Tunable d‐Band Centers of Ni5P4 Ultra‐Thin Nanosheets for Highly‐Efficient Hydrogen Evolution Reaction

Although the recent advance of ultra‐thin 2D nanosheets for hydrogen evolution reaction (HER) is remarkable, there are still substantial challenges to reliably control their physioelectric and electrochemical properties to employ as highly‐efficient electrocatalysts. Herein, based on complementary t...

Full description

Saved in:
Bibliographic Details
Published inAdvanced materials interfaces Vol. 9; no. 22
Main Authors Miao, Chengcheng, Zang, Yanmei, Wang, Hang, Zhuang, Xinming, Han, Ning, Yin, Yanxue, Ma, Yandong, Chen, Ming, Dai, Ying, Yip, SenPo, Ho, Johnny C., Yang, Zai‐xing
Format Journal Article
LanguageEnglish
Published Weinheim John Wiley & Sons, Inc 01.08.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Although the recent advance of ultra‐thin 2D nanosheets for hydrogen evolution reaction (HER) is remarkable, there are still substantial challenges to reliably control their physioelectric and electrochemical properties to employ as highly‐efficient electrocatalysts. Herein, based on complementary theoretical and experimental studies, the d‐band center position of ultra‐thin 2D Ni5P4 nanosheets can be manipulated by simple heteroatom doping. Interestingly, the Fe‐doped nanosheets yield the lowest d‐band center position, but they do not display the optimal Gibbs free energy of adsorbed H atoms due to the imbalance of adsorption and desorption of adsorbed H atoms. With the proper Co doping (i.e., 20%), the nanosheets exhibit the best electrocatalytic performance along with an excellent stability. The overpotential is only 100.5 mV at 10 mA cm−2 with a Tafel slope of 65.8 mV dec−1, which is superior than those of Fe‐doped, Cu‐doped, and pristine Ni5P4 nanosheets. Ultraviolet photoelectron and X‐ray photoelectron spectroscopy further verify the downshift of d‐band centers of nanosheets by optimal doping, illustrating that Ni with the lower binding energy mainly dominates the active sites. All these results provide a valuable design scheme of dopants to control the d‐band center position of nanosheets for next‐generation highly‐efficient HER electrocatalysts. The d‐band center of Ni5P4 ultra‐thin nanosheets can be manipulated by simply doping with heteroatoms of Co, Fe, and Cu. By designing and tuning the d‐band center to the optimized position, 20% Co‐doped Ni5P4 ultra‐thin nanosheet exhibits an overpotential as low as 176.8 mV at 100 mA cm−2 with a Tafel slope of 65.8 mV dec−1.
AbstractList Although the recent advance of ultra‐thin 2D nanosheets for hydrogen evolution reaction (HER) is remarkable, there are still substantial challenges to reliably control their physioelectric and electrochemical properties to employ as highly‐efficient electrocatalysts. Herein, based on complementary theoretical and experimental studies, the d‐band center position of ultra‐thin 2D Ni5P4 nanosheets can be manipulated by simple heteroatom doping. Interestingly, the Fe‐doped nanosheets yield the lowest d‐band center position, but they do not display the optimal Gibbs free energy of adsorbed H atoms due to the imbalance of adsorption and desorption of adsorbed H atoms. With the proper Co doping (i.e., 20%), the nanosheets exhibit the best electrocatalytic performance along with an excellent stability. The overpotential is only 100.5 mV at 10 mA cm−2 with a Tafel slope of 65.8 mV dec−1, which is superior than those of Fe‐doped, Cu‐doped, and pristine Ni5P4 nanosheets. Ultraviolet photoelectron and X‐ray photoelectron spectroscopy further verify the downshift of d‐band centers of nanosheets by optimal doping, illustrating that Ni with the lower binding energy mainly dominates the active sites. All these results provide a valuable design scheme of dopants to control the d‐band center position of nanosheets for next‐generation highly‐efficient HER electrocatalysts.
Although the recent advance of ultra‐thin 2D nanosheets for hydrogen evolution reaction (HER) is remarkable, there are still substantial challenges to reliably control their physioelectric and electrochemical properties to employ as highly‐efficient electrocatalysts. Herein, based on complementary theoretical and experimental studies, the d‐band center position of ultra‐thin 2D Ni5P4 nanosheets can be manipulated by simple heteroatom doping. Interestingly, the Fe‐doped nanosheets yield the lowest d‐band center position, but they do not display the optimal Gibbs free energy of adsorbed H atoms due to the imbalance of adsorption and desorption of adsorbed H atoms. With the proper Co doping (i.e., 20%), the nanosheets exhibit the best electrocatalytic performance along with an excellent stability. The overpotential is only 100.5 mV at 10 mA cm−2 with a Tafel slope of 65.8 mV dec−1, which is superior than those of Fe‐doped, Cu‐doped, and pristine Ni5P4 nanosheets. Ultraviolet photoelectron and X‐ray photoelectron spectroscopy further verify the downshift of d‐band centers of nanosheets by optimal doping, illustrating that Ni with the lower binding energy mainly dominates the active sites. All these results provide a valuable design scheme of dopants to control the d‐band center position of nanosheets for next‐generation highly‐efficient HER electrocatalysts. The d‐band center of Ni5P4 ultra‐thin nanosheets can be manipulated by simply doping with heteroatoms of Co, Fe, and Cu. By designing and tuning the d‐band center to the optimized position, 20% Co‐doped Ni5P4 ultra‐thin nanosheet exhibits an overpotential as low as 176.8 mV at 100 mA cm−2 with a Tafel slope of 65.8 mV dec−1.
Author Zhuang, Xinming
Ho, Johnny C.
Chen, Ming
Han, Ning
Ma, Yandong
Zang, Yanmei
Miao, Chengcheng
Wang, Hang
Dai, Ying
Yin, Yanxue
Yip, SenPo
Yang, Zai‐xing
Author_xml – sequence: 1
  givenname: Chengcheng
  surname: Miao
  fullname: Miao, Chengcheng
  organization: Shandong University
– sequence: 2
  givenname: Yanmei
  surname: Zang
  fullname: Zang, Yanmei
  organization: Shandong University
– sequence: 3
  givenname: Hang
  surname: Wang
  fullname: Wang, Hang
  organization: Chinese Academy of Sciences
– sequence: 4
  givenname: Xinming
  surname: Zhuang
  fullname: Zhuang, Xinming
  organization: Shandong University
– sequence: 5
  givenname: Ning
  surname: Han
  fullname: Han, Ning
  organization: Chinese Academy of Sciences
– sequence: 6
  givenname: Yanxue
  surname: Yin
  fullname: Yin, Yanxue
  organization: Shandong University
– sequence: 7
  givenname: Yandong
  surname: Ma
  fullname: Ma, Yandong
  email: yandong.ma@sdu.edu.cn
  organization: Shandong University
– sequence: 8
  givenname: Ming
  surname: Chen
  fullname: Chen, Ming
  organization: Shandong University
– sequence: 9
  givenname: Ying
  surname: Dai
  fullname: Dai, Ying
  organization: Shandong University
– sequence: 10
  givenname: SenPo
  surname: Yip
  fullname: Yip, SenPo
  organization: Kyushu University
– sequence: 11
  givenname: Johnny C.
  orcidid: 0000-0003-3000-8794
  surname: Ho
  fullname: Ho, Johnny C.
  email: johnnyho@cityu.edu.hk
  organization: City University of Hong Kong
– sequence: 12
  givenname: Zai‐xing
  surname: Yang
  fullname: Yang, Zai‐xing
  email: zaixyang@sdu.edu.cn
  organization: Shandong University
BookMark eNpNUE1PAjEQbYwmInL13MQz2K_96BERhQTRGDg33d0plCwtdhfN3vwJ_kZ_iUswxNO8yXszb-ZdoXPnHSB0Q8mAEsLudLG1A0YYIyTh8gx1GJVxP-EROf-HL1GvqjaEEEoZZSnvoHKxdzorARc_X9_32hV4BK6GUGFv8NxGrwIvyzroll2srcNz7Xy1BqgrbHzAE7tal01Ljo2xuW1H8aQpgl-Bw-MPX-5r6x1-A50fwDW6MLqsoPdXu2j5OF6MJv3Zy9N0NJz1d4xz2V5qiiTNjIjy1MQmj4Vp3xI0k5pGcWQAIBWJJgKygsXcMM10DEKKHIhMCOVddHvcuwv-fQ9VrTZ-H1xrqVgsk4iRNGGtSh5Vn7aERu2C3erQKErUIVF1SFSdElXDh-fpqeO_wFpwzw
ContentType Journal Article
Copyright 2022 Wiley‐VCH GmbH
Copyright_xml – notice: 2022 Wiley‐VCH GmbH
DBID 7SR
7U5
8BQ
8FD
JG9
L7M
DOI 10.1002/admi.202200739
DatabaseName Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList Materials Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2196-7350
EndPage n/a
ExternalDocumentID ADMI202200739
Genre article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 61904096
– fundername: Taishan Scholars Program of Shandong Province
  funderid: tsqn201812006
– fundername: Shandong University Multidisciplinary Research and Innovation Team of Young Scholars
  funderid: 2020QNQT015; ECF 2020‐13
GroupedDBID 0R~
1OC
24P
33P
AAESR
AAHHS
AAIHA
AAXRX
AAZKR
ABCUV
ACAHQ
ACCFJ
ACCZN
ACGFS
ACPOU
ACXBN
ACXQS
ADBBV
ADKYN
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AENEX
AEQDE
AFBPY
AIACR
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMYDB
ARCSS
AVUZU
AZVAB
BFHJK
BMXJE
BRXPI
DCZOG
DPXWK
EBS
G-S
GODZA
LATKE
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MY~
M~E
O9-
P2W
R.K
ROL
SUPJJ
WBKPD
WOHZO
WXSBR
WYJ
ZZTAW
7SR
7U5
8BQ
8FD
JG9
L7M
ID FETCH-LOGICAL-p2339-73fd78bf45c8f6fc64f20041b9a1565feee847a04ebd263f2a2a6e494ce097013
ISSN 2196-7350
IngestDate Thu Oct 10 22:41:22 EDT 2024
Sat Aug 24 00:55:14 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 22
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-p2339-73fd78bf45c8f6fc64f20041b9a1565feee847a04ebd263f2a2a6e494ce097013
ORCID 0000-0003-3000-8794
PQID 2697520872
PQPubID 2034582
PageCount 9
ParticipantIDs proquest_journals_2697520872
wiley_primary_10_1002_admi_202200739_ADMI202200739
PublicationCentury 2000
PublicationDate 2022-08-01
PublicationDateYYYYMMDD 2022-08-01
PublicationDate_xml – month: 08
  year: 2022
  text: 2022-08-01
  day: 01
PublicationDecade 2020
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Advanced materials interfaces
PublicationYear 2022
Publisher John Wiley & Sons, Inc
Publisher_xml – name: John Wiley & Sons, Inc
References 2017; 5
2021; 46
2019; 7
2019; 9
2021; 21
2019; 4
2021; 4
2019; 5
2017; 4
2019; 11
2020; 142
2018; 387
2015; 54
2020; 402
2020; 16
2011; 13
2020; 12
2021; 286
2021; 50
2004; 108
2016; 120
2017; 9
1996; 54
1996; 77
2016; 4
2021; 32
2014; 5
2021; 31
2021; 11
2018; 4
2021; 55
2021; 33
2020; 31
2020; 30
2020; 74
2020; 72
2006; 27
2021; 17
2017; 56
2021; 291
2015; 119
2020; 22
2020; 355
2020; 817
2021; 60
2018; 10
2018; 97
2018; 57
References_xml – volume: 33
  start-page: 234
  year: 2021
  publication-title: Chem. Mater.
– volume: 12
  start-page: 6204
  year: 2020
  publication-title: Nanoscale
– volume: 74
  year: 2020
  publication-title: Nano Energy
– volume: 817
  year: 2020
  publication-title: J. Alloys Compd.
– volume: 56
  start-page: 9767
  year: 2017
  publication-title: Angew. Chem., Int. Ed.
– volume: 4
  start-page: 927
  year: 2021
  publication-title: ACS Appl. Energy Mater.
– volume: 12
  year: 2020
  publication-title: ACS Appl. Mater. Interfaces
– volume: 5
  start-page: 3884
  year: 2014
  publication-title: J. Phys. Chem. Lett.
– volume: 11
  start-page: 2
  year: 2019
– volume: 77
  start-page: 1787
  year: 1996
  publication-title: Phys. Rev. Lett.
– volume: 11
  year: 2021
  publication-title: RSC Adv.
– volume: 142
  start-page: 7765
  year: 2020
  publication-title: J. Am. Chem. Soc.
– volume: 11
  start-page: 8155
  year: 2021
  publication-title: ACS Catal.
– volume: 355
  start-page: 815
  year: 2020
  publication-title: Catal. Today
– volume: 286
  year: 2021
  publication-title: Appl. Catal., B.
– volume: 16
  year: 2020
  publication-title: Small
– volume: 30
  year: 2020
  publication-title: Adv. Funct. Mater.
– volume: 387
  start-page: 1
  year: 2018
  publication-title: J. Power Sources
– volume: 54
  year: 1996
  publication-title: Phys. Rev. B
– volume: 11
  start-page: 4198
  year: 2019
  publication-title: Nanoscale
– volume: 9
  year: 2017
  publication-title: Nanoscale
– volume: 4
  start-page: 2905
  year: 2019
  publication-title: ACS Energy Lett.
– volume: 55
  start-page: 92
  year: 2021
  publication-title: J. Energy Chem.
– volume: 4
  start-page: 1108
  year: 2017
  publication-title: ChemElectroChem
– volume: 7
  year: 2019
  publication-title: J. Mater. Chem. A
– volume: 4
  year: 2016
  publication-title: J. Mater. Chem. A
– volume: 5
  year: 2017
  publication-title: J. Mater. Chem. A
– volume: 72
  year: 2020
  publication-title: Nano Energy
– volume: 60
  start-page: 259
  year: 2021
  publication-title: Angew. Chem., Int. Ed.
– volume: 291
  year: 2021
  publication-title: Appl. Catal., B
– volume: 54
  year: 2015
  publication-title: Angew. Chem., Int. Ed.
– volume: 13
  start-page: 1831
  year: 2011
  publication-title: CrystEngComm
– volume: 402
  year: 2020
  publication-title: Chem. Eng. J.
– volume: 21
  start-page: 823
  year: 2021
  publication-title: Nano Lett.
– volume: 17
  year: 2021
  publication-title: Small
– volume: 4
  start-page: 1
  year: 2018
  publication-title: Mater. Today Phys.
– volume: 50
  start-page: 2973
  year: 2021
  publication-title: Dalton Trans.
– volume: 10
  start-page: 1571
  year: 2018
  publication-title: ChemCatChem
– volume: 57
  start-page: 5076
  year: 2018
  publication-title: Angew. Chem., Int. Ed.
– volume: 119
  year: 2015
  publication-title: J. Phys. Chem. C
– volume: 22
  start-page: 700
  year: 2020
  publication-title: Phys. Chem. Chem. Phys.
– volume: 120
  year: 2016
  publication-title: J. Phys. Chem. C
– volume: 108
  year: 2004
  publication-title: J. Phys. Chem. B
– volume: 46
  year: 2021
  publication-title: Int. J. Hydrogen Energy
– volume: 27
  start-page: 1787
  year: 2006
  publication-title: J. Comput. Chem.
– volume: 31
  year: 2021
  publication-title: Adv. Funct. Mater.
– volume: 32
  year: 2021
  publication-title: Nanotechnology
– volume: 12
  start-page: 2380
  year: 2020
  publication-title: ACS Appl. Mater. Interfaces
– volume: 5
  year: 2019
  publication-title: Sci. Adv.
– volume: 9
  start-page: 3744
  year: 2019
  publication-title: ACS Catal.
– volume: 31
  year: 2020
  publication-title: Nanotechnology
– volume: 7
  year: 2019
  publication-title: ACS Sustainable Chem. Eng.
– volume: 10
  year: 2018
  publication-title: ACS Appl. Mater. Interfaces
– volume: 97
  start-page: 98
  year: 2018
  publication-title: Inorg. Chem. Commun.
SSID ssj0001121283
Score 2.3669207
Snippet Although the recent advance of ultra‐thin 2D nanosheets for hydrogen evolution reaction (HER) is remarkable, there are still substantial challenges to reliably...
SourceID proquest
wiley
SourceType Aggregation Database
Publisher
SubjectTerms Doping
d‐band center
Electrocatalysts
Electrochemical analysis
Gibbs free energy
hydrogen evolution reaction
Hydrogen evolution reactions
Nanosheets
Ni 5P 4
Photoelectrons
ultra‐thin nanosheets
Title Tunable d‐Band Centers of Ni5P4 Ultra‐Thin Nanosheets for Highly‐Efficient Hydrogen Evolution Reaction
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadmi.202200739
https://www.proquest.com/docview/2697520872
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dbtMwFLbKJiRuEL9isCFfcDelpI5jJ5cDOnVIQ1wsqHATOYlNI7Xp1KZI44pH4EV4KZ6E4584rTYh2I1V2U5S-3w59jk-5wtCr0YV5SRiKkgqmQRUiigo9Pl7GjFehpyrtND5zucf2CSj76fxdDD4tRW1tGmLYfn9xryS20gV6kCuOkv2PyTrbwoV8BvkCyVIGMp_k_HGZT75kIU32g-uPbY6L1c7A-r4Iz3O5u1K-D76U51aqy7XMylbw8dgwj3mV77L2BBL6DCByVW1WsIfOB5_c0PRcfelF2dHYNuFEsAG2I7cEFGslI748kKthXXMzmTztdSFd1s7r_Vn0Sxk3Tv5be1EbPWcbVzttG4W3brr3BZg8XZBc067gaZkAY8s6-xQ3lDn1HO6hUKbwuwWar-MXVsFLKusqBb1UD_anEb26113xu97xn_va9mB352f-fY7aJ-AXgOFun_yKfuS9U69EewEDPWrH0pHFBqS17sP2TFptg0js7O5eIDuO5MEn1h8PUQD2TxCd01ocLl-jOYOZbj6_eOnxhd2-MJLhQ2-sMEXtGpk4R5ZGJCFLbKg0WMKd5jCHlO4w9QTlJ2OL95OAveNjuCSRFEKQ1QVTwpF4zJRTJWMKv2GjopUjMBWUFJK2P-IkMqiIixSRBDBJE1pKcOUg_3xFO01y0Y-Q1iJkIVKFFVFIioimRSxitMwoUoRLkVygA67CcvdS7jOCUt5TMKEkwNEzCTml5amJbeE3CTX0577ac93JPn8Nhe9QPd6RB-ivXa1kUewNW2Llw4QfwDmX4m8
link.rule.ids 315,783,787,27936,27937,50826,50935
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1PT8IwFG8UYvRi_BtR1B68Loy2a7cjKgQUiDHMGC9Lt7aRBDfChgk3P4Kf0U9iuw2Qq8et6ZK9vtf--v78HgA3TUEYwlRZrpCuRSTHVmji7x6mLLIZU15o6p0HQ9r1ycOrs8wmNLUwBT_EyuFmLCPfr42BG4d0Y80aysXHWF_wEMqjTdug6pigXgVUWy_-m792tDT17pzTcWrjpBbDjr0kb7RRY_MjGzDzL1jNT5vOAdgvYSJsFet6CLZkfAR28nTNKD0Gk9E8r3mC4ufr-5bHAhovrUZyMFFwOHaeCPQn2YzrUdOYE-o9NEnfpcxSqEEqNMkdk4UebOcEEnoq7C7ELNHKBNufpTLCZ1kUPZwAv9Me3XWtsm-CNUUYe_oXlWBuqIgTuYqqiBJlbKEZelzf1hwlpdRnEreJDAWiWCGOOJXEI5G0PaYx4SmoxEkszwBU3Ka24qEQCBOOpRs6ynRJJ0ohJrlbA_WlwIJS-dMAUY85yHYZqgGUCzGYFtQZQUGSjAIj9mAl9qB1P-itns7_M-ka7HZHg37Q7w0fL8CeeV-k6dVBJZvN5aWGDll4VSrHL-_nvsE
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDI5gE4gL4ikGA3LgWtEladIeB9u0AZsmRNHEpUqbREwa27QH0m78BH4jvwSn7R5cObZRKtWxnS-O_Rmhm4piglBuHF9p32FaUie29-8B5SJxhTBBbOud2x3eDNlDz-ttVPFn_BCrgJu1jNRfWwMfK3O7Jg2V6qMP5ztC0sumbVQEqEFAx4vV1_AtXMdZKuCcUzZOsE3uCOq5S-5Gl9z-_cgflLmJVdPNpnGA9nOUiKvZsh6iLT08QjtptmYyPUaDl3la8oTVz9f3nRwqbIO0AOTwyOBO3-syHA5mEwmjti8nBhc6mr5rPZtiwKjY5nYMFjBYT_kjYCpuLtRkBLqE65-5LuJnndU8nKCwUX-5bzp52wRnTCgN4BeNEn5smJf4hpuEM2NNoRIHEg5rntFaw5YkXaZjRTg1RBLJNQtYot1AACQ8RYXhaKjPEDbS5a6RsVKEMkm1H3vGNklnxhChpV9C5aXAolz3pxHhgfCI6wtSQiQVYjTOmDOijCOZRFbs0UrsUbXWbq2ezv8z6RrtdmuN6KnVebxAe_Z1lqRXRoXZZK4vATjM4qtcN34B-Gm96g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tunable+d%E2%80%90Band+Centers+of+Ni5P4+Ultra%E2%80%90Thin+Nanosheets+for+Highly%E2%80%90Efficient+Hydrogen+Evolution+Reaction&rft.jtitle=Advanced+materials+interfaces&rft.au=Miao%2C+Chengcheng&rft.au=Zang%2C+Yanmei&rft.au=Wang%2C+Hang&rft.au=Zhuang%2C+Xinming&rft.date=2022-08-01&rft.issn=2196-7350&rft.eissn=2196-7350&rft.volume=9&rft.issue=22&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadmi.202200739&rft.externalDBID=10.1002%252Fadmi.202200739&rft.externalDocID=ADMI202200739
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2196-7350&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2196-7350&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2196-7350&client=summon