Interlayer Coupling Induced Infrared Response in WS2/MoS2 Heterostructures Enhanced by Surface Plasmon Resonance
Infrared light detection is generally limited by the intrinsic bandgap of semiconductors, which suppresses the freedom in infrared light photodetector design and hinders the development of high‐performance infrared light photodetector. In this work, for the first time infrared light (1030 nm) photod...
Saved in:
Published in | Advanced functional materials Vol. 28; no. 22 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken
Wiley Subscription Services, Inc
30.05.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Infrared light detection is generally limited by the intrinsic bandgap of semiconductors, which suppresses the freedom in infrared light photodetector design and hinders the development of high‐performance infrared light photodetector. In this work, for the first time infrared light (1030 nm) photodetectors are fabricated based on WS2/MoS2 heterostructures. Individual WS2 and MoS2 have no response to infrared light. The origin of infrared light response for WS2/MoS2 comes from the strong interlayer coupling which shrinks the energy interval in the heterojunction area thus rendering heterostructures longer wavelength detection ability compared to individual components. Considering the low light absorption due to indirect bandgap essence of few layers WS2/MoS2 heterostructures, its infrared responsivity is further enhanced with at most ≈25 times but the fast response rate is maintained via surface plasmon resonance (SPR). Such an interlayer coupling induced infrared light response and surface plasmon resonance enhancement strategy paves the way for high‐performance infrared light photodetection of infinite freedom in design.
Infrared photodetectors based on WS2/MoS2 heterostructures are realized for the first time. WS2 and MoS2 show no infrared (1030 nm) response alone but strong interlayer coupling shrinks the energy interval in the heterojunction area, rendering heterostructures with longer wavelength detection ability compared to the individual components. Furthermore, the infrared (1030 nm) responsivity of the heterostructures is enhanced by ≈25 times via surface plasmon resonance. |
---|---|
AbstractList | Infrared light detection is generally limited by the intrinsic bandgap of semiconductors, which suppresses the freedom in infrared light photodetector design and hinders the development of high‐performance infrared light photodetector. In this work, for the first time infrared light (1030 nm) photodetectors are fabricated based on WS2/MoS2 heterostructures. Individual WS2 and MoS2 have no response to infrared light. The origin of infrared light response for WS2/MoS2 comes from the strong interlayer coupling which shrinks the energy interval in the heterojunction area thus rendering heterostructures longer wavelength detection ability compared to individual components. Considering the low light absorption due to indirect bandgap essence of few layers WS2/MoS2 heterostructures, its infrared responsivity is further enhanced with at most ≈25 times but the fast response rate is maintained via surface plasmon resonance (SPR). Such an interlayer coupling induced infrared light response and surface plasmon resonance enhancement strategy paves the way for high‐performance infrared light photodetection of infinite freedom in design.
Infrared photodetectors based on WS2/MoS2 heterostructures are realized for the first time. WS2 and MoS2 show no infrared (1030 nm) response alone but strong interlayer coupling shrinks the energy interval in the heterojunction area, rendering heterostructures with longer wavelength detection ability compared to the individual components. Furthermore, the infrared (1030 nm) responsivity of the heterostructures is enhanced by ≈25 times via surface plasmon resonance. Infrared light detection is generally limited by the intrinsic bandgap of semiconductors, which suppresses the freedom in infrared light photodetector design and hinders the development of high‐performance infrared light photodetector. In this work, for the first time infrared light (1030 nm) photodetectors are fabricated based on WS2/MoS2 heterostructures. Individual WS2 and MoS2 have no response to infrared light. The origin of infrared light response for WS2/MoS2 comes from the strong interlayer coupling which shrinks the energy interval in the heterojunction area thus rendering heterostructures longer wavelength detection ability compared to individual components. Considering the low light absorption due to indirect bandgap essence of few layers WS2/MoS2 heterostructures, its infrared responsivity is further enhanced with at most ≈25 times but the fast response rate is maintained via surface plasmon resonance (SPR). Such an interlayer coupling induced infrared light response and surface plasmon resonance enhancement strategy paves the way for high‐performance infrared light photodetection of infinite freedom in design. |
Author | Li, Liang Fan, Weihao Zhou, Shasha Gan, Lin Lü, Jing‐Tao Wang, Renyan Zhai, Tianyou Wang, Guichao |
Author_xml | – sequence: 1 givenname: Guichao surname: Wang fullname: Wang, Guichao organization: Huazhong University of Science and Technology (HUST) – sequence: 2 givenname: Liang surname: Li fullname: Li, Liang organization: Huazhong University of Science and Technology (HUST) – sequence: 3 givenname: Weihao surname: Fan fullname: Fan, Weihao organization: Huazhong University of Science and Technology (HUST) – sequence: 4 givenname: Renyan surname: Wang fullname: Wang, Renyan organization: Huazhong University of Science and Technology (HUST) – sequence: 5 givenname: Shasha surname: Zhou fullname: Zhou, Shasha organization: Huazhong University of Science and Technology (HUST) – sequence: 6 givenname: Jing‐Tao surname: Lü fullname: Lü, Jing‐Tao organization: Huazhong University of Science and Technology (HUST) – sequence: 7 givenname: Lin surname: Gan fullname: Gan, Lin email: ganlinust@hust.edu.cn organization: Huazhong University of Science and Technology (HUST) – sequence: 8 givenname: Tianyou orcidid: 0000-0003-0985-4806 surname: Zhai fullname: Zhai, Tianyou email: zhaity@hust.edu.cn organization: Huazhong University of Science and Technology (HUST) |
BookMark | eNo9UMtOwzAQtFCRaAtXzpY4p7WdV3OsSksjtQJRENwsx95AqtQOdiKUv8dRUU87q52Z3Z0JGmmjAaF7SmaUEDYXqjzNGKELQsIwu0JjmtAkCAlbjC6Yft6giXNHQmiahtEYNbluwdaiB4tXpmvqSn_hXKtOgvK1tMJ68AquMdoBrjT-OLD53hwY3oJXGtfaTradBYfX-lvoQVf0-NDZUkjAL7VwJ6MHB6OH6S26LkXt4O6_TtH7Zv222ga756d8tdwFDfPXB9mioIQWRMpYSkgKljIlslgpEGEJqkxEUQKhkCpQImEATEjp_46jOE1YVoRT9HD2baz56cC1_Gg6q_1KzkiURnEUZbFnZWfWb1VDzxtbnYTtOSV8iJQPkfJLpHz5uNlfuvAPaFFwzw |
ContentType | Journal Article |
Copyright | 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim |
Copyright_xml | – notice: 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim |
DBID | 7SP 7SR 7U5 8BQ 8FD JG9 L7M |
DOI | 10.1002/adfm.201800339 |
DatabaseName | Electronics & Communications Abstracts Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | Materials Research Database Engineered Materials Abstracts Technology Research Database Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace METADEX |
DatabaseTitleList | Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1616-3028 |
EndPage | n/a |
ExternalDocumentID | ADFM201800339 |
Genre | article |
GrantInformation_xml | – fundername: National Nature Science Foundation of China funderid: 21501060; 51472097; 91622117; 51727809 – fundername: National Key Research and Development Program of “Strategic Advanced Electronic Materials” funderid: 2016YFB0401100 – fundername: National Basic Research Program of China funderid: 2015CB932600 – fundername: Fundamental Research Funds for the Central University funderid: 2015ZDTD038; 2017KFKJXX007 |
GroupedDBID | -~X .3N .GA 05W 0R~ 10A 1L6 1OC 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS EJD F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ UB1 V2E W8V W99 WBKPD WFSAM WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 ~IA ~WT 7SP 7SR 7U5 8BQ 8FD AAMMB ADMLS AEFGJ AEYWJ AGHNM AGXDD AGYGG AIDQK AIDYY JG9 L7M |
ID | FETCH-LOGICAL-p2339-98b101b0cc5cce6b272da95ddea3fedf6abfe01e7deda62ee2acc0335457629b3 |
IEDL.DBID | DR2 |
ISSN | 1616-301X |
IngestDate | Fri Jul 25 07:37:22 EDT 2025 Wed Jan 22 17:02:00 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 22 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-p2339-98b101b0cc5cce6b272da95ddea3fedf6abfe01e7deda62ee2acc0335457629b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-0985-4806 |
PQID | 2047454495 |
PQPubID | 2045204 |
PageCount | 9 |
ParticipantIDs | proquest_journals_2047454495 wiley_primary_10_1002_adfm_201800339_ADFM201800339 |
PublicationCentury | 2000 |
PublicationDate | May 30, 2018 |
PublicationDateYYYYMMDD | 2018-05-30 |
PublicationDate_xml | – month: 05 year: 2018 text: May 30, 2018 day: 30 |
PublicationDecade | 2010 |
PublicationPlace | Hoboken |
PublicationPlace_xml | – name: Hoboken |
PublicationTitle | Advanced functional materials |
PublicationYear | 2018 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2015; 15 2013; 3 2007; 107 2000; 29 2017; 2 2013; 88 2013; 87 2017; 27 2008; 19 2016; 10 2013; 103 2005; 86 2013; 102 2014; 24 2017; 29 2015; 9 2014; 111 2016; 12 2016; 7 2016; 1 2015; 27 2017; 17 2013; 13 2006; 27 2014; 14 2018; 30 2015; 91 2016; 29 2017; 541 2012; 7 2016; 28 2014; 8 2014; 7 2012; 22 2018; 14 2012; 85 2010; 9 2016; 45 |
References_xml | – volume: 19 start-page: 345201 year: 2008 publication-title: Nanotechnology – volume: 111 start-page: 6198 year: 2014 publication-title: Proc. Natl. Acad. Sci. USA – volume: 87 start-page: 081307 year: 2013 publication-title: Phys. Rev. B – volume: 14 start-page: 3185 year: 2014 publication-title: Nano Lett. – volume: 10 start-page: 6612 year: 2016 publication-title: ACS Nano – volume: 7 start-page: 699 year: 2012 publication-title: Nat. Nanotechnol. – volume: 102 start-page: 012111 year: 2013 publication-title: Appl. Phys. Lett. – volume: 1 start-page: 16042 year: 2016 publication-title: Nat. Rev. Mater. – volume: 17 start-page: 5342 year: 2017 publication-title: Nano Lett. – volume: 107 start-page: 4797 year: 2007 publication-title: Chem. Rev. – volume: 9 start-page: 9868 year: 2015 publication-title: ACS Nano – volume: 13 start-page: 5944 year: 2013 publication-title: Nano Lett. – volume: 88 start-page: 085318 year: 2013 publication-title: Phys. Rev. B – volume: 15 start-page: 486 year: 2015 publication-title: Nano Lett. – volume: 30 start-page: 1703286 year: 2018 publication-title: Adv. Mater. – volume: 29 start-page: 1702206 year: 2017 publication-title: Adv. Mater. – volume: 7 start-page: 12512 year: 2016 publication-title: Nat. Commun. – volume: 85 start-page: 033305 year: 2012 publication-title: Phys. Rev. B – volume: 29 start-page: 2466 year: 2016 publication-title: Chem. Mater. – volume: 9 start-page: 193 year: 2010 publication-title: Nat. Mater. – volume: 27 start-page: 1787 year: 2006 publication-title: J. Comp. Chem. – volume: 12 start-page: 5692 year: 2016 publication-title: Small – volume: 22 start-page: 1385 year: 2012 publication-title: Adv. Funct. Mater. – volume: 29 start-page: 27 year: 2000 publication-title: Chem. Soc. Rev. – volume: 10 start-page: 573 year: 2016 publication-title: ACS Nano – volume: 91 start-page: 165403 year: 2015 publication-title: Phys. Rev. B – volume: 103 start-page: 053513 year: 2013 publication-title: Appl. Phys. Lett. – volume: 29 start-page: 1702917 year: 2017 publication-title: Adv. Mater. – volume: 24 start-page: 7025 year: 2014 publication-title: Adv. Funct. Mater. – volume: 2 start-page: 17033 year: 2017 publication-title: Nat. Rev. Mater. – volume: 87 start-page: 075451 year: 2013 publication-title: Phys. Rev. B – volume: 8 start-page: 9649 year: 2014 publication-title: ACS Nano – volume: 27 start-page: 6431 year: 2015 publication-title: Adv. Mater. – volume: 45 start-page: 3145 year: 2016 publication-title: Chem. Soc. Rev. – volume: 541 start-page: 62 year: 2017 publication-title: Nature – volume: 3 start-page: 1755 year: 2013 publication-title: Sci. Rep. – volume: 8 start-page: 12717 year: 2014 publication-title: ACS Nano – volume: 7 start-page: 1137 year: 2014 publication-title: Nano Res. – volume: 14 start-page: 1702731 year: 2018 publication-title: Small – volume: 12 start-page: 5622 year: 2016 publication-title: Small – volume: 28 start-page: 9519 year: 2016 publication-title: Adv. Mater. – volume: 86 start-page: 063106 year: 2005 publication-title: Appl. Phys. Lett. – volume: 27 start-page: 1701011 year: 2017 publication-title: Adv. Funct. Mater. – volume: 28 start-page: 1950 year: 2016 publication-title: Adv. Mater. – volume: 10 start-page: 3852 year: 2016 publication-title: ACS Nano – volume: 29 start-page: 1701512 year: 2017 publication-title: Adv. Mater. |
SSID | ssj0017734 |
Score | 2.6035137 |
Snippet | Infrared light detection is generally limited by the intrinsic bandgap of semiconductors, which suppresses the freedom in infrared light photodetector design... |
SourceID | proquest wiley |
SourceType | Aggregation Database Publisher |
SubjectTerms | Coupling Electromagnetic absorption Heterojunctions Heterostructures Infrared radiation infrared response interlayer coupling Interlayers Light Materials science Molybdenum disulfide photodetection Photometers Surface plasmon resonance WS2/MoS2 heterostructures |
Title | Interlayer Coupling Induced Infrared Response in WS2/MoS2 Heterostructures Enhanced by Surface Plasmon Resonance |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.201800339 https://www.proquest.com/docview/2047454495 |
Volume | 28 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV09T8MwELUQLDDwjSiUygNr2sR1kmas-qEKUYRaKrpFtnMBBEqqthng13OXtKFlhCnJcJF9ubOfnXfPjN0K4RtwI9tyMZMsGQht4TzuY15hhBiQZEZsiwdvMJF3U3e6UcVf6EOUG26UGfl4TQmu9KLxIxqqopgqyZ0WHUdGFXxE2CJUNCr1oxzfL34rew4RvJzpWrXRFo1t8y18uYlS82mmf8TUuoEFu-S9ni113Xz90m78Tw-O2eEKg_J2ETQnbAeSU3awoUx4xmb5TuGHQkDOO2lGZbsvnI75MBDhNZ4Tb52PCoIt8LeEP49FY5iOBR8QwSYtdGkzXMzzXvKa0wy4_uTjbB4rA_wRQTsmAL0hJckPOGeTfu-pM7BWhzNYM4GttYKWxmzWtjGuMeBp4YtIBS6OlqoZQxR7SsdgO-BHEClPAAhlDPYTERuOv4FuXrDdJE3gknFtN0WkHQ8gcKR2HSUkBDLGMAHfjY1XYdX1xwlXGbYIhS196Upc31WYyL0czgp9jrBQYhYh-Tcs_Ru2u_1h-XT1F6Nrtk_3OXnArrJd9CTcICZZ6hrba3eH9-NaHn_f4Ubdiw |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELagDMDAG1Eo4IE1NHGdpBmr0qo8ilAfgi2ynQsgUFKVZoBfz13SlpYRpiiRHNmXO_vz5fN3jF0I4RtwI9tyMZIsGQht4TruY1yhhxiQ1IzYFvdeZyhvntwZm5DOwhT6EPOEG0VGPl9TgFNCuvqjGqqimI6SO3WqRxassjUq653vqnpzBSnH94sfy55DFC_naabbaIvqcvslhLmIU_OFpr3N9KyLBb_k7TKb6Evz9Uu98V9j2GFbUxjKG4Xf7LIVSPbY5oI44T4b5cnCd4WYnDfTjE7uPnOq9GEgwms8Juo67xUcW-CvCX_si2o37QveIY5NWkjTZrif563kJWcacP3J-9k4Vgb4A-J2jAF6Q0qqH3DAhu3WoNmxpvUZrJHA3lpBXWNAa9sY1xjwtPBFpAIXJ0xViyGKPaVjsB3wI4iUJwCEMgbHiaANp-BA1w5ZKUkTOGJc2zURaccDCBypXUcJCYGM0VPAd2PjlVll9nXCaZB9hMKWvnQlbvHKTORmDkeFREdYiDGLkOwbzu0bNq7a3fnd8V8anbP1zqB7F95d39-esA16nnMJ7AoroVXhFCHKRJ_lTvgNwOzgEg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bT8IwGG28JEYfvBtR1D74OthKt7FHIxK8QAhI5G3p5asazUaQPeiv9-sGCD7q07IlXdpv32lPu9NTQi4ZCxX42nV8RJLDIyYdHMdDxBVmiAJui1m1RSdoDfjd0B8u7OIv_CHmC24WGXl_bQE-0qb6YxoqtLE7yb26PY4sWiXrPHDrNq8bvbmBlBeGxX_lwLMKL284s210WXW5_BLBXKSp-TjT3CFiVsNCXvJWySayor5-mTf-pwm7ZHtKQulVkTV7ZAWSfbK1YE14QEb5UuG7QEZOr9PM7tt9pvacDwUar2Zsheu0Vyhsgb4m9KnPqu20z2jLKmzSwpg2w9k8vUlecp0BlZ-0n42NUEC7yNoRAfYNqfX8gEMyaN48Xrec6ekMzohhbZ2oLhHO0lXKVwoCyUKmReRjdylqBrQJhDTgehBq0CJgAEwohe1EyoYdcCRrR2QtSRM4JlS6NaalFwBEHpe-JxiHiBvMEwh9o4ISKc8-TjyF2EfMXB5yn-MEr0RYHuV4VBh0xIUVM4ttfON5fOOrRrM9vzv5S6ELstFtNOOH2879Kdm0j3MhgVsmaxhUOEN-MpHneQp-A1Za3so |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Interlayer+Coupling+Induced+Infrared+Response+in+WS2%2FMoS2+Heterostructures+Enhanced+by+Surface+Plasmon+Resonance&rft.jtitle=Advanced+functional+materials&rft.au=Wang%2C+Guichao&rft.au=Li%2C+Liang&rft.au=Fan%2C+Weihao&rft.au=Wang%2C+Renyan&rft.date=2018-05-30&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=28&rft.issue=22&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadfm.201800339&rft.externalDBID=10.1002%252Fadfm.201800339&rft.externalDocID=ADFM201800339 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon |