Named Entity Recognition in Chinese Clinical Text Using Deep Neural Network

Rapid growth in electronic health records (EHRs) use has led to an unprecedented expansion of available clinical data in electronic formats. However, much of the important healthcare information is locked in the narrative documents. Therefore Natural Language Processing (NLP) technologies, e.g., Nam...

Full description

Saved in:
Bibliographic Details
Published inStudies in health technology and informatics Vol. 216; p. 624
Main Authors Wu, Yonghui, Jiang, Min, Lei, Jianbo, Xu, Hua
Format Journal Article
LanguageEnglish
Published Netherlands 2015
Subjects
Online AccessGet more information
ISSN0926-9630
DOI10.3233/978-1-61499-564-7-624

Cover

Abstract Rapid growth in electronic health records (EHRs) use has led to an unprecedented expansion of available clinical data in electronic formats. However, much of the important healthcare information is locked in the narrative documents. Therefore Natural Language Processing (NLP) technologies, e.g., Named Entity Recognition that identifies boundaries and types of entities, has been extensively studied to unlock important clinical information in free text. In this study, we investigated a novel deep learning method to recognize clinical entities in Chinese clinical documents using the minimal feature engineering approach. We developed a deep neural network (DNN) to generate word embeddings from a large unlabeled corpus through unsupervised learning and another DNN for the NER task. The experiment results showed that the DNN with word embeddings trained from the large unlabeled corpus outperformed the state-of-the-art CRF's model in the minimal feature engineering setting, achieving the highest F1-score of 0.9280. Further analysis showed that word embeddings derived through unsupervised learning from large unlabeled corpus remarkably improved the DNN with randomized embedding, denoting the usefulness of unsupervised feature learning.
AbstractList Rapid growth in electronic health records (EHRs) use has led to an unprecedented expansion of available clinical data in electronic formats. However, much of the important healthcare information is locked in the narrative documents. Therefore Natural Language Processing (NLP) technologies, e.g., Named Entity Recognition that identifies boundaries and types of entities, has been extensively studied to unlock important clinical information in free text. In this study, we investigated a novel deep learning method to recognize clinical entities in Chinese clinical documents using the minimal feature engineering approach. We developed a deep neural network (DNN) to generate word embeddings from a large unlabeled corpus through unsupervised learning and another DNN for the NER task. The experiment results showed that the DNN with word embeddings trained from the large unlabeled corpus outperformed the state-of-the-art CRF's model in the minimal feature engineering setting, achieving the highest F1-score of 0.9280. Further analysis showed that word embeddings derived through unsupervised learning from large unlabeled corpus remarkably improved the DNN with randomized embedding, denoting the usefulness of unsupervised feature learning.
Author Jiang, Min
Lei, Jianbo
Xu, Hua
Wu, Yonghui
Author_xml – sequence: 1
  givenname: Yonghui
  surname: Wu
  fullname: Wu, Yonghui
  organization: School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX, USA
– sequence: 2
  givenname: Min
  surname: Jiang
  fullname: Jiang, Min
  organization: School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX, USA
– sequence: 3
  givenname: Jianbo
  surname: Lei
  fullname: Lei, Jianbo
  organization: Center for Medical Informatics, Peking University, Beijing, China
– sequence: 4
  givenname: Hua
  surname: Xu
  fullname: Xu, Hua
  organization: School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26262126$$D View this record in MEDLINE/PubMed
BookMark eNo1j8tOwzAURL0oog_4BJB_wGA7fsRLFMpDVKlUtevKsW-KIXWixBX074kEaBYjncXozBxNYhsBoRtG7zKeZfdG54QRxYQxRCpBNFFcTNCMGq6IURmdovkwfFDKhTL6Ek25GsO4mqG30h7B42VMIZ3xBlx7iCGFNuIQcfEeIgyAiybE4GyDt_Cd8G4I8YAfATpcwqkfcQnpq-0_r9BFbZsBrv96gXZPy23xQlbr59fiYUW6UTYR75Sg3kEFNRM-F15VPuPa1bZ2tZDaGi3kSIylpnJGSQ-c5ULmuXdWCs8X6PZ3tztVo_y-68PR9uf9_yv-A-OvUB0
ContentType Journal Article
DBID CGR
CUY
CVF
ECM
EIF
NPM
DOI 10.3233/978-1-61499-564-7-624
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
DatabaseTitleList MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod no_fulltext_linktorsrc
ExternalDocumentID 26262126
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NLM NIH HHS
  grantid: R01LM010681-05
– fundername: NIGMS NIH HHS
  grantid: R01 GM102282
– fundername: NLM NIH HHS
  grantid: R01 LM010681
GroupedDBID ---
36B
53G
AAWTL
ACGFO
ACGFS
AIAGR
ALMA_UNASSIGNED_HOLDINGS
CGR
CUY
CVF
DU5
ECM
EIF
EMB
EMOBN
F5P
MBS
MIO
NPM
P2P
SV3
ID FETCH-LOGICAL-p233t-dc640dcebef14d84d6bd327cfafcf457a9745d329a09bc965de2184588dca54d2
ISSN 0926-9630
IngestDate Thu May 23 23:21:18 EDT 2024
IsPeerReviewed true
IsScholarly true
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-p233t-dc640dcebef14d84d6bd327cfafcf457a9745d329a09bc965de2184588dca54d2
PMID 26262126
ParticipantIDs pubmed_primary_26262126
PublicationCentury 2000
PublicationDate 2015-00-00
PublicationDateYYYYMMDD 2015-01-01
PublicationDate_xml – year: 2015
  text: 2015-00-00
PublicationDecade 2010
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Studies in health technology and informatics
PublicationTitleAlternate Stud Health Technol Inform
PublicationYear 2015
References 20064797 - J Am Med Inform Assoc. 2010 Jan-Feb;17(1):19-24
21709161 - J Am Med Inform Assoc. 2011 Sep-Oct;18(5):580-7
21565856 - J Am Med Inform Assoc. 2011 Sep-Oct;18(5):557-62
20819854 - J Am Med Inform Assoc. 2010 Sep-Oct;17(5):514-8
25147248 - J Am Med Inform Assoc. 2015 Jan;22(1):143-54
16873662 - Science. 2006 Jul 28;313(5786):504-7
7719797 - J Am Med Inform Assoc. 1994 Mar-Apr;1(2):161-74
20819853 - J Am Med Inform Assoc. 2010 Sep-Oct;17(5):507-13
24347408 - J Am Med Inform Assoc. 2014 Sep-Oct;21(5):808-14
21508414 - J Am Med Inform Assoc. 2011 Sep-Oct;18(5):601-6
18660887 - Yearb Med Inform. 2008;:128-44
23566040 - BMC Med Inform Decis Mak. 2013;13 Suppl 1:S1
20442139 - J Am Med Inform Assoc. 2010 May-Jun;17(3):229-36
21685143 - J Am Med Inform Assoc. 2011 Sep-Oct;18(5):552-6
11825149 - Proc AMIA Symp. 2001;:17-21
24402264 - Nature. 2014 Jan 9;505(7482):146-8
23934949 - J Am Med Inform Assoc. 2014 Feb;21(e1):e84-92
References_xml – reference: 21709161 - J Am Med Inform Assoc. 2011 Sep-Oct;18(5):580-7
– reference: 18660887 - Yearb Med Inform. 2008;:128-44
– reference: 24402264 - Nature. 2014 Jan 9;505(7482):146-8
– reference: 16873662 - Science. 2006 Jul 28;313(5786):504-7
– reference: 21565856 - J Am Med Inform Assoc. 2011 Sep-Oct;18(5):557-62
– reference: 11825149 - Proc AMIA Symp. 2001;:17-21
– reference: 20064797 - J Am Med Inform Assoc. 2010 Jan-Feb;17(1):19-24
– reference: 23566040 - BMC Med Inform Decis Mak. 2013;13 Suppl 1:S1
– reference: 25147248 - J Am Med Inform Assoc. 2015 Jan;22(1):143-54
– reference: 20819853 - J Am Med Inform Assoc. 2010 Sep-Oct;17(5):507-13
– reference: 21508414 - J Am Med Inform Assoc. 2011 Sep-Oct;18(5):601-6
– reference: 23934949 - J Am Med Inform Assoc. 2014 Feb;21(e1):e84-92
– reference: 24347408 - J Am Med Inform Assoc. 2014 Sep-Oct;21(5):808-14
– reference: 21685143 - J Am Med Inform Assoc. 2011 Sep-Oct;18(5):552-6
– reference: 20442139 - J Am Med Inform Assoc. 2010 May-Jun;17(3):229-36
– reference: 20819854 - J Am Med Inform Assoc. 2010 Sep-Oct;17(5):514-8
– reference: 7719797 - J Am Med Inform Assoc. 1994 Mar-Apr;1(2):161-74
SSID ssj0024697
Score 2.4523659
Snippet Rapid growth in electronic health records (EHRs) use has led to an unprecedented expansion of available clinical data in electronic formats. However, much of...
SourceID pubmed
SourceType Index Database
StartPage 624
SubjectTerms Algorithms
Biological Ontologies
China
Data Mining - methods
Electronic Health Records - classification
Language
Machine Learning
Neural Networks (Computer)
Terminology as Topic
Vocabulary, Controlled
Title Named Entity Recognition in Chinese Clinical Text Using Deep Neural Network
URI https://www.ncbi.nlm.nih.gov/pubmed/26262126
Volume 216
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELYoLCwIxPslD2yRIU1tJxlRKapAzdSKblX8CHQgrUS68Os5P9JGVRGPJYrsxLJzny93p-_OCN3w3JSRo4pwnTBCC61JUghBNFPtUGuuQ1u-eJDx_og-jdl4RSuy2SWVuJWfG_NK_iNVaAO5mizZP0h2OSg0wD3IF64gYbj-SsZZDv-yoGcybY0p7alAjrxoDsbWHzro1qmPQ1DDgWMIPGg9D0xZDmjOHA-8aaR6bqEZxaVJBtUyAO-rNXlTd8WUf1lYZT4rX98W0yUtZ-qj0YNpg_lj-QOmS8zqxrF9u7_Im0GINmsEIXw0MeIE9nLYVKxRu6kaucuVXlfZnciElB-dMwu2QpoSximJydrz8OXn71aOEfhg8MPlP_euVdKuu1qoFcdGiWcmslPXZXQH8SwX4rK9zOzuNs7NVJH24615JNYyGe6jPe9S4HuHjwO0pctD9GyxgR02cAMbeFpijw1cYwMbbGCLDWywgR02sMfGERo99obdPvEHZ5A5zLciSnIaKgn7s2hTlVDFhepEsSzyQhaUxTk4kQxa0jxMhUw5U9p4-ixJlMwZVdEx2i5npT5FWDEBJqFkUsD6udRpLMAmLeK8A5am4ukZOnFrn8xddZRJ_VXOv-25QLsrDF2inQK2o74C264S11YoX6YOSeQ
linkProvider National Library of Medicine
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Named+Entity+Recognition+in+Chinese+Clinical+Text+Using+Deep+Neural+Network&rft.jtitle=Studies+in+health+technology+and+informatics&rft.au=Wu%2C+Yonghui&rft.au=Jiang%2C+Min&rft.au=Lei%2C+Jianbo&rft.au=Xu%2C+Hua&rft.date=2015-01-01&rft.issn=0926-9630&rft.volume=216&rft.spage=624&rft_id=info:doi/10.3233%2F978-1-61499-564-7-624&rft_id=info%3Apmid%2F26262126&rft_id=info%3Apmid%2F26262126&rft.externalDocID=26262126
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0926-9630&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0926-9630&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0926-9630&client=summon