A Nanocomposite of Bismuth Clusters and Bi2O2CO3 Sheets for Highly Efficient Electrocatalytic Reduction of CO2 to Formate

The renewable‐electricity‐driven CO2 reduction to formic acid would contribute to establishing a carbon‐neutral society. The current catalyst suffers from limited activity and stability under high selectivity and the ambiguous nature of active sites. Herein, we report a powerful Bi2S3‐derived cataly...

Full description

Saved in:
Bibliographic Details
Published inAngewandte Chemie International Edition Vol. 62; no. 3
Main Authors Lin, Li, He, Xiaoyang, Zhang, Xia‐Guang, Ma, Wenchao, Zhang, Biao, Wei, Diye, Xie, Shunji, Zhang, Qinghong, Yi, Xiaodong, Wang, Ye
Format Journal Article
LanguageEnglish
Published Weinheim Wiley Subscription Services, Inc 16.01.2023
EditionInternational ed. in English
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The renewable‐electricity‐driven CO2 reduction to formic acid would contribute to establishing a carbon‐neutral society. The current catalyst suffers from limited activity and stability under high selectivity and the ambiguous nature of active sites. Herein, we report a powerful Bi2S3‐derived catalyst that demonstrates a current density of 2.0 A cm−2 with a formate Faradaic efficiency of 93 % at −0.95 V versus the reversible hydrogen electrode. The energy conversion efficiency and single‐pass yield of formate reach 80 % and 67 %, respectively, and the durability reaches 100 h at an industrial‐relevant current density. Pure formic acid with a concentration of 3.5 mol L−1 has been produced continuously. Our operando spectroscopic and theoretical studies reveal the dynamic evolution of the catalyst into a nanocomposite composed of Bi0 clusters and Bi2O2CO3 nanosheets and the pivotal role of Bi0−Bi2O2CO3 interface in CO2 activation and conversion. An electrocatalyst derived from Bi2S3 is very powerful for the reduction of CO2 to formic acid, achieving a current density of 2.0 A cm−2 with a formate Faradaic efficiency of 93 % and a single‐pass formate yield of 67 %. The active catalyst is composed of Bi nanoclusters on Bi2O2CO3 nanosheets and the interfacial Bi site plays a pivotal role.
AbstractList The renewable‐electricity‐driven CO2 reduction to formic acid would contribute to establishing a carbon‐neutral society. The current catalyst suffers from limited activity and stability under high selectivity and the ambiguous nature of active sites. Herein, we report a powerful Bi2S3‐derived catalyst that demonstrates a current density of 2.0 A cm−2 with a formate Faradaic efficiency of 93 % at −0.95 V versus the reversible hydrogen electrode. The energy conversion efficiency and single‐pass yield of formate reach 80 % and 67 %, respectively, and the durability reaches 100 h at an industrial‐relevant current density. Pure formic acid with a concentration of 3.5 mol L−1 has been produced continuously. Our operando spectroscopic and theoretical studies reveal the dynamic evolution of the catalyst into a nanocomposite composed of Bi0 clusters and Bi2O2CO3 nanosheets and the pivotal role of Bi0−Bi2O2CO3 interface in CO2 activation and conversion. An electrocatalyst derived from Bi2S3 is very powerful for the reduction of CO2 to formic acid, achieving a current density of 2.0 A cm−2 with a formate Faradaic efficiency of 93 % and a single‐pass formate yield of 67 %. The active catalyst is composed of Bi nanoclusters on Bi2O2CO3 nanosheets and the interfacial Bi site plays a pivotal role.
The renewable‐electricity‐driven CO2 reduction to formic acid would contribute to establishing a carbon‐neutral society. The current catalyst suffers from limited activity and stability under high selectivity and the ambiguous nature of active sites. Herein, we report a powerful Bi2S3‐derived catalyst that demonstrates a current density of 2.0 A cm−2 with a formate Faradaic efficiency of 93 % at −0.95 V versus the reversible hydrogen electrode. The energy conversion efficiency and single‐pass yield of formate reach 80 % and 67 %, respectively, and the durability reaches 100 h at an industrial‐relevant current density. Pure formic acid with a concentration of 3.5 mol L−1 has been produced continuously. Our operando spectroscopic and theoretical studies reveal the dynamic evolution of the catalyst into a nanocomposite composed of Bi0 clusters and Bi2O2CO3 nanosheets and the pivotal role of Bi0−Bi2O2CO3 interface in CO2 activation and conversion.
Author Zhang, Biao
Ma, Wenchao
Yi, Xiaodong
Wang, Ye
Zhang, Qinghong
Zhang, Xia‐Guang
Lin, Li
He, Xiaoyang
Wei, Diye
Xie, Shunji
Author_xml – sequence: 1
  givenname: Li
  surname: Lin
  fullname: Lin, Li
  organization: Xiamen University
– sequence: 2
  givenname: Xiaoyang
  surname: He
  fullname: He, Xiaoyang
  organization: Xiamen University
– sequence: 3
  givenname: Xia‐Guang
  surname: Zhang
  fullname: Zhang, Xia‐Guang
  organization: Henan Normal University
– sequence: 4
  givenname: Wenchao
  surname: Ma
  fullname: Ma, Wenchao
  organization: Xiamen University
– sequence: 5
  givenname: Biao
  surname: Zhang
  fullname: Zhang, Biao
  organization: Xiamen University
– sequence: 6
  givenname: Diye
  surname: Wei
  fullname: Wei, Diye
  organization: Xiamen University
– sequence: 7
  givenname: Shunji
  surname: Xie
  fullname: Xie, Shunji
  email: shunji_xie@xmu.edu.cn
  organization: Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM)
– sequence: 8
  givenname: Qinghong
  surname: Zhang
  fullname: Zhang, Qinghong
  organization: Xiamen University
– sequence: 9
  givenname: Xiaodong
  surname: Yi
  fullname: Yi, Xiaodong
  organization: Xiamen University
– sequence: 10
  givenname: Ye
  orcidid: 0000-0003-0764-2279
  surname: Wang
  fullname: Wang, Ye
  email: wangye@xmu.edu.cn
  organization: Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM)
BookMark eNo9kMtqwzAQRUVJoUnabdeCrp3qYUfSMjVJEwgJ9LE2sjxuFGzLtWSK_74OKV3NzOVwB84MTRrXAEKPlCwoIexZNxYWjDBGY5WoGzSlCaMRF4JPxj3mPBIyoXdo5v155KUkyykaVvigG2dc3TpvA2BX4hfr6z6ccFr1PkDnsW6KMWRHlh45fj8BBI9L1-Gt_TpVA16XpTUWmoDXFZjQOaODroZgDX6DojfBuubSmx4ZDg5vXFfrAPfottSVh4e_OUefm_VHuo32x9ddutpHLeNcRVwBFZxTvoyZNMQoBcJIyJVkEoyJCRcmVzQ2RWHKXFOxZHGuk7wQUghTUD5HT9fetnPfPfiQnV3fNePLjIklVVLKhIyUulI_toIhaztb627IKMkubrOL2-zfbbY67Nb_F_8FyDpxgg
ContentType Journal Article
Copyright 2022 Wiley‐VCH GmbH
2023 Wiley‐VCH GmbH
Copyright_xml – notice: 2022 Wiley‐VCH GmbH
– notice: 2023 Wiley‐VCH GmbH
DBID 7TM
K9.
DOI 10.1002/anie.202214959
DatabaseName Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
DatabaseTitle ProQuest Health & Medical Complete (Alumni)
Nucleic Acids Abstracts
DatabaseTitleList
ProQuest Health & Medical Complete (Alumni)
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3773
Edition International ed. in English
EndPage n/a
ExternalDocumentID ANIE202214959
Genre article
GrantInformation_xml – fundername: Ministry of Science and Technology of the People's Republic of China
  funderid: 2019YFE0104400
– fundername: National Natural Science Foundation of China
  funderid: 22121001; 91945301; 22022201; 21972115; 22002036
– fundername: Science and Technology Project of Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province
  funderid: RD2020020201
GroupedDBID ---
-DZ
-~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5RE
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABLJU
ABPPZ
ABPVW
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BTSUX
BY8
CS3
D-E
D-F
D0L
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
M53
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
TN5
UB1
UPT
UQL
V2E
VQA
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XSW
XV2
YZZ
ZZTAW
~IA
~KM
~WT
7TM
ABDBF
ABJNI
AEYWJ
AGHNM
AGYGG
K9.
ID FETCH-LOGICAL-p2339-39e1733136428c0c99e7c8eb9828ecc4037cb914cddcfba17624ba5bd7877cd13
IEDL.DBID DR2
ISSN 1433-7851
IngestDate Fri Jul 25 12:09:15 EDT 2025
Wed Jan 22 16:20:58 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-p2339-39e1733136428c0c99e7c8eb9828ecc4037cb914cddcfba17624ba5bd7877cd13
Notes These authors contributed equally to this work.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-0764-2279
PQID 2761988850
PQPubID 946352
PageCount 8
ParticipantIDs proquest_journals_2761988850
wiley_primary_10_1002_anie_202214959_ANIE202214959
PublicationCentury 2000
PublicationDate January 16, 2023
PublicationDateYYYYMMDD 2023-01-16
PublicationDate_xml – month: 01
  year: 2023
  text: January 16, 2023
  day: 16
PublicationDecade 2020
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Angewandte Chemie International Edition
PublicationYear 2023
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2021; 9
2014; 118
1984; 62
1980; 25
2017; 1
2019; 4
2021; 4
2021; 2
2020; 385
2019; 10
2020 2020; 59 132
2020; 11
2020; 10
2020; 32
2021; 50
2019; 364
2021; 14
2020; 8
2021; 57
2018; 6
2018; 9
2021; 16
2018; 8
2020; 4
2018; 2
2018; 4
2021; 11
2018 2018; 57 130
2021 2021; 60 133
2022; 15
2018; 30
2018; 57
References_xml – volume: 9
  start-page: 13770
  year: 2021
  end-page: 13803
  publication-title: J. Mater. Chem. A
– volume: 50
  start-page: 12897
  year: 2021
  end-page: 12914
  publication-title: Chem. Soc. Rev.
– volume: 10
  year: 2020
  publication-title: Adv. Energy Mater.
– volume: 9
  start-page: 1320
  year: 2018
  publication-title: Nat. Commun.
– volume: 16
  start-page: 1386
  year: 2021
  end-page: 1393
  publication-title: Nat. Nanotechnol.
– volume: 62
  start-page: 2863
  year: 1984
  end-page: 2873
  publication-title: Can. J. Chem.
– volume: 59 132
  start-page: 4814 4844
  year: 2020 2020
  end-page: 4821 4851
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 4
  start-page: 943
  year: 2021
  end-page: 951
  publication-title: Nat. Catal.
– volume: 25
  start-page: 419
  year: 1980
  end-page: 428
  publication-title: Electrochim. Acta
– volume: 8
  start-page: 931
  year: 2018
  end-page: 937
  publication-title: ACS Catal.
– volume: 2
  year: 2021
  publication-title: Cell Rep. Phys. Sci.
– volume: 60 133
  start-page: 7681 7759
  year: 2021 2021
  end-page: 7685 7763
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 8
  start-page: 24486
  year: 2020
  end-page: 24492
  publication-title: J. Mater. Chem. A
– volume: 57
  start-page: 2165
  year: 2018
  end-page: 2177
  publication-title: Ind. Eng. Chem. Res.
– volume: 1
  start-page: 794
  year: 2017
  end-page: 805
  publication-title: Joule
– volume: 364
  year: 2019
  publication-title: Science
– volume: 10
  start-page: 892
  year: 2019
  publication-title: Nat. Commun.
– volume: 57
  start-page: 1502
  year: 2021
  end-page: 1505
  publication-title: Chem. Commun.
– volume: 14
  start-page: 4998
  year: 2021
  end-page: 5008
  publication-title: Energy Environ. Sci.
– volume: 11
  start-page: 4988
  year: 2021
  end-page: 5003
  publication-title: ACS Catal.
– volume: 10
  start-page: 358
  year: 2020
  end-page: 364
  publication-title: ACS Catal.
– volume: 2
  start-page: 2551
  year: 2018
  end-page: 2582
  publication-title: Joule
– volume: 10
  start-page: 2807
  year: 2019
  publication-title: Nat. Commun.
– volume: 14
  start-page: 1194
  year: 2021
  end-page: 1246
  publication-title: Energy Environ. Sci.
– volume: 8
  year: 2018
  publication-title: Adv. Energy Mater.
– volume: 30
  year: 2018
  publication-title: Adv. Mater.
– volume: 6
  start-page: 4714
  year: 2018
  end-page: 4720
  publication-title: J. Mater. Chem. A
– volume: 4
  start-page: 2831
  year: 2020
  end-page: 2840
  publication-title: Sustainable Energy Fuels
– volume: 11
  start-page: 3633
  year: 2020
  publication-title: Nat. Commun.
– volume: 32
  year: 2020
  publication-title: Adv. Mater.
– volume: 4
  start-page: 776
  year: 2019
  end-page: 785
  publication-title: Nat. Energy
– volume: 57 130
  start-page: 13283 13467
  year: 2018 2018
  end-page: 13287 13471
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 15
  start-page: 2919
  year: 2022
  end-page: 2927
  publication-title: Nano Res.
– volume: 8
  start-page: 21947
  year: 2020
  end-page: 21960
  publication-title: J. Mater. Chem. A
– volume: 385
  year: 2020
  publication-title: J. Hazard. Mater.
– volume: 60 133
  start-page: 18178 18326
  year: 2021 2021
  end-page: 18184 18332
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 4
  start-page: 2571
  year: 2018
  end-page: 2586
  publication-title: Chem
– volume: 60 133
  start-page: 25741 25945
  year: 2021 2021
  end-page: 25745 25949
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 15
  start-page: 3859
  year: 2022
  end-page: 3865
  publication-title: Nano Res.
– volume: 118
  start-page: 30244
  year: 2014
  end-page: 30252
  publication-title: J. Phys. Chem. C
SSID ssj0028806
Score 2.666826
Snippet The renewable‐electricity‐driven CO2 reduction to formic acid would contribute to establishing a carbon‐neutral society. The current catalyst suffers from...
SourceID proquest
wiley
SourceType Aggregation Database
Publisher
SubjectTerms Bismuth
Carbon dioxide
Carbon Dioxide Reduction
Catalysts
Chemical reduction
Clusters
Current density
Electrochemistry
Energy conversion
Energy conversion efficiency
Formic Acid
Heterogeneous Catalysis
Nanocomposites
Selectivity
Title A Nanocomposite of Bismuth Clusters and Bi2O2CO3 Sheets for Highly Efficient Electrocatalytic Reduction of CO2 to Formate
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202214959
https://www.proquest.com/docview/2761988850
Volume 62
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8JAEN4YLnrxbXyg2YPXAt1tgT1iU4ImQoKScGv2GYxIiS0H_PXubGkFj3psk-1jd3b2m8nM9yF0TwKhKZXUU1yHnj2hpMctcvA4NcyoUHaVE-17HrYHk-BpGk63uvgLfogq4QY7w_lr2OBcZM0f0lDowLbxHSGA8aGDDwq2ABWNK_4oYo2zaC-i1AMV-pK1sUWau8N38OU2SnXHTP8I8fIDi-qS98YqFw359Yu78T9_cIwONxgU9wqjOUF7enGK9qNS-u0MrXvYet0Uys2hpkvj1OCHt-xjlc9wNF8Bt0KG-ULZm2REohHFLzOt8wxbBIyhcmS-xrHjprBHGo4LpR2XKFrbV-Ix0MWCQcBzoxHBeYr7DjvrczTpx6_RwNtoNHhLQinzKNM-yD5SiGNkSzKmO7KrBbORnLWOoEU7UjA_kEpJI7hvfW8geCiUdRQdqXx6gWqLdKEvEWZ-twsapEobEShumAoNs-Fh2CEmMEpeoXq5Rslmo2UJgTSMjeLD1hUibrKTZUHTkRSEzCSBaU6qaU56w8e4urr-y6AbdACi85CI8dt1VMs_V_rWQpNc3Dnz-waqjNyl
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8JAEN4oHvDi24ii7sFrge62wB6xKUHlkSAk3pruKxgRiJQD_np3trSKRz22yfYxOzv7zWT2-xC6Ix5XlArqyFj5jtmhhBMb5ODEVDMtfdGUVrSv1693xt7ji591E8JZmJQfIi-4wcqw8RoWOBSkq9-soXAE2yR4hADIZ7toD2S9bVY1zBmkiHHP9IARpQ7o0Ge8jTVS3R6_hTB_4lS70bQPEc8-Me0veausEl4Rn7_YG__1D0foYANDcSv1m2O0o2YnqBhk6m-naN3CJvDOoeMc2roUnmt8_7p8XyUTHExXQK-wxPFMmptkQIIBxc8TpZIlNiAYQ_PIdI1DS09hdjUcpmI7tla0Nq_EQ2CMBZ-A5wYDgpM5blv4rM7QuB2Ogo6zkWlwFoRS5lCmXFB-pJDKiJpgTDVEU3FmkjnjIF6NNgRnriekFJrHrgm_Ho99Lk2saAjp0nNUmM1n6gJh5jabIEMqleaejDWTvmYmQ_QbRHtaihIqZ5MUbdbaMiJQiTGJvF8rIWKtHS1Spo4o5WQmEZg5ys0ctfoPYX51-ZdBt6jYGfW6Ufeh_3SF9kGDHuoybr2MCsnHSl0bpJLwG-uLX4Se4MA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8JAEN4oJurFtxFF3YPXQrvbQveIBSI-wKAk3JruKxgRiLQH_PXutFDBox7bZPuYnZ39ZjL7fQjdEJcrSgW1ZKQ8y-xQwooMcrAiqpmWnvBlKtr31Kne9d37gTdYOcWf8UPkBTdYGWm8hgU-lbryQxoKJ7BNfkcIYHy2ibbcqu2DXzd6OYEUMd6ZnS-i1AIZ-iVto00q6-PXAOYqTE33mdY-ipZfmLWXvJeTmJfF1y_yxv_8wgHaW4BQXM-85hBtqPER2gmW2m_HaF7HJuxOoN8cmroUnmh8-zb7SOIhDkYJkCvMcDSW5ibpkqBL8ctQqXiGDQTG0DoymuNmSk5h9jTczKR20krR3LwS94AvFjwCnht0CY4nuJWCZ3WC-q3ma3BnLUQarCmhlFmUKQd0HykkMsIWjKma8BVnJpUz7uHatCY4c1whpdA8ckzwdXnkcWkiRU1Ih56iwngyVmcIM8f3QYRUKs1dGWkmPc1MfujViHa1FEVUWs5RuFhps5BAHcak8Z5dRCQ1djjNeDrCjJGZhGDmMDdzWO-0m_nV-V8GXaPt50YrfGx3Hi7QLgjQQ1HGqZZQIf5M1KWBKTG_Sj3xGxF033g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Nanocomposite+of+Bismuth+Clusters+and+Bi2O2CO3+Sheets+for+Highly+Efficient+Electrocatalytic+Reduction+of+CO2+to+Formate&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Lin%2C+Li&rft.au=He%2C+Xiaoyang&rft.au=Zhang%2C+Xia%E2%80%90Guang&rft.au=Ma%2C+Wenchao&rft.date=2023-01-16&rft.issn=1433-7851&rft.eissn=1521-3773&rft.volume=62&rft.issue=3&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fanie.202214959&rft.externalDBID=10.1002%252Fanie.202214959&rft.externalDocID=ANIE202214959
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon