Interlayer Coupling Induced Infrared Response in WS2/MoS2 Heterostructures Enhanced by Surface Plasmon Resonance

Infrared light detection is generally limited by the intrinsic bandgap of semiconductors, which suppresses the freedom in infrared light photodetector design and hinders the development of high‐performance infrared light photodetector. In this work, for the first time infrared light (1030 nm) photod...

Full description

Saved in:
Bibliographic Details
Published inAdvanced functional materials Vol. 28; no. 22
Main Authors Wang, Guichao, Li, Liang, Fan, Weihao, Wang, Renyan, Zhou, Shasha, Lü, Jing‐Tao, Gan, Lin, Zhai, Tianyou
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc 30.05.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Infrared light detection is generally limited by the intrinsic bandgap of semiconductors, which suppresses the freedom in infrared light photodetector design and hinders the development of high‐performance infrared light photodetector. In this work, for the first time infrared light (1030 nm) photodetectors are fabricated based on WS2/MoS2 heterostructures. Individual WS2 and MoS2 have no response to infrared light. The origin of infrared light response for WS2/MoS2 comes from the strong interlayer coupling which shrinks the energy interval in the heterojunction area thus rendering heterostructures longer wavelength detection ability compared to individual components. Considering the low light absorption due to indirect bandgap essence of few layers WS2/MoS2 heterostructures, its infrared responsivity is further enhanced with at most ≈25 times but the fast response rate is maintained via surface plasmon resonance (SPR). Such an interlayer coupling induced infrared light response and surface plasmon resonance enhancement strategy paves the way for high‐performance infrared light photodetection of infinite freedom in design. Infrared photodetectors based on WS2/MoS2 heterostructures are realized for the first time. WS2 and MoS2 show no infrared (1030 nm) response alone but strong interlayer coupling shrinks the energy interval in the heterojunction area, rendering heterostructures with longer wavelength detection ability compared to the individual components. Furthermore, the infrared (1030 nm) responsivity of the heterostructures is enhanced by ≈25 times via surface plasmon resonance.
AbstractList Infrared light detection is generally limited by the intrinsic bandgap of semiconductors, which suppresses the freedom in infrared light photodetector design and hinders the development of high‐performance infrared light photodetector. In this work, for the first time infrared light (1030 nm) photodetectors are fabricated based on WS2/MoS2 heterostructures. Individual WS2 and MoS2 have no response to infrared light. The origin of infrared light response for WS2/MoS2 comes from the strong interlayer coupling which shrinks the energy interval in the heterojunction area thus rendering heterostructures longer wavelength detection ability compared to individual components. Considering the low light absorption due to indirect bandgap essence of few layers WS2/MoS2 heterostructures, its infrared responsivity is further enhanced with at most ≈25 times but the fast response rate is maintained via surface plasmon resonance (SPR). Such an interlayer coupling induced infrared light response and surface plasmon resonance enhancement strategy paves the way for high‐performance infrared light photodetection of infinite freedom in design. Infrared photodetectors based on WS2/MoS2 heterostructures are realized for the first time. WS2 and MoS2 show no infrared (1030 nm) response alone but strong interlayer coupling shrinks the energy interval in the heterojunction area, rendering heterostructures with longer wavelength detection ability compared to the individual components. Furthermore, the infrared (1030 nm) responsivity of the heterostructures is enhanced by ≈25 times via surface plasmon resonance.
Infrared light detection is generally limited by the intrinsic bandgap of semiconductors, which suppresses the freedom in infrared light photodetector design and hinders the development of high‐performance infrared light photodetector. In this work, for the first time infrared light (1030 nm) photodetectors are fabricated based on WS2/MoS2 heterostructures. Individual WS2 and MoS2 have no response to infrared light. The origin of infrared light response for WS2/MoS2 comes from the strong interlayer coupling which shrinks the energy interval in the heterojunction area thus rendering heterostructures longer wavelength detection ability compared to individual components. Considering the low light absorption due to indirect bandgap essence of few layers WS2/MoS2 heterostructures, its infrared responsivity is further enhanced with at most ≈25 times but the fast response rate is maintained via surface plasmon resonance (SPR). Such an interlayer coupling induced infrared light response and surface plasmon resonance enhancement strategy paves the way for high‐performance infrared light photodetection of infinite freedom in design.
Author Li, Liang
Fan, Weihao
Zhou, Shasha
Gan, Lin
Lü, Jing‐Tao
Wang, Renyan
Zhai, Tianyou
Wang, Guichao
Author_xml – sequence: 1
  givenname: Guichao
  surname: Wang
  fullname: Wang, Guichao
  organization: Huazhong University of Science and Technology (HUST)
– sequence: 2
  givenname: Liang
  surname: Li
  fullname: Li, Liang
  organization: Huazhong University of Science and Technology (HUST)
– sequence: 3
  givenname: Weihao
  surname: Fan
  fullname: Fan, Weihao
  organization: Huazhong University of Science and Technology (HUST)
– sequence: 4
  givenname: Renyan
  surname: Wang
  fullname: Wang, Renyan
  organization: Huazhong University of Science and Technology (HUST)
– sequence: 5
  givenname: Shasha
  surname: Zhou
  fullname: Zhou, Shasha
  organization: Huazhong University of Science and Technology (HUST)
– sequence: 6
  givenname: Jing‐Tao
  surname:
  fullname: Lü, Jing‐Tao
  organization: Huazhong University of Science and Technology (HUST)
– sequence: 7
  givenname: Lin
  surname: Gan
  fullname: Gan, Lin
  email: ganlinust@hust.edu.cn
  organization: Huazhong University of Science and Technology (HUST)
– sequence: 8
  givenname: Tianyou
  orcidid: 0000-0003-0985-4806
  surname: Zhai
  fullname: Zhai, Tianyou
  email: zhaity@hust.edu.cn
  organization: Huazhong University of Science and Technology (HUST)
BookMark eNo9UMtOwzAQtFCRaAtXzpY4p7WdV3OsSksjtQJRENwsx95AqtQOdiKUv8dRUU87q52Z3Z0JGmmjAaF7SmaUEDYXqjzNGKELQsIwu0JjmtAkCAlbjC6Yft6giXNHQmiahtEYNbluwdaiB4tXpmvqSn_hXKtOgvK1tMJ68AquMdoBrjT-OLD53hwY3oJXGtfaTradBYfX-lvoQVf0-NDZUkjAL7VwJ6MHB6OH6S26LkXt4O6_TtH7Zv222ga756d8tdwFDfPXB9mioIQWRMpYSkgKljIlslgpEGEJqkxEUQKhkCpQImEATEjp_46jOE1YVoRT9HD2baz56cC1_Gg6q_1KzkiURnEUZbFnZWfWb1VDzxtbnYTtOSV8iJQPkfJLpHz5uNlfuvAPaFFwzw
ContentType Journal Article
Copyright 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
DBID 7SP
7SR
7U5
8BQ
8FD
JG9
L7M
DOI 10.1002/adfm.201800339
DatabaseName Electronics & Communications Abstracts
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList
Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1616-3028
EndPage n/a
ExternalDocumentID ADFM201800339
Genre article
GrantInformation_xml – fundername: National Nature Science Foundation of China
  funderid: 21501060; 51472097; 91622117; 51727809
– fundername: National Key Research and Development Program of “Strategic Advanced Electronic Materials”
  funderid: 2016YFB0401100
– fundername: National Basic Research Program of China
  funderid: 2015CB932600
– fundername: Fundamental Research Funds for the Central University
  funderid: 2015ZDTD038; 2017KFKJXX007
GroupedDBID -~X
.3N
.GA
05W
0R~
10A
1L6
1OC
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
EJD
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
UB1
V2E
W8V
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
~IA
~WT
7SP
7SR
7U5
8BQ
8FD
AAMMB
ADMLS
AEFGJ
AEYWJ
AGHNM
AGXDD
AGYGG
AIDQK
AIDYY
JG9
L7M
ID FETCH-LOGICAL-p2339-98b101b0cc5cce6b272da95ddea3fedf6abfe01e7deda62ee2acc0335457629b3
IEDL.DBID DR2
ISSN 1616-301X
IngestDate Fri Jul 25 07:37:22 EDT 2025
Wed Jan 22 17:02:00 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 22
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-p2339-98b101b0cc5cce6b272da95ddea3fedf6abfe01e7deda62ee2acc0335457629b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-0985-4806
PQID 2047454495
PQPubID 2045204
PageCount 9
ParticipantIDs proquest_journals_2047454495
wiley_primary_10_1002_adfm_201800339_ADFM201800339
PublicationCentury 2000
PublicationDate May 30, 2018
PublicationDateYYYYMMDD 2018-05-30
PublicationDate_xml – month: 05
  year: 2018
  text: May 30, 2018
  day: 30
PublicationDecade 2010
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
PublicationTitle Advanced functional materials
PublicationYear 2018
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2015; 15
2013; 3
2007; 107
2000; 29
2017; 2
2013; 88
2013; 87
2017; 27
2008; 19
2016; 10
2013; 103
2005; 86
2013; 102
2014; 24
2017; 29
2015; 9
2014; 111
2016; 12
2016; 7
2016; 1
2015; 27
2017; 17
2013; 13
2006; 27
2014; 14
2018; 30
2015; 91
2016; 29
2017; 541
2012; 7
2016; 28
2014; 8
2014; 7
2012; 22
2018; 14
2012; 85
2010; 9
2016; 45
References_xml – volume: 19
  start-page: 345201
  year: 2008
  publication-title: Nanotechnology
– volume: 111
  start-page: 6198
  year: 2014
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 87
  start-page: 081307
  year: 2013
  publication-title: Phys. Rev. B
– volume: 14
  start-page: 3185
  year: 2014
  publication-title: Nano Lett.
– volume: 10
  start-page: 6612
  year: 2016
  publication-title: ACS Nano
– volume: 7
  start-page: 699
  year: 2012
  publication-title: Nat. Nanotechnol.
– volume: 102
  start-page: 012111
  year: 2013
  publication-title: Appl. Phys. Lett.
– volume: 1
  start-page: 16042
  year: 2016
  publication-title: Nat. Rev. Mater.
– volume: 17
  start-page: 5342
  year: 2017
  publication-title: Nano Lett.
– volume: 107
  start-page: 4797
  year: 2007
  publication-title: Chem. Rev.
– volume: 9
  start-page: 9868
  year: 2015
  publication-title: ACS Nano
– volume: 13
  start-page: 5944
  year: 2013
  publication-title: Nano Lett.
– volume: 88
  start-page: 085318
  year: 2013
  publication-title: Phys. Rev. B
– volume: 15
  start-page: 486
  year: 2015
  publication-title: Nano Lett.
– volume: 30
  start-page: 1703286
  year: 2018
  publication-title: Adv. Mater.
– volume: 29
  start-page: 1702206
  year: 2017
  publication-title: Adv. Mater.
– volume: 7
  start-page: 12512
  year: 2016
  publication-title: Nat. Commun.
– volume: 85
  start-page: 033305
  year: 2012
  publication-title: Phys. Rev. B
– volume: 29
  start-page: 2466
  year: 2016
  publication-title: Chem. Mater.
– volume: 9
  start-page: 193
  year: 2010
  publication-title: Nat. Mater.
– volume: 27
  start-page: 1787
  year: 2006
  publication-title: J. Comp. Chem.
– volume: 12
  start-page: 5692
  year: 2016
  publication-title: Small
– volume: 22
  start-page: 1385
  year: 2012
  publication-title: Adv. Funct. Mater.
– volume: 29
  start-page: 27
  year: 2000
  publication-title: Chem. Soc. Rev.
– volume: 10
  start-page: 573
  year: 2016
  publication-title: ACS Nano
– volume: 91
  start-page: 165403
  year: 2015
  publication-title: Phys. Rev. B
– volume: 103
  start-page: 053513
  year: 2013
  publication-title: Appl. Phys. Lett.
– volume: 29
  start-page: 1702917
  year: 2017
  publication-title: Adv. Mater.
– volume: 24
  start-page: 7025
  year: 2014
  publication-title: Adv. Funct. Mater.
– volume: 2
  start-page: 17033
  year: 2017
  publication-title: Nat. Rev. Mater.
– volume: 87
  start-page: 075451
  year: 2013
  publication-title: Phys. Rev. B
– volume: 8
  start-page: 9649
  year: 2014
  publication-title: ACS Nano
– volume: 27
  start-page: 6431
  year: 2015
  publication-title: Adv. Mater.
– volume: 45
  start-page: 3145
  year: 2016
  publication-title: Chem. Soc. Rev.
– volume: 541
  start-page: 62
  year: 2017
  publication-title: Nature
– volume: 3
  start-page: 1755
  year: 2013
  publication-title: Sci. Rep.
– volume: 8
  start-page: 12717
  year: 2014
  publication-title: ACS Nano
– volume: 7
  start-page: 1137
  year: 2014
  publication-title: Nano Res.
– volume: 14
  start-page: 1702731
  year: 2018
  publication-title: Small
– volume: 12
  start-page: 5622
  year: 2016
  publication-title: Small
– volume: 28
  start-page: 9519
  year: 2016
  publication-title: Adv. Mater.
– volume: 86
  start-page: 063106
  year: 2005
  publication-title: Appl. Phys. Lett.
– volume: 27
  start-page: 1701011
  year: 2017
  publication-title: Adv. Funct. Mater.
– volume: 28
  start-page: 1950
  year: 2016
  publication-title: Adv. Mater.
– volume: 10
  start-page: 3852
  year: 2016
  publication-title: ACS Nano
– volume: 29
  start-page: 1701512
  year: 2017
  publication-title: Adv. Mater.
SSID ssj0017734
Score 2.6035137
Snippet Infrared light detection is generally limited by the intrinsic bandgap of semiconductors, which suppresses the freedom in infrared light photodetector design...
SourceID proquest
wiley
SourceType Aggregation Database
Publisher
SubjectTerms Coupling
Electromagnetic absorption
Heterojunctions
Heterostructures
Infrared radiation
infrared response
interlayer coupling
Interlayers
Light
Materials science
Molybdenum disulfide
photodetection
Photometers
Surface plasmon resonance
WS2/MoS2 heterostructures
Title Interlayer Coupling Induced Infrared Response in WS2/MoS2 Heterostructures Enhanced by Surface Plasmon Resonance
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.201800339
https://www.proquest.com/docview/2047454495
Volume 28
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV09T8MwELUQLDDwjSiUygNr2sR1kmas-qEKUYRaKrpFtnMBBEqqthng13OXtKFlhCnJcJF9ubOfnXfPjN0K4RtwI9tyMZMsGQht4TzuY15hhBiQZEZsiwdvMJF3U3e6UcVf6EOUG26UGfl4TQmu9KLxIxqqopgqyZ0WHUdGFXxE2CJUNCr1oxzfL34rew4RvJzpWrXRFo1t8y18uYlS82mmf8TUuoEFu-S9ni113Xz90m78Tw-O2eEKg_J2ETQnbAeSU3awoUx4xmb5TuGHQkDOO2lGZbsvnI75MBDhNZ4Tb52PCoIt8LeEP49FY5iOBR8QwSYtdGkzXMzzXvKa0wy4_uTjbB4rA_wRQTsmAL0hJckPOGeTfu-pM7BWhzNYM4GttYKWxmzWtjGuMeBp4YtIBS6OlqoZQxR7SsdgO-BHEClPAAhlDPYTERuOv4FuXrDdJE3gknFtN0WkHQ8gcKR2HSUkBDLGMAHfjY1XYdX1xwlXGbYIhS196Upc31WYyL0czgp9jrBQYhYh-Tcs_Ru2u_1h-XT1F6Nrtk_3OXnArrJd9CTcICZZ6hrba3eH9-NaHn_f4Ubdiw
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELagDMDAG1Eo4IE1NHGdpBmr0qo8ilAfgi2ynQsgUFKVZoBfz13SlpYRpiiRHNmXO_vz5fN3jF0I4RtwI9tyMZIsGQht4TruY1yhhxiQ1IzYFvdeZyhvntwZm5DOwhT6EPOEG0VGPl9TgFNCuvqjGqqimI6SO3WqRxassjUq653vqnpzBSnH94sfy55DFC_naabbaIvqcvslhLmIU_OFpr3N9KyLBb_k7TKb6Evz9Uu98V9j2GFbUxjKG4Xf7LIVSPbY5oI44T4b5cnCd4WYnDfTjE7uPnOq9GEgwms8Juo67xUcW-CvCX_si2o37QveIY5NWkjTZrif563kJWcacP3J-9k4Vgb4A-J2jAF6Q0qqH3DAhu3WoNmxpvUZrJHA3lpBXWNAa9sY1xjwtPBFpAIXJ0xViyGKPaVjsB3wI4iUJwCEMgbHiaANp-BA1w5ZKUkTOGJc2zURaccDCBypXUcJCYGM0VPAd2PjlVll9nXCaZB9hMKWvnQlbvHKTORmDkeFREdYiDGLkOwbzu0bNq7a3fnd8V8anbP1zqB7F95d39-esA16nnMJ7AoroVXhFCHKRJ_lTvgNwOzgEg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bT8IwGG28JEYfvBtR1D74OthKt7FHIxK8QAhI5G3p5asazUaQPeiv9-sGCD7q07IlXdpv32lPu9NTQi4ZCxX42nV8RJLDIyYdHMdDxBVmiAJui1m1RSdoDfjd0B8u7OIv_CHmC24WGXl_bQE-0qb6YxoqtLE7yb26PY4sWiXrPHDrNq8bvbmBlBeGxX_lwLMKL284s210WXW5_BLBXKSp-TjT3CFiVsNCXvJWySayor5-mTf-pwm7ZHtKQulVkTV7ZAWSfbK1YE14QEb5UuG7QEZOr9PM7tt9pvacDwUar2Zsheu0Vyhsgb4m9KnPqu20z2jLKmzSwpg2w9k8vUlecp0BlZ-0n42NUEC7yNoRAfYNqfX8gEMyaN48Xrec6ekMzohhbZ2oLhHO0lXKVwoCyUKmReRjdylqBrQJhDTgehBq0CJgAEwohe1EyoYdcCRrR2QtSRM4JlS6NaalFwBEHpe-JxiHiBvMEwh9o4ISKc8-TjyF2EfMXB5yn-MEr0RYHuV4VBh0xIUVM4ttfON5fOOrRrM9vzv5S6ELstFtNOOH2879Kdm0j3MhgVsmaxhUOEN-MpHneQp-A1Za3so
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Interlayer+Coupling+Induced+Infrared+Response+in+WS2%2FMoS2+Heterostructures+Enhanced+by+Surface+Plasmon+Resonance&rft.jtitle=Advanced+functional+materials&rft.au=Wang%2C+Guichao&rft.au=Li%2C+Liang&rft.au=Fan%2C+Weihao&rft.au=Wang%2C+Renyan&rft.date=2018-05-30&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=28&rft.issue=22&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadfm.201800339&rft.externalDBID=10.1002%252Fadfm.201800339&rft.externalDocID=ADFM201800339
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon