Interface Engineering for All‐Inorganic CsPbI2Br Perovskite Solar Cells with Efficiency over 14

In this work, a SnO2/ZnO bilayered electron transporting layer (ETL) aimed to achieve low energy loss and large open‐circuit voltage (Voc) for high‐efficiency all‐inorganic CsPbI2Br perovskite solar cells (PVSCs) is introduced. The high‐quality CsPbI2Br film with regular crystal grains and full cove...

Full description

Saved in:
Bibliographic Details
Published inAdvanced materials (Weinheim) Vol. 30; no. 33
Main Authors Yan, Lei, Xue, Qifan, Liu, Meiyue, Zhu, Zonglong, Tian, Jingjing, Li, Zhenchao, Chen, Zhen, Chen, Ziming, Yan, He, Yip, Hin‐Lap, Cao, Yong
Format Journal Article
LanguageEnglish
Published Weinheim Wiley Subscription Services, Inc 16.08.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In this work, a SnO2/ZnO bilayered electron transporting layer (ETL) aimed to achieve low energy loss and large open‐circuit voltage (Voc) for high‐efficiency all‐inorganic CsPbI2Br perovskite solar cells (PVSCs) is introduced. The high‐quality CsPbI2Br film with regular crystal grains and full coverage can be realized on the SnO2/ZnO surface. The higher‐lying conduction band minimum of ZnO facilitates desirable cascade energy level alignment between the perovskite and SnO2/ZnO bilayered ETL with superior electron extraction capability, resulting in a suppressed interfacial trap‐assisted recombination with lower charge recombination rate and greater charge extraction efficiency. The as‐optimized all‐inorganic PVSC delivers a high Voc of 1.23 V and power conversion efficiency (PCE) of 14.6%, which is one of the best efficiencies reported for the Cs‐based all‐inorganic PVSCs to date. More importantly, decent thermal stability with only 20% PCE loss is demonstrated for the SnO2/ZnO‐based CsPbI2Br PVSCs after being heated at 85 °C for 300 h. These findings provide important interface design insights that will be crucial to further improve the efficiency of all‐inorganic PVSCs in the future. The open‐circuit voltage (Voc) and power conversion efficiency (PCE) of all‐inorganic perovskite solar cells (PVSCs) can be simultaneously enhanced by incorporating SnO2/ZnO bilayer as electron transporting layer (ETL). The favorable matching of cascade energy band between CsPbI2Br and SnO2/ZnO can effectively reduce charge recombination loss, resulting in highly efficient CsPbI2Br PVSCs with Voc and PCE up to 1.23 V and 14.6%, respectively.
AbstractList In this work, a SnO2/ZnO bilayered electron transporting layer (ETL) aimed to achieve low energy loss and large open‐circuit voltage (Voc) for high‐efficiency all‐inorganic CsPbI2Br perovskite solar cells (PVSCs) is introduced. The high‐quality CsPbI2Br film with regular crystal grains and full coverage can be realized on the SnO2/ZnO surface. The higher‐lying conduction band minimum of ZnO facilitates desirable cascade energy level alignment between the perovskite and SnO2/ZnO bilayered ETL with superior electron extraction capability, resulting in a suppressed interfacial trap‐assisted recombination with lower charge recombination rate and greater charge extraction efficiency. The as‐optimized all‐inorganic PVSC delivers a high Voc of 1.23 V and power conversion efficiency (PCE) of 14.6%, which is one of the best efficiencies reported for the Cs‐based all‐inorganic PVSCs to date. More importantly, decent thermal stability with only 20% PCE loss is demonstrated for the SnO2/ZnO‐based CsPbI2Br PVSCs after being heated at 85 °C for 300 h. These findings provide important interface design insights that will be crucial to further improve the efficiency of all‐inorganic PVSCs in the future. The open‐circuit voltage (Voc) and power conversion efficiency (PCE) of all‐inorganic perovskite solar cells (PVSCs) can be simultaneously enhanced by incorporating SnO2/ZnO bilayer as electron transporting layer (ETL). The favorable matching of cascade energy band between CsPbI2Br and SnO2/ZnO can effectively reduce charge recombination loss, resulting in highly efficient CsPbI2Br PVSCs with Voc and PCE up to 1.23 V and 14.6%, respectively.
In this work, a SnO2/ZnO bilayered electron transporting layer (ETL) aimed to achieve low energy loss and large open‐circuit voltage (Voc) for high‐efficiency all‐inorganic CsPbI2Br perovskite solar cells (PVSCs) is introduced. The high‐quality CsPbI2Br film with regular crystal grains and full coverage can be realized on the SnO2/ZnO surface. The higher‐lying conduction band minimum of ZnO facilitates desirable cascade energy level alignment between the perovskite and SnO2/ZnO bilayered ETL with superior electron extraction capability, resulting in a suppressed interfacial trap‐assisted recombination with lower charge recombination rate and greater charge extraction efficiency. The as‐optimized all‐inorganic PVSC delivers a high Voc of 1.23 V and power conversion efficiency (PCE) of 14.6%, which is one of the best efficiencies reported for the Cs‐based all‐inorganic PVSCs to date. More importantly, decent thermal stability with only 20% PCE loss is demonstrated for the SnO2/ZnO‐based CsPbI2Br PVSCs after being heated at 85 °C for 300 h. These findings provide important interface design insights that will be crucial to further improve the efficiency of all‐inorganic PVSCs in the future.
Author Yan, Lei
Li, Zhenchao
Chen, Ziming
Yan, He
Chen, Zhen
Cao, Yong
Liu, Meiyue
Zhu, Zonglong
Tian, Jingjing
Yip, Hin‐Lap
Xue, Qifan
Author_xml – sequence: 1
  givenname: Lei
  surname: Yan
  fullname: Yan, Lei
  organization: South China University of Technology
– sequence: 2
  givenname: Qifan
  surname: Xue
  fullname: Xue, Qifan
  email: qfxue@scut.edu.cn
  organization: South China University of Technology
– sequence: 3
  givenname: Meiyue
  surname: Liu
  fullname: Liu, Meiyue
  organization: South China University of Technology
– sequence: 4
  givenname: Zonglong
  surname: Zhu
  fullname: Zhu, Zonglong
  organization: The Hong Kong University of Science and Technology
– sequence: 5
  givenname: Jingjing
  surname: Tian
  fullname: Tian, Jingjing
  organization: South China University of Technology
– sequence: 6
  givenname: Zhenchao
  surname: Li
  fullname: Li, Zhenchao
  organization: South China University of Technology
– sequence: 7
  givenname: Zhen
  surname: Chen
  fullname: Chen, Zhen
  organization: South China University of Technology
– sequence: 8
  givenname: Ziming
  surname: Chen
  fullname: Chen, Ziming
  organization: South China University of Technology
– sequence: 9
  givenname: He
  surname: Yan
  fullname: Yan, He
  organization: The Hong Kong University of Science and Technology
– sequence: 10
  givenname: Hin‐Lap
  orcidid: 0000-0002-5750-9751
  surname: Yip
  fullname: Yip, Hin‐Lap
  email: msangusyip@scut.edu.cn
  organization: South China Institute of Collaborative Innovation
– sequence: 11
  givenname: Yong
  surname: Cao
  fullname: Cao, Yong
  organization: South China University of Technology
BookMark eNo9kM9LwzAcxYNMcJtePQc8d37TNG1yrHVqYeJAPZc0TWZml8x0P9jNP8G_0b_EjclOjweP93ifAeo57zRC1wRGBCC-lc1CjmIgHGIG4gz1CYtJlIBgPdQHQVkk0oRfoEHXzQFApJD2kSzdSgcjlcZjN7NO62DdDBsfcN62v98_pfNhJp1VuOimdRnfBTzVwW-6T7vS-NW3MuBCt22Ht3b1gcfGWGW1UzvsNzpgklyicyPbTl_96xC9P4zfiqdo8vJYFvkkWsaUiqhWlBAjM0EUo5lQXJq6YXT_BwyvuRKMAKm5EMJwapokqyElDU2IamTCBKVDdHPsXQb_tdbdqpr7dXD7ySoGnqXAScb2KXFMbW2rd9Uy2IUMu4pAdWBYHRhWJ4ZVfv-cnxz9AxQWaUc
ContentType Journal Article
Copyright 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
DBID 7SR
8BQ
8FD
JG9
DOI 10.1002/adma.201802509
DatabaseName Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
DatabaseTitle Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
DatabaseTitleList
Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1521-4095
EndPage n/a
ExternalDocumentID ADMA201802509
Genre article
GrantInformation_xml – fundername: Science and Technology Program of Guangzhou, China
  funderid: 201607020010; 2017A050503002
– fundername: Natural Science Foundation of China
  funderid: 91633301; 91733302; 21761132001; 51573057
– fundername: Ministry of Science and Technology
  funderid: 2014CB643505; 2017YF0206600
GroupedDBID ---
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
EJD
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RWM
RX1
RYL
SUPJJ
TN5
UB1
UPT
V2E
W8V
W99
WBKPD
WFSAM
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
YR2
ZZTAW
~02
~IA
~WT
7SR
8BQ
8FD
AAMMB
ADMLS
AEFGJ
AEYWJ
AGHNM
AGXDD
AGYGG
AIDQK
AIDYY
JG9
ID FETCH-LOGICAL-p2339-bc311fa791c5379c8afbd532010f8b8c95101b8999f83fd47b061d341cda45933
IEDL.DBID DR2
ISSN 0935-9648
IngestDate Mon Jul 14 07:36:28 EDT 2025
Wed Jan 22 16:24:03 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 33
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-p2339-bc311fa791c5379c8afbd532010f8b8c95101b8999f83fd47b061d341cda45933
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-5750-9751
PQID 2087608175
PQPubID 2045203
PageCount 7
ParticipantIDs proquest_journals_2087608175
wiley_primary_10_1002_adma_201802509_ADMA201802509
PublicationCentury 2000
PublicationDate August 16, 2018
PublicationDateYYYYMMDD 2018-08-16
PublicationDate_xml – month: 08
  year: 2018
  text: August 16, 2018
  day: 16
PublicationDecade 2010
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Advanced materials (Weinheim)
PublicationYear 2018
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2017; 7
2017; 8
2018; 28
2017; 1
2015; 6
2017; 2
2015; 5
2017; 3
2013; 1
2018; 140
2015; 3
2013; 501
2015; 11
2014; 26
2013; 342
2005; 87
2014; 24
2017; 29
2013; 7
2017; 356
2016; 6
2018; 9
2018; 17
2018; 8
2014; 5
2018; 3
2018; 2
2016; 1
2015; 27
2016; 2
2014; 2
2017; 38
2016; 354
2018
2013; 499
2014; 13
2015; 517
2018; 30
2016; 138
2015
2005; 94
2014; 8
2014; 7
2014; 6
2012; 338
References_xml – volume: 342
  start-page: 341
  year: 2013
  publication-title: Science
– volume: 8
  start-page: 3213
  year: 2014
  publication-title: ACS Nano
– year: 2015
  publication-title: Adv. Energy Mater.
– volume: 8
  start-page: 1703246
  year: 2018
  publication-title: Adv. Energy Mater.
– volume: 356
  start-page: 1376
  year: 2017
  publication-title: Science
– volume: 7
  start-page: 4569
  year: 2013
  publication-title: ACS Nano
– volume: 13
  start-page: 897
  year: 2014
  publication-title: Nat. Mater.
– volume: 6
  start-page: 1502458
  year: 2016
  publication-title: Adv. Energy Mater.
– volume: 29
  start-page: 1605290
  year: 2017
  publication-title: Adv. Mater.
– volume: 9
  start-page: 1076
  year: 2018
  publication-title: Nat. Commun.
– volume: 5
  start-page: 775
  year: 2015
  publication-title: RSC Adv.
– volume: 3
  start-page: e1700841
  year: 2017
  publication-title: Sci. Adv.
– year: 2018
– volume: 7
  start-page: 1601307
  year: 2017
  publication-title: Adv. Energy Mater.
– volume: 17
  start-page: 261
  year: 2018
  publication-title: Nat. Mater.
– volume: 2
  start-page: 16194
  year: 2016
  publication-title: Nat. Energy
– volume: 338
  start-page: 643
  year: 2012
  publication-title: Science
– volume: 140
  start-page: 3825
  year: 2018
  publication-title: J. Am. Chem. Soc.
– volume: 27
  start-page: 1837
  year: 2015
  publication-title: Adv. Mater.
– volume: 499
  start-page: 316
  year: 2013
  publication-title: Nature
– volume: 2
  start-page: 1043
  year: 2017
  publication-title: ACS Energy Lett.
– volume: 28
  start-page: 1707444
  year: 2018
  publication-title: Adv. Funct. Mater.
– volume: 7
  start-page: 1889
  year: 2014
  publication-title: Energy Environ. Sci.
– volume: 2
  start-page: 17291
  year: 2014
  publication-title: J. Mater. Chem. A
– volume: 7
  start-page: 1602333
  year: 2017
  publication-title: Adv. Energy Mater.
– volume: 7
  start-page: 982
  year: 2014
  publication-title: Energy Environ. Sci.
– volume: 6
  start-page: 9935
  year: 2014
  publication-title: Nanoscale
– volume: 1
  start-page: 1770
  year: 2013
  publication-title: J. Mater. Chem. A
– volume: 354
  start-page: 92
  year: 2016
  publication-title: Science
– volume: 5
  start-page: 5784
  year: 2014
  publication-title: Nat. Commun.
– volume: 11
  start-page: 3344
  year: 2015
  publication-title: Small
– volume: 26
  start-page: 3748
  year: 2014
  publication-title: Adv. Mater.
– volume: 6
  start-page: 1502202
  year: 2016
  publication-title: Adv. Energy Mater.
– volume: 5
  start-page: 1628
  year: 2014
  publication-title: J. Phys. Chem. Lett.
– volume: 2
  start-page: 1700188
  year: 2018
  publication-title: Sol. RRL
– volume: 3
  start-page: 428
  year: 2018
  publication-title: ACS Energy Lett.
– volume: 2
  start-page: 1700180
  year: 2018
  publication-title: Sol. RRL
– volume: 94
  start-page: 126602
  year: 2005
  publication-title: Phys. Rev. Lett.
– volume: 3
  start-page: 9098
  year: 2015
  publication-title: J. Mater. Chem. A
– volume: 24
  start-page: 7357
  year: 2014
  publication-title: Adv. Funct. Mater.
– volume: 1
  start-page: 371
  year: 2017
  publication-title: Joule
– volume: 5
  start-page: 1400812
  year: 2015
  publication-title: Adv. Energy Mater.
– volume: 1
  start-page: 1199
  year: 2016
  publication-title: ACS Energy Lett.
– volume: 38
  start-page: 66
  year: 2017
  publication-title: Nano Energy
– year: 2018
  publication-title: Energy Environ. Sci.
– volume: 30
  start-page: 1705393
  year: 2018
  publication-title: Adv. Mater.
– volume: 138
  start-page: 15829
  year: 2016
  publication-title: J. Am. Chem. Soc.
– volume: 6
  start-page: 7348
  year: 2015
  publication-title: Nat. Commun.
– volume: 3
  start-page: eaao4204
  year: 2017
  publication-title: Sci. Adv.
– volume: 8
  start-page: 2936
  year: 2017
  publication-title: J. Phys. Chem. Lett.
– volume: 87
  start-page: 203502
  year: 2005
  publication-title: Appl. Phys. Lett.
– volume: 3
  start-page: 19688
  year: 2015
  publication-title: J. Mater. Chem. A
– volume: 6
  start-page: 1502021
  year: 2016
  publication-title: Adv. Energy Mater.
– volume: 517
  start-page: 476
  year: 2015
  publication-title: Nature
– volume: 501
  start-page: 395
  year: 2013
  publication-title: Nature
SSID ssj0009606
Score 2.6653752
Snippet In this work, a SnO2/ZnO bilayered electron transporting layer (ETL) aimed to achieve low energy loss and large open‐circuit voltage (Voc) for high‐efficiency...
SourceID proquest
wiley
SourceType Aggregation Database
Publisher
SubjectTerms all‐inorganic perovskite solar cells
bilayered electron transporting layer
Charge efficiency
Conduction bands
Efficiency
Electron transport
Energy conversion efficiency
Energy levels
high efficiency
interface engineering
Materials science
Perovskites
Photovoltaic cells
Solar cells
Thermal stability
Tin dioxide
Zinc oxide
Title Interface Engineering for All‐Inorganic CsPbI2Br Perovskite Solar Cells with Efficiency over 14
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.201802509
https://www.proquest.com/docview/2087608175
Volume 30
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ29TsMwEMct1AkGvhGFgjywum3iJLbHUFoVJFAFVOoW2Y69ELVV0zIw8Qg8I09CzulHyghbEslScvbFf5_ufofQjYmsiJjxiOapJIGwlsjI50QbngL_XBnjsi2eov4weBiFo0oVf8mHWAfcwDPc_xocXKq8tYGGytRxg4BgFroKPkjYAlX0vOFHgTx3sD0aEhEFfEVtbPut7eFb-rKqUt020ztAcvWCZXbJW3MxV0398Yvd-J8vOET7Sw2K43LRHKEdMz5GexUy4QmSLlJopTa48hwXChfHWfb9-XU_LvtBadzJB-rev53hgZlN3nOIBuMXODDjjsmyHEOkF3cdqQLKPDHkjGIvOEXDXve10yfLbgxk6lMqiNLU86xkwtMhZUJzaVUKbSW8tuWKa5BqniqOb8JyatOAqUIqpMUmqVMZhILSM1QbT8bmHOFCwzDrCyOtUIFkVpiwUBGirUKoK9Csjhqr2UiWLpUnPsDzCgHDwjrynVmTaQnkSEr0sp-AQZO1QZP47jFe3138ZdAl2oVriCF7UQPV5rOFuSpEyFxdu4X2AxM_1Iw
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ07T8MwEMctVAZg4I0oFPDAmraJ8_IY-lALbVVBK7FFtmMvRGnVtAxMfAQ-I5-EnNP0wQhjLFlyLr7479Pd7xC6l66iridNQ_gRM2yqlMFcyzeE9CPgn3MpdbbFwO2M7cdXp8gmhFqYnA-xCriBZ-j_NTg4BKRra2ooizQ4CBBmDpTw7UJbb8DnN5_XBCkQ6Bq3RxyDurZfcBvrVm17_pbC3NSp-qBpHyFeLDHPL3mrLua8Kj5-0Rv_9Q7H6HApQ3GQ75sTtCOTU3SwASc8Q0wHCxUTEm-M40zk4iCOvz-_ukneEkrgRjrkXethhodyNnlPISCMX-DOjBsyjlMMwV7c0rAKqPTEkDaKTfscjdutUaNjLBsyGFOLEGpwQUxTMY-awiEeFT5TPILOEmZd-dwXoNZMnt3gqPKJimyPZ2ohys5JETHboYRcoFIySeQlwpmM8ZRFJVOU28xTVDqZkKB17kBpgfDKqFJ8jnDpVWloAT8v0zCeU0aWtms4zZkcYU5ftkIwaLgyaBg0-8Hq6eovk-7QXmfU74W97uDpGu3DOISUTbeCSvPZQt5kmmTOb_Wu-wF0ltio
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3JTsMwEIYtVCQEB3ZEoYAPXNNmcxIfQxe1LFUFVOotsh37QpRWTcuBE4_AM_IkZJwuKUc4xpIlZ-KJf49mvkHoVnqKer60DBHEzHCpUgbz7MAQMoiBf86l1NkWfa87dO9HZFSq4i_4EKuAG3iG_l-Dg09i1VhDQ1msuUFAMCNQwbfteiaF5g2t5zVACvS5pu05xKCeGyyxjabd2Jy_ITDLMlWfM50DxJYrLNJL3urzGa-Lj1_wxv-8wiHaX4hQHBa75ghtyfQY7ZXQhCeI6VChYkLi0jjOJS4Ok-T786uXFg2hBG5mA96z76Z4IKfj9wzCwfgFbsy4KZMkwxDqxW2NqoA6TwxJo9hyT9Gw035tdo1FOwZjYjsONbhwLEsxn1qCOD4VAVM8hr4SlqkCHgjQahbP729UBY6KXZ_nWiHOT0kRM5dQxzlDlXScynOEcxHjK5tKpih3ma-oJLmMoCYnUFgg_CqqLb9GtPCpLLKBnpcrGJ9Uka3NGk0KIkdUsJftCAwarQwaha2ncPV08ZdJN2hn0OpEj73-wyXahWGIJ1teDVVm07m8ygXJjF_rPfcDBwPXVw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Interface+Engineering+for+All%E2%80%90Inorganic+CsPbI2Br+Perovskite+Solar+Cells+with+Efficiency+over+14&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Yan%2C+Lei&rft.au=Xue%2C+Qifan&rft.au=Liu%2C+Meiyue&rft.au=Zhu%2C+Zonglong&rft.date=2018-08-16&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0935-9648&rft.eissn=1521-4095&rft.volume=30&rft.issue=33&rft_id=info:doi/10.1002%2Fadma.201802509&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon