regions that are known to be implicated in ASD.
Author Pelphrey, Kevin A.
Dvornek, Nicha C.
Duncan, James S.
Ventola, Pamela
Author_xml – sequence: 1
  givenname: Nicha C.
  surname: Dvornek
  fullname: Dvornek, Nicha C.
  email: nicha.dvornek@yale.edu
– sequence: 2
  givenname: Pamela
  surname: Ventola
  fullname: Ventola, Pamela
– sequence: 3
  givenname: Kevin A.
  surname: Pelphrey
  fullname: Pelphrey, Kevin A.
– sequence: 4
  givenname: James S.
  surname: Duncan
  fullname: Duncan, James S.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29104967$$D View this record in MEDLINE/PubMed
BookMark eNo1kNtOAjEQhqti5CBvYMy-QLWH3W17SYwHElDD4brZwxQRd0vaEsPbW0BuZpJ_vkxmvj7qtLYFhO4oeaCEiEclJOaYU4VzwaXCSqfsAvV5TI4BuUQ9mlOKOU_VFRpG_jyTrIN6hBOGlUh5Fw29_yaEUClykokb1GWKkjSiPfQ5rqENa7Nft6tktAtr3yTG2SaZgQ8xw_NQBEjMdDZOlv4ATWws8y_rAl6Aa5IpNNbtk3cIv9Zt_C26NsWPh-F_H6Dly_Pi6Q1PPl7HT6MJ3jKuAs6rDKraAAOZgciFqli8PpNElpkQBWQkp6VgtSkIrQhwWRpDVSpkxiVTJuUDdH_au92VDdR669ZN4fb6_FoE2AnwcdSuwOnS2o3XlOiDXx19aa6jMX3UqQ9--R-ti2eB
ContentType Book Chapter
Journal Article
Copyright Springer International Publishing AG 2017
Copyright_xml – notice: Springer International Publishing AG 2017
DBID NPM
DOI 10.1007/978-3-319-67389-9_42
DatabaseName PubMed
DatabaseTitle PubMed
DatabaseTitleList PubMed

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Computer Science
EISBN 3319673890
9783319673899
EISSN 1611-3349
Editor Wang, Qian
Suzuki, Kenji
Shi, Yinghuan
Suk, Heung-Il
Editor_xml – sequence: 1
  givenname: Qian
  surname: Wang
  fullname: Wang, Qian
  email: wang.qian@sjtu.edu.cn
– sequence: 2
  givenname: Yinghuan
  surname: Shi
  fullname: Shi, Yinghuan
  email: syh@nju.edu.cn
– sequence: 3
  givenname: Heung-Il
  surname: Suk
  fullname: Suk, Heung-Il
  email: hisuk@korea.ac.kr
– sequence: 4
  givenname: Kenji
  surname: Suzuki
  fullname: Suzuki, Kenji
  email: ksuzuki@iit.edu
EndPage 370
ExternalDocumentID 29104967
Genre Journal Article
GrantInformation_xml – fundername: NCATS NIH HHS
  grantid: UL1 TR001863
– fundername: NIMH NIH HHS
  grantid: T32 MH018268
– fundername: NINDS NIH HHS
  grantid: R01 NS035193
GroupedDBID -DT
-~X
29L
2HA
2HV
ACGFS
ADCXD
ALMA_UNASSIGNED_HOLDINGS
EJD
F5P
LAS
LDH
P2P
RSU
~02
NPM
ID FETCH-LOGICAL-p239t-6c5ecdfe2e85e7679c23315808b577ae5061b72dfa01c0e38bff1947853829f43
ISBN 9783319673882
3319673882
ISSN 0302-9743
IngestDate Wed Feb 19 02:44:14 EST 2025
Tue Jul 29 20:16:20 EDT 2025
IsPeerReviewed true
IsScholarly true
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-p239t-6c5ecdfe2e85e7679c23315808b577ae5061b72dfa01c0e38bff1947853829f43
Notes This work was supported in part by T32 MH18268 and R01 NS035193.
PMID 29104967
PageCount 9
ParticipantIDs pubmed_primary_29104967
springer_books_10_1007_978_3_319_67389_9_42
PublicationCentury 2000
PublicationDate 20170901
PublicationDateYYYYMMDD 2017-09-01
PublicationDate_xml – month: 9
  year: 2017
  text: 20170901
  day: 1
PublicationDecade 2010
PublicationPlace Cham
PublicationPlace_xml – name: Cham
– name: Germany
PublicationSeriesSubtitle Image Processing, Computer Vision, Pattern Recognition, and Graphics
PublicationSeriesTitle Lecture Notes in Computer Science
PublicationSeriesTitleAlternate Lect.Notes Computer
PublicationSubtitle 8th International Workshop, MLMI 2017, Held in Conjunction with MICCAI 2017, Quebec City, QC, Canada, September 10, 2017, Proceedings
PublicationTitle Machine Learning in Medical Imaging
PublicationTitleAlternate Mach Learn Med Imaging
PublicationYear 2017
Publisher Springer International Publishing
Publisher_xml – name: Springer International Publishing
References 26106547 - Neuroimage Clin. 2015 Apr 09;8:238-45
25685703 - Neuroimage Clin. 2014 Dec 24;7:359-66
21769991 - Hum Brain Mapp. 2012 Aug;33(8):1914-28
17849012 - PLoS One. 2007 Sep 12;2(9):e883
23774715 - Mol Psychiatry. 2014 Jun;19(6):659-67
2934210 - Cognition. 1985 Oct;21(1):37-46
28030565 - PLoS One. 2016 Dec 28;11(12 ):e0166934
24093016 - Front Hum Neurosci. 2013 Sep 25;7:599
9377276 - Neural Comput. 1997 Nov 15;9(8):1735-80
27865923 - Neuroimage. 2017 Feb 15;147:736-745
21706013 - Nat Methods. 2011 Jun 26;8(8):665-70
23803651 - JAMA Psychiatry. 2013 Aug;70(8):869-79
References_xml – reference: 26106547 - Neuroimage Clin. 2015 Apr 09;8:238-45
– reference: 9377276 - Neural Comput. 1997 Nov 15;9(8):1735-80
– reference: 28030565 - PLoS One. 2016 Dec 28;11(12 ):e0166934
– reference: 27865923 - Neuroimage. 2017 Feb 15;147:736-745
– reference: 23803651 - JAMA Psychiatry. 2013 Aug;70(8):869-79
– reference: 21706013 - Nat Methods. 2011 Jun 26;8(8):665-70
– reference: 17849012 - PLoS One. 2007 Sep 12;2(9):e883
– reference: 23774715 - Mol Psychiatry. 2014 Jun;19(6):659-67
– reference: 25685703 - Neuroimage Clin. 2014 Dec 24;7:359-66
– reference: 24093016 - Front Hum Neurosci. 2013 Sep 25;7:599
– reference: 21769991 - Hum Brain Mapp. 2012 Aug;33(8):1914-28
– reference: 2934210 - Cognition. 1985 Oct;21(1):37-46
RelatedPersons Kleinberg, Jon M.
Mattern, Friedemann
Naor, Moni
Mitchell, John C.
Terzopoulos, Demetri
Steffen, Bernhard
Pandu Rangan, C.
Kanade, Takeo
Kittler, Josef
Weikum, Gerhard
Hutchison, David
Tygar, Doug
RelatedPersons_xml – sequence: 1
  givenname: David
  surname: Hutchison
  fullname: Hutchison, David
– sequence: 2
  givenname: Takeo
  surname: Kanade
  fullname: Kanade, Takeo
– sequence: 3
  givenname: Josef
  surname: Kittler
  fullname: Kittler, Josef
– sequence: 4
  givenname: Jon M.
  surname: Kleinberg
  fullname: Kleinberg, Jon M.
– sequence: 5
  givenname: Friedemann
  surname: Mattern
  fullname: Mattern, Friedemann
– sequence: 6
  givenname: John C.
  surname: Mitchell
  fullname: Mitchell, John C.
– sequence: 7
  givenname: Moni
  surname: Naor
  fullname: Naor, Moni
– sequence: 8
  givenname: C.
  surname: Pandu Rangan
  fullname: Pandu Rangan, C.
– sequence: 9
  givenname: Bernhard
  surname: Steffen
  fullname: Steffen, Bernhard
– sequence: 10
  givenname: Demetri
  surname: Terzopoulos
  fullname: Terzopoulos, Demetri
– sequence: 11
  givenname: Doug
  surname: Tygar
  fullname: Tygar, Doug
– sequence: 12
  givenname: Gerhard
  surname: Weikum
  fullname: Weikum, Gerhard
SSID ssj0001876057
ssj0002792
Score 2.4555707
Snippet Functional magnetic resonance imaging (fMRI) has helped characterize the pathophysiology of autism spectrum disorders (ASD) and carries promise for producing...
SourceID pubmed
springer
SourceType Index Database
Publisher
StartPage 362
Title Identifying Autism from Resting-State fMRI Using Long Short-Term Memory Networks
URI http://link.springer.com/10.1007/978-3-319-67389-9_42
https://www.ncbi.nlm.nih.gov/pubmed/29104967
Volume 10541
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07b9swECYcdyk69N2mj4BDN0GGLZIiNXQIghRJYBtB4gTZBJGiGqCxHMROhv6j_sseeaIlu1nSRbDph6S7T_fiPQj5JqVNeSlMbDVPY255EStbwOPOTQE-UVkO_czIyTQ9uuAnV-Kq1_vTyVq6X-mB-f1oXcn_cBXWgK-uSvYJnF3_KSzAa-AvHIHDcNwyfjfDrM2EIZcGaUOHVF-ZErZdjud--NDaSn1Y3NX2V8P56yI6GISPLkHpgHeLxuTc3hStrLzxfMbinQcXFln_CKxeg4FTn2QbnQ-6yMPaX6yf2oe7X86xiOXMNfSof8bevo2qydlxhAkLYzfv6PwaHIF4BooC7mLudv6nmKGORr-jp11-HzdbHtPFymeSRWEqRRBS3SgGaMaQprUZxdyKg7ahuA23lzm5IZlS3cgoA9EOzhFKS4vSPHU9Ghn2RG0kNGuEPyp7hlNL_tEj3dQRV-blzpbFWc5B2-9IJfrk2f7hyfiyDeeBVvHDVxsjwPVlxA0svCpXVrS-amz81L7vlHQ-dsqOcbS1W--NoNkr8sIVxlBXsQLUe016tn5DXjZuDG3ov4SlwJOw9pacdjBBERPUYYJuYII6TFCPCeowQVtMUMQEDZh4Ry5-HM4OjuJmlkd8m7BsFadGWFNWNrFKWJnKzCRw_0INlRZSFlaAXallUlbFcGSGlildVaOMA6mZSrKKs_ekXy9q-5FQlmnBhNLcVCnXo1IZoUHrSM2Y0FaOdskHJFd-iw1b8gRsYg603iVRoF_unttlHpp2A9lzlgPZc0_23JH905O-_Zk8b3H9hfRXd_f2K9irK73XYGWP7ExPJ38BSoaMcg
linkProvider Library Specific Holdings
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.title=Machine+Learning+in+Medical+Imaging&rft.au=Dvornek%2C+Nicha+C.&rft.au=Ventola%2C+Pamela&rft.au=Pelphrey%2C+Kevin+A.&rft.au=Duncan%2C+James+S.&rft.atitle=Identifying+Autism+from+Resting-State+fMRI+Using+Long+Short-Term+Memory+Networks&rft.series=Lecture+Notes+in+Computer+Science&rft.date=2017-09-01&rft.pub=Springer+International+Publishing&rft.isbn=9783319673882&rft.issn=0302-9743&rft.eissn=1611-3349&rft.spage=362&rft.epage=370&rft_id=info:doi/10.1007%2F978-3-319-67389-9_42
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0302-9743&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0302-9743&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0302-9743&client=summon