Named Entity Recognition in Chinese Clinical Text Using Deep Neural Network
Rapid growth in electronic health records (EHRs) use has led to an unprecedented expansion of available clinical data in electronic formats. However, much of the important healthcare information is locked in the narrative documents. Therefore Natural Language Processing (NLP) technologies, e.g., Nam...
Saved in:
Published in | Studies in health technology and informatics Vol. 216; p. 624 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
2015
|
Subjects | |
Online Access | Get more information |
ISSN | 0926-9630 |
DOI | 10.3233/978-1-61499-564-7-624 |
Cover
Abstract | Rapid growth in electronic health records (EHRs) use has led to an unprecedented expansion of available clinical data in electronic formats. However, much of the important healthcare information is locked in the narrative documents. Therefore Natural Language Processing (NLP) technologies, e.g., Named Entity Recognition that identifies boundaries and types of entities, has been extensively studied to unlock important clinical information in free text. In this study, we investigated a novel deep learning method to recognize clinical entities in Chinese clinical documents using the minimal feature engineering approach. We developed a deep neural network (DNN) to generate word embeddings from a large unlabeled corpus through unsupervised learning and another DNN for the NER task. The experiment results showed that the DNN with word embeddings trained from the large unlabeled corpus outperformed the state-of-the-art CRF's model in the minimal feature engineering setting, achieving the highest F1-score of 0.9280. Further analysis showed that word embeddings derived through unsupervised learning from large unlabeled corpus remarkably improved the DNN with randomized embedding, denoting the usefulness of unsupervised feature learning. |
---|---|
AbstractList | Rapid growth in electronic health records (EHRs) use has led to an unprecedented expansion of available clinical data in electronic formats. However, much of the important healthcare information is locked in the narrative documents. Therefore Natural Language Processing (NLP) technologies, e.g., Named Entity Recognition that identifies boundaries and types of entities, has been extensively studied to unlock important clinical information in free text. In this study, we investigated a novel deep learning method to recognize clinical entities in Chinese clinical documents using the minimal feature engineering approach. We developed a deep neural network (DNN) to generate word embeddings from a large unlabeled corpus through unsupervised learning and another DNN for the NER task. The experiment results showed that the DNN with word embeddings trained from the large unlabeled corpus outperformed the state-of-the-art CRF's model in the minimal feature engineering setting, achieving the highest F1-score of 0.9280. Further analysis showed that word embeddings derived through unsupervised learning from large unlabeled corpus remarkably improved the DNN with randomized embedding, denoting the usefulness of unsupervised feature learning. |
Author | Jiang, Min Lei, Jianbo Xu, Hua Wu, Yonghui |
Author_xml | – sequence: 1 givenname: Yonghui surname: Wu fullname: Wu, Yonghui organization: School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX, USA – sequence: 2 givenname: Min surname: Jiang fullname: Jiang, Min organization: School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX, USA – sequence: 3 givenname: Jianbo surname: Lei fullname: Lei, Jianbo organization: Center for Medical Informatics, Peking University, Beijing, China – sequence: 4 givenname: Hua surname: Xu fullname: Xu, Hua organization: School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26262126$$D View this record in MEDLINE/PubMed |
BookMark | eNo1j8tOwzAURL0oog_4BJB_wGA7fsRLFMpDVKlUtevKsW-KIXWixBX074kEaBYjncXozBxNYhsBoRtG7zKeZfdG54QRxYQxRCpBNFFcTNCMGq6IURmdovkwfFDKhTL6Ek25GsO4mqG30h7B42VMIZ3xBlx7iCGFNuIQcfEeIgyAiybE4GyDt_Cd8G4I8YAfATpcwqkfcQnpq-0_r9BFbZsBrv96gXZPy23xQlbr59fiYUW6UTYR75Sg3kEFNRM-F15VPuPa1bZ2tZDaGi3kSIylpnJGSQ-c5ULmuXdWCs8X6PZ3tztVo_y-68PR9uf9_yv-A-OvUB0 |
ContentType | Journal Article |
DBID | CGR CUY CVF ECM EIF NPM |
DOI | 10.3233/978-1-61499-564-7-624 |
DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) |
DatabaseTitleList | MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | no_fulltext_linktorsrc |
ExternalDocumentID | 26262126 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NLM NIH HHS grantid: R01LM010681-05 – fundername: NIGMS NIH HHS grantid: R01 GM102282 – fundername: NLM NIH HHS grantid: R01 LM010681 |
GroupedDBID | --- 36B 53G AAWTL ACGFO ACGFS AIAGR ALMA_UNASSIGNED_HOLDINGS CGR CUY CVF DU5 ECM EIF EMB EMOBN F5P MBS MIO NPM P2P SV3 |
ID | FETCH-LOGICAL-p233t-dc640dcebef14d84d6bd327cfafcf457a9745d329a09bc965de2184588dca54d2 |
ISSN | 0926-9630 |
IngestDate | Thu May 23 23:21:18 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-p233t-dc640dcebef14d84d6bd327cfafcf457a9745d329a09bc965de2184588dca54d2 |
PMID | 26262126 |
ParticipantIDs | pubmed_primary_26262126 |
PublicationCentury | 2000 |
PublicationDate | 2015-00-00 |
PublicationDateYYYYMMDD | 2015-01-01 |
PublicationDate_xml | – year: 2015 text: 2015-00-00 |
PublicationDecade | 2010 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | Studies in health technology and informatics |
PublicationTitleAlternate | Stud Health Technol Inform |
PublicationYear | 2015 |
References | 20064797 - J Am Med Inform Assoc. 2010 Jan-Feb;17(1):19-24 21709161 - J Am Med Inform Assoc. 2011 Sep-Oct;18(5):580-7 21565856 - J Am Med Inform Assoc. 2011 Sep-Oct;18(5):557-62 20819854 - J Am Med Inform Assoc. 2010 Sep-Oct;17(5):514-8 25147248 - J Am Med Inform Assoc. 2015 Jan;22(1):143-54 16873662 - Science. 2006 Jul 28;313(5786):504-7 7719797 - J Am Med Inform Assoc. 1994 Mar-Apr;1(2):161-74 20819853 - J Am Med Inform Assoc. 2010 Sep-Oct;17(5):507-13 24347408 - J Am Med Inform Assoc. 2014 Sep-Oct;21(5):808-14 21508414 - J Am Med Inform Assoc. 2011 Sep-Oct;18(5):601-6 18660887 - Yearb Med Inform. 2008;:128-44 23566040 - BMC Med Inform Decis Mak. 2013;13 Suppl 1:S1 20442139 - J Am Med Inform Assoc. 2010 May-Jun;17(3):229-36 21685143 - J Am Med Inform Assoc. 2011 Sep-Oct;18(5):552-6 11825149 - Proc AMIA Symp. 2001;:17-21 24402264 - Nature. 2014 Jan 9;505(7482):146-8 23934949 - J Am Med Inform Assoc. 2014 Feb;21(e1):e84-92 |
References_xml | – reference: 21709161 - J Am Med Inform Assoc. 2011 Sep-Oct;18(5):580-7 – reference: 18660887 - Yearb Med Inform. 2008;:128-44 – reference: 24402264 - Nature. 2014 Jan 9;505(7482):146-8 – reference: 16873662 - Science. 2006 Jul 28;313(5786):504-7 – reference: 21565856 - J Am Med Inform Assoc. 2011 Sep-Oct;18(5):557-62 – reference: 11825149 - Proc AMIA Symp. 2001;:17-21 – reference: 20064797 - J Am Med Inform Assoc. 2010 Jan-Feb;17(1):19-24 – reference: 23566040 - BMC Med Inform Decis Mak. 2013;13 Suppl 1:S1 – reference: 25147248 - J Am Med Inform Assoc. 2015 Jan;22(1):143-54 – reference: 20819853 - J Am Med Inform Assoc. 2010 Sep-Oct;17(5):507-13 – reference: 21508414 - J Am Med Inform Assoc. 2011 Sep-Oct;18(5):601-6 – reference: 23934949 - J Am Med Inform Assoc. 2014 Feb;21(e1):e84-92 – reference: 24347408 - J Am Med Inform Assoc. 2014 Sep-Oct;21(5):808-14 – reference: 21685143 - J Am Med Inform Assoc. 2011 Sep-Oct;18(5):552-6 – reference: 20442139 - J Am Med Inform Assoc. 2010 May-Jun;17(3):229-36 – reference: 20819854 - J Am Med Inform Assoc. 2010 Sep-Oct;17(5):514-8 – reference: 7719797 - J Am Med Inform Assoc. 1994 Mar-Apr;1(2):161-74 |
SSID | ssj0024697 |
Score | 2.4523659 |
Snippet | Rapid growth in electronic health records (EHRs) use has led to an unprecedented expansion of available clinical data in electronic formats. However, much of... |
SourceID | pubmed |
SourceType | Index Database |
StartPage | 624 |
SubjectTerms | Algorithms Biological Ontologies China Data Mining - methods Electronic Health Records - classification Language Machine Learning Neural Networks (Computer) Terminology as Topic Vocabulary, Controlled |
Title | Named Entity Recognition in Chinese Clinical Text Using Deep Neural Network |
URI | https://www.ncbi.nlm.nih.gov/pubmed/26262126 |
Volume | 216 |
hasFullText | |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELYoLCwIxPslD2yRIU1tJxlRKapAzdSKblX8CHQgrUS68Os5P9JGVRGPJYrsxLJzny93p-_OCN3w3JSRo4pwnTBCC61JUghBNFPtUGuuQ1u-eJDx_og-jdl4RSuy2SWVuJWfG_NK_iNVaAO5mizZP0h2OSg0wD3IF64gYbj-SsZZDv-yoGcybY0p7alAjrxoDsbWHzro1qmPQ1DDgWMIPGg9D0xZDmjOHA-8aaR6bqEZxaVJBtUyAO-rNXlTd8WUf1lYZT4rX98W0yUtZ-qj0YNpg_lj-QOmS8zqxrF9u7_Im0GINmsEIXw0MeIE9nLYVKxRu6kaucuVXlfZnciElB-dMwu2QpoSximJydrz8OXn71aOEfhg8MPlP_euVdKuu1qoFcdGiWcmslPXZXQH8SwX4rK9zOzuNs7NVJH24615JNYyGe6jPe9S4HuHjwO0pctD9GyxgR02cAMbeFpijw1cYwMbbGCLDWywgR02sMfGERo99obdPvEHZ5A5zLciSnIaKgn7s2hTlVDFhepEsSzyQhaUxTk4kQxa0jxMhUw5U9p4-ixJlMwZVdEx2i5npT5FWDEBJqFkUsD6udRpLMAmLeK8A5am4ukZOnFrn8xddZRJ_VXOv-25QLsrDF2inQK2o74C264S11YoX6YOSeQ |
linkProvider | National Library of Medicine |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Named+Entity+Recognition+in+Chinese+Clinical+Text+Using+Deep+Neural+Network&rft.jtitle=Studies+in+health+technology+and+informatics&rft.au=Wu%2C+Yonghui&rft.au=Jiang%2C+Min&rft.au=Lei%2C+Jianbo&rft.au=Xu%2C+Hua&rft.date=2015-01-01&rft.issn=0926-9630&rft.volume=216&rft.spage=624&rft_id=info:doi/10.3233%2F978-1-61499-564-7-624&rft_id=info%3Apmid%2F26262126&rft_id=info%3Apmid%2F26262126&rft.externalDocID=26262126 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0926-9630&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0926-9630&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0926-9630&client=summon |