Polyoxometalate Li3PW12O40 and Li3PMo12O40 Electrolytes for High‐energy All‐solid‐state Lithium Batteries
Solid‐state lithium (Li) batteries promise both high energy density and safety while existing solid‐state electrolytes (SSEs) fail to satisfy the rigorous requirements of battery operations. Herein, novel polyoxometalate SSEs, Li3PW12O40 and Li3PMo12O40, are synthesized, which exhibit excellent inte...
Saved in:
Published in | Angewandte Chemie International Edition Vol. 63; no. 5 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
Wiley Subscription Services, Inc
25.01.2024
|
Edition | International ed. in English |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Solid‐state lithium (Li) batteries promise both high energy density and safety while existing solid‐state electrolytes (SSEs) fail to satisfy the rigorous requirements of battery operations. Herein, novel polyoxometalate SSEs, Li3PW12O40 and Li3PMo12O40, are synthesized, which exhibit excellent interfacial compatibility with electrodes and chemical stability, overcoming the limitations of conventional SSEs. A high ionic conductivity of 0.89 mS cm−1 and a low activation energy of 0.23 eV are obtained due to the optimized three‐dimensional Li+ migration network of Li3PW12O40. Li3PW12O40 exhibits a wide window of electrochemical stability that can both accommodate the Li anode and high‐voltage cathodes. As a result, all‐solid‐state Li metal batteries fabricated with Li/Li3PW12O40/LiNi0.5Co0.2Mn0.3O2 display a stable cycling up to 100 cycles with a cutoff voltage of 4.35 V and an areal capacity of more than 4 mAh cm−2, as well as a cost‐competitive SSEs price of $5.68 kg−1. Moreover, Li3PMo12O40 homologous to Li3PW12O40 was obtained via isomorphous substitution, which formed a low‐resistance interface with Li3PW12O40. Applications of Li3PW12O40 and Li3PMo12O40 in Li‐air batteries further demonstrate that long cycle life (650 cycles) can be achieved. This strategy provides a facile, low‐cost strategy to construct efficient and scalable solid polyoxometalate electrolytes for high‐energy solid‐state Li metal batteries.
Polyoxometalates are proposed as a groundbreaking platform for high‐energy all‐solid‐state lithium‐metal batteries. Benefiting from rational structure design, Li3PW12O4o electrolytes exhibit remarkable cost‐effectiveness ($5.68 kg−1), electrochemical stability, and high ionic conductivity (0.89 mS cm−1). The lithium‐metal batteries utilizing sustainable electrolyte achieve more than 200 cycles and the lithium‐air batteries operate over 600 cycles. |
---|---|
AbstractList | Solid‐state lithium (Li) batteries promise both high energy density and safety while existing solid‐state electrolytes (SSEs) fail to satisfy the rigorous requirements of battery operations. Herein, novel polyoxometalate SSEs, Li3PW12O40 and Li3PMo12O40, are synthesized, which exhibit excellent interfacial compatibility with electrodes and chemical stability, overcoming the limitations of conventional SSEs. A high ionic conductivity of 0.89 mS cm−1 and a low activation energy of 0.23 eV are obtained due to the optimized three‐dimensional Li+ migration network of Li3PW12O40. Li3PW12O40 exhibits a wide window of electrochemical stability that can both accommodate the Li anode and high‐voltage cathodes. As a result, all‐solid‐state Li metal batteries fabricated with Li/Li3PW12O40/LiNi0.5Co0.2Mn0.3O2 display a stable cycling up to 100 cycles with a cutoff voltage of 4.35 V and an areal capacity of more than 4 mAh cm−2, as well as a cost‐competitive SSEs price of $5.68 kg−1. Moreover, Li3PMo12O40 homologous to Li3PW12O40 was obtained via isomorphous substitution, which formed a low‐resistance interface with Li3PW12O40. Applications of Li3PW12O40 and Li3PMo12O40 in Li‐air batteries further demonstrate that long cycle life (650 cycles) can be achieved. This strategy provides a facile, low‐cost strategy to construct efficient and scalable solid polyoxometalate electrolytes for high‐energy solid‐state Li metal batteries.
Polyoxometalates are proposed as a groundbreaking platform for high‐energy all‐solid‐state lithium‐metal batteries. Benefiting from rational structure design, Li3PW12O4o electrolytes exhibit remarkable cost‐effectiveness ($5.68 kg−1), electrochemical stability, and high ionic conductivity (0.89 mS cm−1). The lithium‐metal batteries utilizing sustainable electrolyte achieve more than 200 cycles and the lithium‐air batteries operate over 600 cycles. Solid‐state lithium (Li) batteries promise both high energy density and safety while existing solid‐state electrolytes (SSEs) fail to satisfy the rigorous requirements of battery operations. Herein, novel polyoxometalate SSEs, Li3PW12O40 and Li3PMo12O40, are synthesized, which exhibit excellent interfacial compatibility with electrodes and chemical stability, overcoming the limitations of conventional SSEs. A high ionic conductivity of 0.89 mS cm−1 and a low activation energy of 0.23 eV are obtained due to the optimized three‐dimensional Li+ migration network of Li3PW12O40. Li3PW12O40 exhibits a wide window of electrochemical stability that can both accommodate the Li anode and high‐voltage cathodes. As a result, all‐solid‐state Li metal batteries fabricated with Li/Li3PW12O40/LiNi0.5Co0.2Mn0.3O2 display a stable cycling up to 100 cycles with a cutoff voltage of 4.35 V and an areal capacity of more than 4 mAh cm−2, as well as a cost‐competitive SSEs price of $5.68 kg−1. Moreover, Li3PMo12O40 homologous to Li3PW12O40 was obtained via isomorphous substitution, which formed a low‐resistance interface with Li3PW12O40. Applications of Li3PW12O40 and Li3PMo12O40 in Li‐air batteries further demonstrate that long cycle life (650 cycles) can be achieved. This strategy provides a facile, low‐cost strategy to construct efficient and scalable solid polyoxometalate electrolytes for high‐energy solid‐state Li metal batteries. |
Author | Miao, Cheng‐Lin Guan, De‐Hui Ma, Xin‐Yue Wang, Xiao‐Xue Li, Jian‐You Yuan, Xin‐Yuan Xu, Ji‐Jing Song, Li‐Na |
Author_xml | – sequence: 1 givenname: De‐Hui surname: Guan fullname: Guan, De‐Hui organization: Jilin University – sequence: 2 givenname: Xiao‐Xue surname: Wang fullname: Wang, Xiao‐Xue organization: Jilin University – sequence: 3 givenname: Li‐Na surname: Song fullname: Song, Li‐Na organization: Jilin University – sequence: 4 givenname: Cheng‐Lin surname: Miao fullname: Miao, Cheng‐Lin organization: Jilin University – sequence: 5 givenname: Jian‐You surname: Li fullname: Li, Jian‐You organization: Jilin University – sequence: 6 givenname: Xin‐Yuan surname: Yuan fullname: Yuan, Xin‐Yuan organization: Jilin University – sequence: 7 givenname: Xin‐Yue surname: Ma fullname: Ma, Xin‐Yue organization: Jilin University – sequence: 8 givenname: Ji‐Jing orcidid: 0000-0002-6212-8224 surname: Xu fullname: Xu, Ji‐Jing email: jijingxu@jlu.edu.cn organization: Jilin University |
BookMark | eNo9kM1OwkAURicGEwHdum7iujg_baezRIJCgsJC43IytLcwZOjgdIh25yP4jD6JgzWu7j3JyXdvvgHq1bYGhK4JHhGM6a2qNYwopoxwkYgz1CcpJTHjnPXCnjAW8zwlF2jQNLvg5znO-siurGnth92DV0Z5iBaarV4JXSY4UnX5i4-246mBwrvge2iiyrpopjfb788vqMFt2mhsTIDGGl2epu_S_FYf99Gd8h6chuYSnVfKNHD1N4fo5X76PJnFi-XDfDJexAfKmIgrnFKRF5wnKSlBUSA4WWeZymiVF4UQWIT385KnOFGYUC7KsiRpJlK6roQIEUN00-UenH07QuPlzh5dHU5KKkhGCWYsC5borHdtoJUHp_fKtZJgeWpUnhqV_43K8dN8-k_sB3okb0U |
ContentType | Journal Article |
Copyright | 2023 Wiley‐VCH GmbH 2024 Wiley‐VCH GmbH |
Copyright_xml | – notice: 2023 Wiley‐VCH GmbH – notice: 2024 Wiley‐VCH GmbH |
DBID | 7TM K9. |
DOI | 10.1002/anie.202317949 |
DatabaseName | Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) |
DatabaseTitle | ProQuest Health & Medical Complete (Alumni) Nucleic Acids Abstracts |
DatabaseTitleList | ProQuest Health & Medical Complete (Alumni) |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1521-3773 |
Edition | International ed. in English |
EndPage | n/a |
ExternalDocumentID | ANIE202317949 |
Genre | article |
GrantInformation_xml | – fundername: Changchun City Science and Technology Development Program funderid: 21ZY16 – fundername: National Natural Science Foundation of China funderid: 51972141, 21835002, 21621001 – fundername: Fundamental Research Funds for the Central Universities – fundername: 111 Project funderid: B17020 |
GroupedDBID | --- -DZ -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5RE 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABDBF ABEML ABIJN ABJNI ABLJU ABPPZ ABPVW ACAHQ ACCZN ACFBH ACGFS ACIWK ACNCT ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEIGN AEIMD AEUYR AEYWJ AFBPY AFFNX AFFPM AFGKR AFRAH AFWVQ AFZJQ AGHNM AGYGG AHBTC AHMBA AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BTSUX BY8 CS3 D-E D-F D0L DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RNS ROL RX1 RYL SUPJJ TN5 UB1 UPT UQL V2E W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WXSBR WYISQ XG1 XPP XSW XV2 YZZ ZZTAW ~IA ~KM ~WT 7TM K9. |
ID | FETCH-LOGICAL-p2339-f05298c77451dea2e104b66a62f8cc99098808d7504a01279ddd156952bf99233 |
IEDL.DBID | DR2 |
ISSN | 1433-7851 |
IngestDate | Fri Jul 25 10:36:20 EDT 2025 Wed Aug 20 07:27:26 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-p2339-f05298c77451dea2e104b66a62f8cc99098808d7504a01279ddd156952bf99233 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-6212-8224 |
PQID | 2916210336 |
PQPubID | 946352 |
PageCount | 11 |
ParticipantIDs | proquest_journals_2916210336 wiley_primary_10_1002_anie_202317949_ANIE202317949 |
PublicationCentury | 2000 |
PublicationDate | January 25, 2024 |
PublicationDateYYYYMMDD | 2024-01-25 |
PublicationDate_xml | – month: 01 year: 2024 text: January 25, 2024 day: 25 |
PublicationDecade | 2020 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim |
PublicationTitle | Angewandte Chemie International Edition |
PublicationYear | 2024 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2023; 14 2019; 3 2023; 6 2020; 120 2020; 142 2023; 16 2019; 1 2023; 8 2023; 9 2019; 58 2022; 21 2016; 120 2011; 133 2020; 19 2022; 378 2022; 122 2022; 144 2023; 62 2020; 5 2018; 8 2016; 1 2018; 2 2021; 12 2022; 5 2022; 6 2021; 598 2022; 7 2022; 8 2023; 379 2023; 616 2013 2021; 60 2022; 601 |
References_xml | – volume: 6 start-page: 1096 year: 2023 end-page: 1124 publication-title: Matter – volume: 133 start-page: 11018 year: 2011 end-page: 11021 publication-title: J. Am. Chem. Soc. – volume: 616 start-page: 77 year: 2023 end-page: 83 publication-title: Nature – volume: 1 start-page: 1001 year: 2019 end-page: 1016 publication-title: Matter – volume: 58 start-page: 8039 year: 2019 end-page: 8043 publication-title: Angew. Chem. Int. Ed. – volume: 379 start-page: 499 year: 2023 end-page: 505 publication-title: Science – volume: 8 year: 2022 publication-title: Sci. Adv. – volume: 8 start-page: 230 year: 2023 end-page: 240 publication-title: Nat. Energy – volume: 122 start-page: 17155 year: 2022 end-page: 17239 publication-title: Chem. Rev. – volume: 378 year: 2022 publication-title: Science – volume: 144 start-page: 16350 year: 2022 end-page: 16365 publication-title: J. Am. Chem. Soc. – volume: 5 start-page: 229 year: 2020 end-page: 252 publication-title: Nat. Rev. Mater. – volume: 9 start-page: 394 year: 2023 end-page: 410 publication-title: Chem – volume: 62 year: 2023 publication-title: Angew. Chem. Int. Ed. – volume: 6 start-page: 543 year: 2022 end-page: 587 publication-title: Joule – volume: 6 start-page: 742 year: 2022 end-page: 755 publication-title: Joule – volume: 144 start-page: 1795 year: 2022 end-page: 1812 publication-title: J. Am. Chem. Soc. – volume: 144 start-page: 4989 year: 2022 end-page: 4994 publication-title: J. Am. Chem. Soc. – volume: 1 start-page: 16030 year: 2016 publication-title: Nat. Energy – volume: 16 start-page: 2505 year: 2023 end-page: 2517 publication-title: Energy Environ. Sci. – volume: 60 start-page: 23256 year: 2021 end-page: 23266 publication-title: Angew. Chem. Int. Ed. – volume: 21 start-page: 924 year: 2022 end-page: 931 publication-title: Nat. Mater. – volume: 8 year: 2018 publication-title: Adv. Energy Mater. – volume: 120 start-page: 8436 year: 2016 end-page: 8442 publication-title: J. Phys. Chem. C – volume: 19 start-page: 428 year: 2020 end-page: 435 publication-title: Nat. Mater. – volume: 7 start-page: 83 year: 2022 end-page: 93 publication-title: Nat. Energy – volume: 598 start-page: 590 year: 2021 end-page: 596 publication-title: Nature – volume: 5 start-page: 876 year: 2022 end-page: 898 publication-title: Matter – volume: 142 start-page: 20463 year: 2020 end-page: 20469 publication-title: J. Am. Chem. Soc. – volume: 601 start-page: 217 year: 2022 end-page: 222 publication-title: Nature – volume: 12 start-page: 4410 year: 2021 publication-title: Nat. Commun. – volume: 14 start-page: 3780 year: 2023 publication-title: Nat. Commun. – volume: 3 start-page: 2986 year: 2019 end-page: 3001 publication-title: Joule – volume: 2 start-page: 2016 year: 2018 end-page: 2046 publication-title: Joule – volume: 2 start-page: 0112 year: 2018 publication-title: Nat. Chem. Rev. – start-page: 1910 year: 2013 end-page: 1916 publication-title: Eur. J. Inorg. Chem. – volume: 120 start-page: 6820 year: 2020 end-page: 6877 publication-title: Chem. Rev. |
SSID | ssj0028806 |
Score | 2.5339956 |
Snippet | Solid‐state lithium (Li) batteries promise both high energy density and safety while existing solid‐state electrolytes (SSEs) fail to satisfy the rigorous... |
SourceID | proquest wiley |
SourceType | Aggregation Database Publisher |
SubjectTerms | Air batteries Cathodes Electrochemical Stability Electrochemistry Electrolytes Interface stability Ion currents Li-Air Battery Lithium Lithium batteries Li–Metal Battery Molten salt electrolytes Polyoxometallates Solid Electrolyte Solid electrolytes Strategy Voltage |
Title | Polyoxometalate Li3PW12O40 and Li3PMo12O40 Electrolytes for High‐energy All‐solid‐state Lithium Batteries |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202317949 https://www.proquest.com/docview/2916210336 |
Volume | 63 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELZQF1h4Ix4FZWBNH857rKpWBdFSISq6RbZji4o0qWgqUSZ-Ar-RX8Jd3ISWEabkBkfO5S7-zr77jpBrnzJY1ZUy3Uhw0wZAYTLhQ5QiFbOpB5Ahr5DrD9zeyL4dO-O1Kn7ND1FuuKFn5P9rdHDG5_Uf0lCswK5h8280Kazgw4QtREUPJX8UBePU5UUwBexCX7A2Nmh9c_gGvlxHqfky090jrJigzi55qS0yXhPvv7gb__MG-2R3hUGNljaaA7Ilk0Oy3S5avx2RdJjGy_QtnUqA5gBGjbuJNXxq0nu7YbAkysV-quWO7qMTLwGzGoCADcwc-fr4lHlRodGKYxDAwCcRXjP9tOx5spgamtsTQvVjMup2Hts9c9WZwZxRywpMheeDvgDo6DQjyaiEoI67LnOp8oWABS4AzfsRUsczPNsOoiiCQDFwKFcBQErrhFSSNJGnxAia0lGe53LKPVsFTiB9ZWH_JNsWwvL5GakWXyZcudc8pABqIVa1LPeM0FzF4UyTc4SahpmGqNywVG7YGtx0Sun8L4MuyA7cY8qOSZ0qqWSvC3kJgCTjV7nRfQN8rtle |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8JAEN4oHvDi24ii9uC1PLYPukdCIKCAxED01nTb3UgsLdGSiCd_gr_RX-JMl1bxqKdmmmyznc50v9md-YaQK4d6sKpLqduBz3UTAIXu-Q5EKUJ6Jm0AZEgr5AZDuzsxrx-sLJsQa2EUP0S-4Yaekf6v0cFxQ7r6zRqKJdgV7P6NNsU2yRa29U6jqrucQYqCeaoCI5gE9qHPeBtrtLo-fg1h_sSp6ULT2SU8m6LKL3mqLBJe8d9-sTf-6x32yM4KhmpNZTf7ZENEB6TYyrq_HZJ4FIfL-DWeCUDngEe1_tQY3dfprVnTvChIxUGs5LZqpRMuAbZqAII1TB75fP8QaV2h1gxDEMDGpwFeE_W05HG6mGmK3hOi9SMy6bTHra6-as6gz6lhMF3iEaHjA3q06oHwqIC4jtu2Z1Pp-D6scQxU7wTIHu_h8TYLggBiRWZRLhmgSuOYFKI4EidEY3VhyUbD5pQ3TMksJhxpYAsl0_R9w-ElUs4-jbvysBeXAq6FcNUw7BKhqY7dueLncBUTM3VRuW6uXLc57LVz6fQvgy5JsTse9N1-b3hzRrbhPmbw6NQqk0LyvBDngE8SfpFa4BciC915 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8JAEN4oJurFtxFF7cFrEbbPPRIeAQUkRiK3ptvdjcTSEi2JePIn-Bv9Jc52aQWPemqmyTbb6Uz3m92ZbxC6crEPq7oQus0CqpsAKHQ_cCFK4cI3sQOQIa2Q6_Xt9tC8GVmjpSp-xQ-Rb7hJz0j_19LBp0xc_5CGygrssmz-LU2KrKMN06640q4b9zmBFAbrVPVFMAfZhj6jbazg69XxKwBzGaam60xrF_nZDFV6yXN5ltBy8P6LvPE_r7CHdhYgVKspq9lHazw6QFv1rPfbIYoHcTiP3-IJB2wOaFTrjo3BYxXfmRXNj1gq9mIlN1UjnXAOoFUDCKzJ1JGvj0-eVhVqtTAEASx8zOQ1UU9LnsaziabIPSFWP0LDVvOh3tYXrRn0KTYMogt5QOgGgB2tKuM-5hDVUdv2bSzcIIAVjoDmXSa54315uE0YYxApEgtTQQBTGseoEMURP0EaqXJLOI5NMXVMQSzCXWHIBkqmGQSGS4uolH0Zb-Ffrx4GVAvBqmHYRYRTFXtTxc7hKR5m7EnlerlyvVq_08yl078MukSbg0bL63b6t2doG27L9B0dWyVUSF5m_BzASUIvUvv7BrxE3DE |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Polyoxometalate+Li3PW12O40+and+Li3PMo12O40+Electrolytes+for+High%E2%80%90energy+All%E2%80%90solid%E2%80%90state+Lithium+Batteries&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Guan%2C+De%E2%80%90Hui&rft.au=Wang%2C+Xiao%E2%80%90Xue&rft.au=Song%2C+Li%E2%80%90Na&rft.au=Miao%2C+Cheng%E2%80%90Lin&rft.date=2024-01-25&rft.issn=1433-7851&rft.eissn=1521-3773&rft.volume=63&rft.issue=5&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fanie.202317949&rft.externalDBID=10.1002%252Fanie.202317949&rft.externalDocID=ANIE202317949 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon |