Decoration of NiFe‐LDH Nanodots Endows Lower Fe‐d Band Center of Fe1‐N‐C Hollow Nanorods as Bifunctional Oxygen Electrocatalysts with Small Overpotential Gap

Single‐atom Fe‐N‐C (denoted as Fe1‐N‐C) catalysts exhibit inadequate bifunctional activities to conquer the sluggish oxygen reduction and evolution reaction (ORR/OER), hindering their practical applications in rechargeable Zn‐air batteries (ZABs). Here, by employing Fe1‐N‐C hollow nanorods as ORR‐ac...

Full description

Saved in:
Bibliographic Details
Published inAdvanced energy materials Vol. 13; no. 13
Main Authors Liu, Zheng‐Qi, Liang, Xiongyi, Ma, Fei‐Xiang, Xiong, Yu‐Xuan, Zhang, Guobin, Chen, Guohua, Zhen, Liang, Xu, Cheng‐Yan
Format Journal Article
LanguageEnglish
Published Weinheim Wiley Subscription Services, Inc 06.04.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Single‐atom Fe‐N‐C (denoted as Fe1‐N‐C) catalysts exhibit inadequate bifunctional activities to conquer the sluggish oxygen reduction and evolution reaction (ORR/OER), hindering their practical applications in rechargeable Zn‐air batteries (ZABs). Here, by employing Fe1‐N‐C hollow nanorods as ORR‐active support, OER‐active NiFe‐layered double hydroxide (NiFe‐LDH) nanodots are evenly decorated through a spatially confined process to form NiFe‐LDH/Fe1‐N‐C heterostructure hollow nanorods with abundant accessible catalytic sites. The NiFe‐LDH/Fe1‐N‐C heterostructure not only enhances the ORR activity of pristine Fe1‐N‐C but also realizes efficient bifunctional ORR/OER activity in one monolithic catalyst. Theoretical calculations reveal that introducing NiFe‐LDH nanodots results in donation of electrons to the Fe1‐N‐C matrix and thus lowers the Fe‐d band center of the Fe‐N4 sites, dramatically narrowing the energy barriers of the ORR rate‐limiting steps. As a result, NiFe‐LDH/Fe1‐N‐C nanorods deliver remarkable ORR activity with a half‐wave potential of 0.90 V versus reversible hydrogen electrode, surpassing bare Fe1‐N‐C and commercial Pt/C. Impressively, the integrated NiFe‐LDH/Fe1‐N‐C catalysts show outstanding bifunctional performance with a small overpotential gap of only 0.65 V. The liquid‐state ZABs with NiFe‐LDH/Fe1‐N‐C as an air‐cathode catalyst deliver a peak power density of 205 mW cm−2 and long‐term cycling stability of up to 400 h. Oxygen evolution reaction (OER)‐active NiFe‐layered double hydroxide (LDH) nanodots are evenly decorated on the oxygen reduction reaction (ORR)‐active Fe1‐N‐C hollow nanorods to realize bifunctional ORR/OER activity in one monolithic catalyst with a small overpotential gap of only 0.65 V. NiFe‐LDH regulates the electronic structures of Fe1‐N‐C by transferring electrons to the Fe‐N4‐active sites and thus significantly reduces the energy barrier of the rate‐determining step during the ORR.
AbstractList Single‐atom Fe‐N‐C (denoted as Fe1‐N‐C) catalysts exhibit inadequate bifunctional activities to conquer the sluggish oxygen reduction and evolution reaction (ORR/OER), hindering their practical applications in rechargeable Zn‐air batteries (ZABs). Here, by employing Fe1‐N‐C hollow nanorods as ORR‐active support, OER‐active NiFe‐layered double hydroxide (NiFe‐LDH) nanodots are evenly decorated through a spatially confined process to form NiFe‐LDH/Fe1‐N‐C heterostructure hollow nanorods with abundant accessible catalytic sites. The NiFe‐LDH/Fe1‐N‐C heterostructure not only enhances the ORR activity of pristine Fe1‐N‐C but also realizes efficient bifunctional ORR/OER activity in one monolithic catalyst. Theoretical calculations reveal that introducing NiFe‐LDH nanodots results in donation of electrons to the Fe1‐N‐C matrix and thus lowers the Fe‐d band center of the Fe‐N4 sites, dramatically narrowing the energy barriers of the ORR rate‐limiting steps. As a result, NiFe‐LDH/Fe1‐N‐C nanorods deliver remarkable ORR activity with a half‐wave potential of 0.90 V versus reversible hydrogen electrode, surpassing bare Fe1‐N‐C and commercial Pt/C. Impressively, the integrated NiFe‐LDH/Fe1‐N‐C catalysts show outstanding bifunctional performance with a small overpotential gap of only 0.65 V. The liquid‐state ZABs with NiFe‐LDH/Fe1‐N‐C as an air‐cathode catalyst deliver a peak power density of 205 mW cm−2 and long‐term cycling stability of up to 400 h. Oxygen evolution reaction (OER)‐active NiFe‐layered double hydroxide (LDH) nanodots are evenly decorated on the oxygen reduction reaction (ORR)‐active Fe1‐N‐C hollow nanorods to realize bifunctional ORR/OER activity in one monolithic catalyst with a small overpotential gap of only 0.65 V. NiFe‐LDH regulates the electronic structures of Fe1‐N‐C by transferring electrons to the Fe‐N4‐active sites and thus significantly reduces the energy barrier of the rate‐determining step during the ORR.
Single‐atom Fe‐N‐C (denoted as Fe1‐N‐C) catalysts exhibit inadequate bifunctional activities to conquer the sluggish oxygen reduction and evolution reaction (ORR/OER), hindering their practical applications in rechargeable Zn‐air batteries (ZABs). Here, by employing Fe1‐N‐C hollow nanorods as ORR‐active support, OER‐active NiFe‐layered double hydroxide (NiFe‐LDH) nanodots are evenly decorated through a spatially confined process to form NiFe‐LDH/Fe1‐N‐C heterostructure hollow nanorods with abundant accessible catalytic sites. The NiFe‐LDH/Fe1‐N‐C heterostructure not only enhances the ORR activity of pristine Fe1‐N‐C but also realizes efficient bifunctional ORR/OER activity in one monolithic catalyst. Theoretical calculations reveal that introducing NiFe‐LDH nanodots results in donation of electrons to the Fe1‐N‐C matrix and thus lowers the Fe‐d band center of the Fe‐N4 sites, dramatically narrowing the energy barriers of the ORR rate‐limiting steps. As a result, NiFe‐LDH/Fe1‐N‐C nanorods deliver remarkable ORR activity with a half‐wave potential of 0.90 V versus reversible hydrogen electrode, surpassing bare Fe1‐N‐C and commercial Pt/C. Impressively, the integrated NiFe‐LDH/Fe1‐N‐C catalysts show outstanding bifunctional performance with a small overpotential gap of only 0.65 V. The liquid‐state ZABs with NiFe‐LDH/Fe1‐N‐C as an air‐cathode catalyst deliver a peak power density of 205 mW cm−2 and long‐term cycling stability of up to 400 h.
Author Ma, Fei‐Xiang
Liu, Zheng‐Qi
Zhang, Guobin
Chen, Guohua
Liang, Xiongyi
Zhen, Liang
Xiong, Yu‐Xuan
Xu, Cheng‐Yan
Author_xml – sequence: 1
  givenname: Zheng‐Qi
  surname: Liu
  fullname: Liu, Zheng‐Qi
  organization: Harbin Institute of Technology (Shenzhen)
– sequence: 2
  givenname: Xiongyi
  surname: Liang
  fullname: Liang, Xiongyi
  organization: The University of Hong Kong
– sequence: 3
  givenname: Fei‐Xiang
  surname: Ma
  fullname: Ma, Fei‐Xiang
  email: mafeixiang@hit.edu.cn
  organization: Harbin Institute of Technology (Shenzhen)
– sequence: 4
  givenname: Yu‐Xuan
  surname: Xiong
  fullname: Xiong, Yu‐Xuan
  organization: Harbin Institute of Technology (Shenzhen)
– sequence: 5
  givenname: Guobin
  surname: Zhang
  fullname: Zhang, Guobin
  organization: Tsinghua Shenzhen International Graduate School
– sequence: 6
  givenname: Guohua
  surname: Chen
  fullname: Chen, Guohua
  organization: The University of Hong Kong
– sequence: 7
  givenname: Liang
  surname: Zhen
  fullname: Zhen, Liang
  organization: Harbin Institute of Technology
– sequence: 8
  givenname: Cheng‐Yan
  orcidid: 0000-0002-7835-6635
  surname: Xu
  fullname: Xu, Cheng‐Yan
  email: cy_xu@hit.edu.cn
  organization: Harbin Institute of Technology
BookMark eNo9UUtOwzAQtRBIfLesLbEujO3UiZeltBSplAWwjkw8gVSpHeyU0B1H4BJcjJPgtqgjjeb33sxI75jsW2eRkHMGlwyAX2m0i0sOnIOQoPbIEZMs6cksgf1dLvghOQthDtESxUCII_Jzg4Xzuq2cpa6ks2qMv1_f05sJnWnrjGsDHVnjukCnrkNPN2NDr7U1dIi2ja1IGyOL7Vn0IZ24unbdhu6dCVQHel2VS1usb-iaPnyuXtHSUY1F612hW12vQjzTVe0bfVzoOkI-0DeujeurSLjVzSk5KHUd8Ow_npDn8ehpOOlNH27vhoNpr-FCqJ4EkJkGxUqBpUSTZolhCKxUysh-mvVfFEeIaWKAp0lfplhCkShjdCFLycQJudjubbx7X2Jo87lb-vh1yHmq-opnTPKIUltUV9W4yhtfLbRf5QzytRT5Wop8J0U-GM3ud5X4A_vShYg
ContentType Journal Article
Copyright 2023 Wiley‐VCH GmbH
Copyright_xml – notice: 2023 Wiley‐VCH GmbH
DBID 7SP
7TB
8FD
F28
FR3
H8D
L7M
DOI 10.1002/aenm.202203609
DatabaseName Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitle Aerospace Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
DatabaseTitleList
Aerospace Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1614-6840
EndPage n/a
ExternalDocumentID AENM202203609
Genre article
GrantInformation_xml – fundername: Shenzhen Science and Technology Innovation Committee
  funderid: JCYJ20200109113212238
– fundername: Guangdong Basic and Applied Basic Research Foundation
  funderid: 2021A1515111154
GroupedDBID 05W
0R~
1OC
33P
4.4
50Y
5VS
8-0
8-1
AAESR
AAHHS
AAHQN
AAIHA
AAMNL
AANLZ
AAXRX
AAYCA
AAZKR
ABCUV
ABJNI
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADKYN
ADMLS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AENEX
AEQDE
AEUYR
AEYWJ
AFBPY
AFFPM
AFWVQ
AFZJQ
AGHNM
AGYGG
AHBTC
AIACR
AITYG
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMYDB
AZVAB
BDRZF
BFHJK
BMXJE
BRXPI
D-A
DCZOG
EBS
G-S
HGLYW
HZ~
KBYEO
LATKE
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MY.
MY~
O9-
P2W
RNS
ROL
RX1
SUPJJ
WBKPD
WOHZO
WXSBR
ZZTAW
~S-
7SP
7TB
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
F28
FR3
H8D
L7M
ID FETCH-LOGICAL-p2339-60068a091f3ef6ed784d1e01f99d65785b92e0d654d0274567ef0c49ddac6f613
ISSN 1614-6832
IngestDate Fri Jul 25 12:19:32 EDT 2025
Wed Jun 11 08:26:15 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 13
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-p2339-60068a091f3ef6ed784d1e01f99d65785b92e0d654d0274567ef0c49ddac6f613
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-7835-6635
PQID 2795928162
PQPubID 886389
PageCount 10
ParticipantIDs proquest_journals_2795928162
wiley_primary_10_1002_aenm_202203609_AENM202203609
PublicationCentury 2000
PublicationDate April 6, 2023
PublicationDateYYYYMMDD 2023-04-06
PublicationDate_xml – month: 04
  year: 2023
  text: April 6, 2023
  day: 06
PublicationDecade 2020
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Advanced energy materials
PublicationYear 2023
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2017; 7
2017; 2
2019; 12
2017; 46
2018; 126
2019; 58
2020; 16
2020; 59
2019; 19
2018; 43
2017; 9
2018; 6
2018; 8
2021; 32
2021; 34
2021; 33
2018; 1
2015; 44
2022; 34
2018; 30
2021; 81
2014; 53
2021; 9
2019; 9
1991; 38
2019; 5
2019; 31
2020; 142
2017; 27
2015; 54
2016; 10
2020; 32
2022; 438
2021; 57
2015; 27
2021; 11
2020; 30
2022; 61
2022; 7
2017; 11
2017; 10
2017; 56
2022; 12
2022; 13
2013; 135
2022; 2
2021; 60
2022; 16
2016; 9
2022; 18
2018; 57
References_xml – volume: 34
  year: 2021
  publication-title: Adv. Mater.
– volume: 27
  year: 2017
  publication-title: Adv. Funct. Mater.
– volume: 27
  start-page: 4516
  year: 2015
  publication-title: Adv. Mater.
– volume: 12
  start-page: 1216
  year: 2022
  publication-title: ACS Catal.
– volume: 18
  year: 2022
  publication-title: Small
– volume: 60
  year: 2021
  publication-title: Angew. Chem., Int. Ed.
– volume: 7
  start-page: 8184
  year: 2017
  publication-title: ACS Catal.
– volume: 2
  start-page: 2750
  year: 2022
  publication-title: Chem. Catal.
– volume: 1
  start-page: 935
  year: 2018
  publication-title: Nat. Catal.
– volume: 81
  year: 2021
  publication-title: Nano Energy
– volume: 54
  start-page: 8179
  year: 2015
  publication-title: Angew. Chem., Int. Ed.
– volume: 142
  start-page: 2404
  year: 2020
  publication-title: J. Am. Chem. Soc.
– volume: 53
  start-page: 7584
  year: 2014
  publication-title: Angew. Chem., Int. Ed.
– volume: 2
  start-page: 668
  year: 2017
  publication-title: Chem
– volume: 9
  start-page: 2238
  year: 2019
  publication-title: ACS Catal.
– volume: 34
  year: 2022
  publication-title: Adv. Mater.
– volume: 59
  start-page: 7384
  year: 2020
  publication-title: Angew. Chem., Int. Ed.
– volume: 56
  start-page: 610
  year: 2017
  publication-title: Angew. Chem., Int. Ed.
– volume: 43
  start-page: 130
  year: 2018
  publication-title: Nano Energy
– volume: 16
  year: 2020
  publication-title: Small
– volume: 8
  year: 2018
  publication-title: Adv. Energy Mater.
– volume: 30
  year: 2020
  publication-title: Adv. Funct. Mater.
– volume: 33
  year: 2021
  publication-title: Adv. Mater.
– volume: 19
  start-page: 4518
  year: 2019
  publication-title: Nano Lett.
– volume: 58
  year: 2019
  publication-title: Angew. Chem., Int. Ed.
– volume: 11
  year: 2021
  publication-title: Adv. Energy Mater.
– volume: 10
  start-page: 5922
  year: 2016
  publication-title: ACS Nano
– volume: 9
  start-page: 2134
  year: 2019
  publication-title: ACS Catal.
– volume: 9
  year: 2017
  publication-title: Nanoscale
– volume: 13
  start-page: 2075
  year: 2022
  publication-title: Nat. Commun.
– volume: 46
  start-page: 337
  year: 2017
  publication-title: Chem. Soc. Rev.
– volume: 57
  start-page: 2049
  year: 2021
  publication-title: Chem. Commun.
– volume: 438
  year: 2022
  publication-title: Chem. Eng. J.
– volume: 6
  year: 2018
  publication-title: J. Mater. Chem. A
– volume: 5
  start-page: 1486
  year: 2019
  publication-title: Chem
– volume: 16
  year: 2022
  publication-title: ACS Nano
– volume: 142
  start-page: 3600
  year: 2020
  publication-title: J. Am. Chem. Soc.
– volume: 135
  start-page: 8452
  year: 2013
  publication-title: J. Am. Chem. Soc.
– volume: 9
  start-page: 478
  year: 2016
  publication-title: Energy Environ. Sci.
– volume: 10
  start-page: 129
  year: 2017
  publication-title: Energy Environ. Sci.
– volume: 126
  start-page: 437
  year: 2018
  publication-title: Carbon
– volume: 13
  start-page: 2963
  year: 2022
  publication-title: Nat. Commun.
– volume: 61
  year: 2022
  publication-title: Angew. Chem., Int. Ed.
– volume: 31
  year: 2019
  publication-title: Adv. Mater.
– volume: 9
  start-page: 2020
  year: 2016
  publication-title: Energy Environ. Sci.
– volume: 9
  year: 2019
  publication-title: Adv. Energy Mater.
– volume: 7
  start-page: 652
  year: 2022
  publication-title: Nat. Energy
– volume: 60
  start-page: 8472
  year: 2021
  publication-title: Angew. Chem., Int. Ed.
– volume: 44
  start-page: 2168
  year: 2015
  publication-title: Chem. Soc. Rev.
– volume: 30
  year: 2018
  publication-title: Adv. Mater.
– volume: 7
  year: 2017
  publication-title: Adv. Energy Mater.
– volume: 38
  start-page: 103
  year: 1991
  publication-title: Prog. Surf. Sci.
– volume: 12
  start-page: 2288
  year: 2019
  publication-title: Nano Res.
– volume: 9
  start-page: 2301
  year: 2021
  publication-title: J. Mater. Chem. A
– volume: 32
  year: 2020
  publication-title: Adv. Mater.
– volume: 32
  year: 2021
  publication-title: Adv. Funct. Mater.
– volume: 57
  start-page: 172
  year: 2018
  publication-title: Angew. Chem., Int. Ed.
– volume: 11
  start-page: 2275
  year: 2017
  publication-title: ACS Nano
SSID ssj0000491033
Score 2.6360066
Snippet Single‐atom Fe‐N‐C (denoted as Fe1‐N‐C) catalysts exhibit inadequate bifunctional activities to conquer the sluggish oxygen reduction and evolution reaction...
SourceID proquest
wiley
SourceType Aggregation Database
Publisher
SubjectTerms bifunctional oxygen catalysts
Catalysts
d band center
Electrocatalysts
Heterostructures
hollow structures
Hydroxides
Intermetallic compounds
Iron compounds
Metal air batteries
Nanorods
Nickel compounds
NiFe‐LDH/Fe 1‐N‐C heterostructures
Rechargeable batteries
single‐atom catalysts
Zinc-oxygen batteries
Title Decoration of NiFe‐LDH Nanodots Endows Lower Fe‐d Band Center of Fe1‐N‐C Hollow Nanorods as Bifunctional Oxygen Electrocatalysts with Small Overpotential Gap
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Faenm.202203609
https://www.proquest.com/docview/2795928162
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NjtMwELa6uxc4IH7FwoJ84BYFEidx42N321KhNiu0u1JvURM7kANtRRqWcuIReAlejCdhxk7cFBCCPTSK_JOkmS_z55kxIS_CLAYmpwLQ3PwYtzDLXFHwzJVcyFyEMpAe5g7PEj65Ct_Mo3nvoNeJWqo32cv8yx_zSm5CVWgDumKW7H9Q1l4UGuAc6AtHoDAc_4nGQ7Qdrc6XlGNlYxemwwlyTjQ6K2e0lKvrypnijmhOZ5B0TtFvjh5epVcLxsq3nYk9A-EEaFld6wsCw61wc5rTEkVi40k8_7yFh3RGZk8d7RLaVm3m3MUHXP4-_4T7eW0wOAkmvF6su2rxoI1EUCYVEdRo8_5svFBZ62WU9wp4U_tcb8tdd-P2nsPzvNva9plWjceqtHPmOLLt1qO1EKp3A-rme2lcISzQETS8w71B13B53DhMVbfN1ISyLD_oQjvoSH8rG38TLaZU7UItsX4Bw_VbT-yEaBs4YEdGfx9rSg6PkpntPyBHDEwd4NVHg-FsemE9hWDD-V6gM0Xa_9dWH_XYq_2b7NlJXWtLq0uXd8mdxs6hAwPae6SnlvfJ7U71ywfk-w6-dFVQhO-Pr98AuLQFLjXApRq4VHdLipClBrI4DSALzQn8zqiBKW1hShcV7cKUGpjSX2FKEaZUw5TuwZQCTB-Sq_Ho8mziNruGuGsWBMLlmPW0ADW4CFTBlezHofSV5xdCSI6lnTLBlAenoUSXTMT7qvDyUEi5yHkB2u0jcrhcLdVjQkPQlRmLuQpDGTJgX2DfFF6cx8zPC19Ex-SkfdtpwxaqlPVFJFjsc3ZMmKZAujaFY1JTIpylSLPU0izdg8GTm0x6Sm7tvocTcrj5WKtnoCxvsucNmn4CEWu1nA
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Decoration+of+NiFe%E2%80%90LDH+Nanodots+Endows+Lower+Fe%E2%80%90d+Band+Center+of+Fe1%E2%80%90N%E2%80%90C+Hollow+Nanorods+as+Bifunctional+Oxygen+Electrocatalysts+with+Small+Overpotential+Gap&rft.jtitle=Advanced+energy+materials&rft.au=Liu%2C+Zheng%E2%80%90Qi&rft.au=Liang%2C+Xiongyi&rft.au=Ma%2C+Fei%E2%80%90Xiang&rft.au=Xiong%2C+Yu%E2%80%90Xuan&rft.date=2023-04-06&rft.issn=1614-6832&rft.eissn=1614-6840&rft.volume=13&rft.issue=13&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Faenm.202203609&rft.externalDBID=10.1002%252Faenm.202203609&rft.externalDocID=AENM202203609
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1614-6832&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1614-6832&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1614-6832&client=summon