Decoration of NiFe‐LDH Nanodots Endows Lower Fe‐d Band Center of Fe1‐N‐C Hollow Nanorods as Bifunctional Oxygen Electrocatalysts with Small Overpotential Gap
Single‐atom Fe‐N‐C (denoted as Fe1‐N‐C) catalysts exhibit inadequate bifunctional activities to conquer the sluggish oxygen reduction and evolution reaction (ORR/OER), hindering their practical applications in rechargeable Zn‐air batteries (ZABs). Here, by employing Fe1‐N‐C hollow nanorods as ORR‐ac...
Saved in:
Published in | Advanced energy materials Vol. 13; no. 13 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
Wiley Subscription Services, Inc
06.04.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Single‐atom Fe‐N‐C (denoted as Fe1‐N‐C) catalysts exhibit inadequate bifunctional activities to conquer the sluggish oxygen reduction and evolution reaction (ORR/OER), hindering their practical applications in rechargeable Zn‐air batteries (ZABs). Here, by employing Fe1‐N‐C hollow nanorods as ORR‐active support, OER‐active NiFe‐layered double hydroxide (NiFe‐LDH) nanodots are evenly decorated through a spatially confined process to form NiFe‐LDH/Fe1‐N‐C heterostructure hollow nanorods with abundant accessible catalytic sites. The NiFe‐LDH/Fe1‐N‐C heterostructure not only enhances the ORR activity of pristine Fe1‐N‐C but also realizes efficient bifunctional ORR/OER activity in one monolithic catalyst. Theoretical calculations reveal that introducing NiFe‐LDH nanodots results in donation of electrons to the Fe1‐N‐C matrix and thus lowers the Fe‐d band center of the Fe‐N4 sites, dramatically narrowing the energy barriers of the ORR rate‐limiting steps. As a result, NiFe‐LDH/Fe1‐N‐C nanorods deliver remarkable ORR activity with a half‐wave potential of 0.90 V versus reversible hydrogen electrode, surpassing bare Fe1‐N‐C and commercial Pt/C. Impressively, the integrated NiFe‐LDH/Fe1‐N‐C catalysts show outstanding bifunctional performance with a small overpotential gap of only 0.65 V. The liquid‐state ZABs with NiFe‐LDH/Fe1‐N‐C as an air‐cathode catalyst deliver a peak power density of 205 mW cm−2 and long‐term cycling stability of up to 400 h.
Oxygen evolution reaction (OER)‐active NiFe‐layered double hydroxide (LDH) nanodots are evenly decorated on the oxygen reduction reaction (ORR)‐active Fe1‐N‐C hollow nanorods to realize bifunctional ORR/OER activity in one monolithic catalyst with a small overpotential gap of only 0.65 V. NiFe‐LDH regulates the electronic structures of Fe1‐N‐C by transferring electrons to the Fe‐N4‐active sites and thus significantly reduces the energy barrier of the rate‐determining step during the ORR. |
---|---|
AbstractList | Single‐atom Fe‐N‐C (denoted as Fe1‐N‐C) catalysts exhibit inadequate bifunctional activities to conquer the sluggish oxygen reduction and evolution reaction (ORR/OER), hindering their practical applications in rechargeable Zn‐air batteries (ZABs). Here, by employing Fe1‐N‐C hollow nanorods as ORR‐active support, OER‐active NiFe‐layered double hydroxide (NiFe‐LDH) nanodots are evenly decorated through a spatially confined process to form NiFe‐LDH/Fe1‐N‐C heterostructure hollow nanorods with abundant accessible catalytic sites. The NiFe‐LDH/Fe1‐N‐C heterostructure not only enhances the ORR activity of pristine Fe1‐N‐C but also realizes efficient bifunctional ORR/OER activity in one monolithic catalyst. Theoretical calculations reveal that introducing NiFe‐LDH nanodots results in donation of electrons to the Fe1‐N‐C matrix and thus lowers the Fe‐d band center of the Fe‐N4 sites, dramatically narrowing the energy barriers of the ORR rate‐limiting steps. As a result, NiFe‐LDH/Fe1‐N‐C nanorods deliver remarkable ORR activity with a half‐wave potential of 0.90 V versus reversible hydrogen electrode, surpassing bare Fe1‐N‐C and commercial Pt/C. Impressively, the integrated NiFe‐LDH/Fe1‐N‐C catalysts show outstanding bifunctional performance with a small overpotential gap of only 0.65 V. The liquid‐state ZABs with NiFe‐LDH/Fe1‐N‐C as an air‐cathode catalyst deliver a peak power density of 205 mW cm−2 and long‐term cycling stability of up to 400 h.
Oxygen evolution reaction (OER)‐active NiFe‐layered double hydroxide (LDH) nanodots are evenly decorated on the oxygen reduction reaction (ORR)‐active Fe1‐N‐C hollow nanorods to realize bifunctional ORR/OER activity in one monolithic catalyst with a small overpotential gap of only 0.65 V. NiFe‐LDH regulates the electronic structures of Fe1‐N‐C by transferring electrons to the Fe‐N4‐active sites and thus significantly reduces the energy barrier of the rate‐determining step during the ORR. Single‐atom Fe‐N‐C (denoted as Fe1‐N‐C) catalysts exhibit inadequate bifunctional activities to conquer the sluggish oxygen reduction and evolution reaction (ORR/OER), hindering their practical applications in rechargeable Zn‐air batteries (ZABs). Here, by employing Fe1‐N‐C hollow nanorods as ORR‐active support, OER‐active NiFe‐layered double hydroxide (NiFe‐LDH) nanodots are evenly decorated through a spatially confined process to form NiFe‐LDH/Fe1‐N‐C heterostructure hollow nanorods with abundant accessible catalytic sites. The NiFe‐LDH/Fe1‐N‐C heterostructure not only enhances the ORR activity of pristine Fe1‐N‐C but also realizes efficient bifunctional ORR/OER activity in one monolithic catalyst. Theoretical calculations reveal that introducing NiFe‐LDH nanodots results in donation of electrons to the Fe1‐N‐C matrix and thus lowers the Fe‐d band center of the Fe‐N4 sites, dramatically narrowing the energy barriers of the ORR rate‐limiting steps. As a result, NiFe‐LDH/Fe1‐N‐C nanorods deliver remarkable ORR activity with a half‐wave potential of 0.90 V versus reversible hydrogen electrode, surpassing bare Fe1‐N‐C and commercial Pt/C. Impressively, the integrated NiFe‐LDH/Fe1‐N‐C catalysts show outstanding bifunctional performance with a small overpotential gap of only 0.65 V. The liquid‐state ZABs with NiFe‐LDH/Fe1‐N‐C as an air‐cathode catalyst deliver a peak power density of 205 mW cm−2 and long‐term cycling stability of up to 400 h. |
Author | Ma, Fei‐Xiang Liu, Zheng‐Qi Zhang, Guobin Chen, Guohua Liang, Xiongyi Zhen, Liang Xiong, Yu‐Xuan Xu, Cheng‐Yan |
Author_xml | – sequence: 1 givenname: Zheng‐Qi surname: Liu fullname: Liu, Zheng‐Qi organization: Harbin Institute of Technology (Shenzhen) – sequence: 2 givenname: Xiongyi surname: Liang fullname: Liang, Xiongyi organization: The University of Hong Kong – sequence: 3 givenname: Fei‐Xiang surname: Ma fullname: Ma, Fei‐Xiang email: mafeixiang@hit.edu.cn organization: Harbin Institute of Technology (Shenzhen) – sequence: 4 givenname: Yu‐Xuan surname: Xiong fullname: Xiong, Yu‐Xuan organization: Harbin Institute of Technology (Shenzhen) – sequence: 5 givenname: Guobin surname: Zhang fullname: Zhang, Guobin organization: Tsinghua Shenzhen International Graduate School – sequence: 6 givenname: Guohua surname: Chen fullname: Chen, Guohua organization: The University of Hong Kong – sequence: 7 givenname: Liang surname: Zhen fullname: Zhen, Liang organization: Harbin Institute of Technology – sequence: 8 givenname: Cheng‐Yan orcidid: 0000-0002-7835-6635 surname: Xu fullname: Xu, Cheng‐Yan email: cy_xu@hit.edu.cn organization: Harbin Institute of Technology |
BookMark | eNo9UUtOwzAQtRBIfLesLbEujO3UiZeltBSplAWwjkw8gVSpHeyU0B1H4BJcjJPgtqgjjeb33sxI75jsW2eRkHMGlwyAX2m0i0sOnIOQoPbIEZMs6cksgf1dLvghOQthDtESxUCII_Jzg4Xzuq2cpa6ks2qMv1_f05sJnWnrjGsDHVnjukCnrkNPN2NDr7U1dIi2ja1IGyOL7Vn0IZ24unbdhu6dCVQHel2VS1usb-iaPnyuXtHSUY1F612hW12vQjzTVe0bfVzoOkI-0DeujeurSLjVzSk5KHUd8Ow_npDn8ehpOOlNH27vhoNpr-FCqJ4EkJkGxUqBpUSTZolhCKxUysh-mvVfFEeIaWKAp0lfplhCkShjdCFLycQJudjubbx7X2Jo87lb-vh1yHmq-opnTPKIUltUV9W4yhtfLbRf5QzytRT5Wop8J0U-GM3ud5X4A_vShYg |
ContentType | Journal Article |
Copyright | 2023 Wiley‐VCH GmbH |
Copyright_xml | – notice: 2023 Wiley‐VCH GmbH |
DBID | 7SP 7TB 8FD F28 FR3 H8D L7M |
DOI | 10.1002/aenm.202203609 |
DatabaseName | Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitle | Aerospace Database Technology Research Database Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts Engineering Research Database Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering |
DatabaseTitleList | Aerospace Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1614-6840 |
EndPage | n/a |
ExternalDocumentID | AENM202203609 |
Genre | article |
GrantInformation_xml | – fundername: Shenzhen Science and Technology Innovation Committee funderid: JCYJ20200109113212238 – fundername: Guangdong Basic and Applied Basic Research Foundation funderid: 2021A1515111154 |
GroupedDBID | 05W 0R~ 1OC 33P 4.4 50Y 5VS 8-0 8-1 AAESR AAHHS AAHQN AAIHA AAMNL AANLZ AAXRX AAYCA AAZKR ABCUV ABJNI ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADKYN ADMLS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AENEX AEQDE AEUYR AEYWJ AFBPY AFFPM AFWVQ AFZJQ AGHNM AGYGG AHBTC AIACR AITYG AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMYDB AZVAB BDRZF BFHJK BMXJE BRXPI D-A DCZOG EBS G-S HGLYW HZ~ KBYEO LATKE LEEKS LITHE LOXES LUTES LYRES MEWTI MY. MY~ O9- P2W RNS ROL RX1 SUPJJ WBKPD WOHZO WXSBR ZZTAW ~S- 7SP 7TB 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY F28 FR3 H8D L7M |
ID | FETCH-LOGICAL-p2339-60068a091f3ef6ed784d1e01f99d65785b92e0d654d0274567ef0c49ddac6f613 |
ISSN | 1614-6832 |
IngestDate | Fri Jul 25 12:19:32 EDT 2025 Wed Jun 11 08:26:15 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 13 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-p2339-60068a091f3ef6ed784d1e01f99d65785b92e0d654d0274567ef0c49ddac6f613 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-7835-6635 |
PQID | 2795928162 |
PQPubID | 886389 |
PageCount | 10 |
ParticipantIDs | proquest_journals_2795928162 wiley_primary_10_1002_aenm_202203609_AENM202203609 |
PublicationCentury | 2000 |
PublicationDate | April 6, 2023 |
PublicationDateYYYYMMDD | 2023-04-06 |
PublicationDate_xml | – month: 04 year: 2023 text: April 6, 2023 day: 06 |
PublicationDecade | 2020 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim |
PublicationTitle | Advanced energy materials |
PublicationYear | 2023 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2017; 7 2017; 2 2019; 12 2017; 46 2018; 126 2019; 58 2020; 16 2020; 59 2019; 19 2018; 43 2017; 9 2018; 6 2018; 8 2021; 32 2021; 34 2021; 33 2018; 1 2015; 44 2022; 34 2018; 30 2021; 81 2014; 53 2021; 9 2019; 9 1991; 38 2019; 5 2019; 31 2020; 142 2017; 27 2015; 54 2016; 10 2020; 32 2022; 438 2021; 57 2015; 27 2021; 11 2020; 30 2022; 61 2022; 7 2017; 11 2017; 10 2017; 56 2022; 12 2022; 13 2013; 135 2022; 2 2021; 60 2022; 16 2016; 9 2022; 18 2018; 57 |
References_xml | – volume: 34 year: 2021 publication-title: Adv. Mater. – volume: 27 year: 2017 publication-title: Adv. Funct. Mater. – volume: 27 start-page: 4516 year: 2015 publication-title: Adv. Mater. – volume: 12 start-page: 1216 year: 2022 publication-title: ACS Catal. – volume: 18 year: 2022 publication-title: Small – volume: 60 year: 2021 publication-title: Angew. Chem., Int. Ed. – volume: 7 start-page: 8184 year: 2017 publication-title: ACS Catal. – volume: 2 start-page: 2750 year: 2022 publication-title: Chem. Catal. – volume: 1 start-page: 935 year: 2018 publication-title: Nat. Catal. – volume: 81 year: 2021 publication-title: Nano Energy – volume: 54 start-page: 8179 year: 2015 publication-title: Angew. Chem., Int. Ed. – volume: 142 start-page: 2404 year: 2020 publication-title: J. Am. Chem. Soc. – volume: 53 start-page: 7584 year: 2014 publication-title: Angew. Chem., Int. Ed. – volume: 2 start-page: 668 year: 2017 publication-title: Chem – volume: 9 start-page: 2238 year: 2019 publication-title: ACS Catal. – volume: 34 year: 2022 publication-title: Adv. Mater. – volume: 59 start-page: 7384 year: 2020 publication-title: Angew. Chem., Int. Ed. – volume: 56 start-page: 610 year: 2017 publication-title: Angew. Chem., Int. Ed. – volume: 43 start-page: 130 year: 2018 publication-title: Nano Energy – volume: 16 year: 2020 publication-title: Small – volume: 8 year: 2018 publication-title: Adv. Energy Mater. – volume: 30 year: 2020 publication-title: Adv. Funct. Mater. – volume: 33 year: 2021 publication-title: Adv. Mater. – volume: 19 start-page: 4518 year: 2019 publication-title: Nano Lett. – volume: 58 year: 2019 publication-title: Angew. Chem., Int. Ed. – volume: 11 year: 2021 publication-title: Adv. Energy Mater. – volume: 10 start-page: 5922 year: 2016 publication-title: ACS Nano – volume: 9 start-page: 2134 year: 2019 publication-title: ACS Catal. – volume: 9 year: 2017 publication-title: Nanoscale – volume: 13 start-page: 2075 year: 2022 publication-title: Nat. Commun. – volume: 46 start-page: 337 year: 2017 publication-title: Chem. Soc. Rev. – volume: 57 start-page: 2049 year: 2021 publication-title: Chem. Commun. – volume: 438 year: 2022 publication-title: Chem. Eng. J. – volume: 6 year: 2018 publication-title: J. Mater. Chem. A – volume: 5 start-page: 1486 year: 2019 publication-title: Chem – volume: 16 year: 2022 publication-title: ACS Nano – volume: 142 start-page: 3600 year: 2020 publication-title: J. Am. Chem. Soc. – volume: 135 start-page: 8452 year: 2013 publication-title: J. Am. Chem. Soc. – volume: 9 start-page: 478 year: 2016 publication-title: Energy Environ. Sci. – volume: 10 start-page: 129 year: 2017 publication-title: Energy Environ. Sci. – volume: 126 start-page: 437 year: 2018 publication-title: Carbon – volume: 13 start-page: 2963 year: 2022 publication-title: Nat. Commun. – volume: 61 year: 2022 publication-title: Angew. Chem., Int. Ed. – volume: 31 year: 2019 publication-title: Adv. Mater. – volume: 9 start-page: 2020 year: 2016 publication-title: Energy Environ. Sci. – volume: 9 year: 2019 publication-title: Adv. Energy Mater. – volume: 7 start-page: 652 year: 2022 publication-title: Nat. Energy – volume: 60 start-page: 8472 year: 2021 publication-title: Angew. Chem., Int. Ed. – volume: 44 start-page: 2168 year: 2015 publication-title: Chem. Soc. Rev. – volume: 30 year: 2018 publication-title: Adv. Mater. – volume: 7 year: 2017 publication-title: Adv. Energy Mater. – volume: 38 start-page: 103 year: 1991 publication-title: Prog. Surf. Sci. – volume: 12 start-page: 2288 year: 2019 publication-title: Nano Res. – volume: 9 start-page: 2301 year: 2021 publication-title: J. Mater. Chem. A – volume: 32 year: 2020 publication-title: Adv. Mater. – volume: 32 year: 2021 publication-title: Adv. Funct. Mater. – volume: 57 start-page: 172 year: 2018 publication-title: Angew. Chem., Int. Ed. – volume: 11 start-page: 2275 year: 2017 publication-title: ACS Nano |
SSID | ssj0000491033 |
Score | 2.6360066 |
Snippet | Single‐atom Fe‐N‐C (denoted as Fe1‐N‐C) catalysts exhibit inadequate bifunctional activities to conquer the sluggish oxygen reduction and evolution reaction... |
SourceID | proquest wiley |
SourceType | Aggregation Database Publisher |
SubjectTerms | bifunctional oxygen catalysts Catalysts d band center Electrocatalysts Heterostructures hollow structures Hydroxides Intermetallic compounds Iron compounds Metal air batteries Nanorods Nickel compounds NiFe‐LDH/Fe 1‐N‐C heterostructures Rechargeable batteries single‐atom catalysts Zinc-oxygen batteries |
Title | Decoration of NiFe‐LDH Nanodots Endows Lower Fe‐d Band Center of Fe1‐N‐C Hollow Nanorods as Bifunctional Oxygen Electrocatalysts with Small Overpotential Gap |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Faenm.202203609 https://www.proquest.com/docview/2795928162 |
Volume | 13 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NjtMwELa6uxc4IH7FwoJ84BYFEidx42N321KhNiu0u1JvURM7kANtRRqWcuIReAlejCdhxk7cFBCCPTSK_JOkmS_z55kxIS_CLAYmpwLQ3PwYtzDLXFHwzJVcyFyEMpAe5g7PEj65Ct_Mo3nvoNeJWqo32cv8yx_zSm5CVWgDumKW7H9Q1l4UGuAc6AtHoDAc_4nGQ7Qdrc6XlGNlYxemwwlyTjQ6K2e0lKvrypnijmhOZ5B0TtFvjh5epVcLxsq3nYk9A-EEaFld6wsCw61wc5rTEkVi40k8_7yFh3RGZk8d7RLaVm3m3MUHXP4-_4T7eW0wOAkmvF6su2rxoI1EUCYVEdRo8_5svFBZ62WU9wp4U_tcb8tdd-P2nsPzvNva9plWjceqtHPmOLLt1qO1EKp3A-rme2lcISzQETS8w71B13B53DhMVbfN1ISyLD_oQjvoSH8rG38TLaZU7UItsX4Bw_VbT-yEaBs4YEdGfx9rSg6PkpntPyBHDEwd4NVHg-FsemE9hWDD-V6gM0Xa_9dWH_XYq_2b7NlJXWtLq0uXd8mdxs6hAwPae6SnlvfJ7U71ywfk-w6-dFVQhO-Pr98AuLQFLjXApRq4VHdLipClBrI4DSALzQn8zqiBKW1hShcV7cKUGpjSX2FKEaZUw5TuwZQCTB-Sq_Ho8mziNruGuGsWBMLlmPW0ADW4CFTBlezHofSV5xdCSI6lnTLBlAenoUSXTMT7qvDyUEi5yHkB2u0jcrhcLdVjQkPQlRmLuQpDGTJgX2DfFF6cx8zPC19Ex-SkfdtpwxaqlPVFJFjsc3ZMmKZAujaFY1JTIpylSLPU0izdg8GTm0x6Sm7tvocTcrj5WKtnoCxvsucNmn4CEWu1nA |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Decoration+of+NiFe%E2%80%90LDH+Nanodots+Endows+Lower+Fe%E2%80%90d+Band+Center+of+Fe1%E2%80%90N%E2%80%90C+Hollow+Nanorods+as+Bifunctional+Oxygen+Electrocatalysts+with+Small+Overpotential+Gap&rft.jtitle=Advanced+energy+materials&rft.au=Liu%2C+Zheng%E2%80%90Qi&rft.au=Liang%2C+Xiongyi&rft.au=Ma%2C+Fei%E2%80%90Xiang&rft.au=Xiong%2C+Yu%E2%80%90Xuan&rft.date=2023-04-06&rft.issn=1614-6832&rft.eissn=1614-6840&rft.volume=13&rft.issue=13&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Faenm.202203609&rft.externalDBID=10.1002%252Faenm.202203609&rft.externalDocID=AENM202203609 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1614-6832&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1614-6832&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1614-6832&client=summon |