Insight into the Mechanism of Axial Ligands Regulating the Catalytic Activity of Fe–N4 Sites for Oxygen Reduction Reaction

Identifying the actual structure and tuning the catalytic activity of Fe–N4‐based moieties, well‐recognized high‐activity sites in the oxygen reduction reaction (ORR) are challenging problems. Herein, by using poly(iron phthalocyanine) (PFePc) as an Fe–N4‐based model electrocatalyst, a mechanistic i...

Full description

Saved in:
Bibliographic Details
Published inAdvanced energy materials Vol. 12; no. 11
Main Authors Zhao, Kuang‐Min, Liu, Suqin, Li, Yu‐Yang, Wei, Xianli, Ye, Guanying, Zhu, Weiwei, Su, Yuke, Wang, Jue, Liu, Hongtao, He, Zhen, Zhou, Zhi‐You, Sun, Shi‐Gang
Format Journal Article
LanguageEnglish
Published Weinheim Wiley Subscription Services, Inc 01.03.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Identifying the actual structure and tuning the catalytic activity of Fe–N4‐based moieties, well‐recognized high‐activity sites in the oxygen reduction reaction (ORR) are challenging problems. Herein, by using poly(iron phthalocyanine) (PFePc) as an Fe–N4‐based model electrocatalyst, a mechanistic insight into the effect of axial ligands on the ORR catalytic activity of Fe–N4 is provided and it is revealed that the ORR activity of Fe–N4 sites with OH desorption as a rate‐determining step is related to the energy level gap between the OH pxpy and Fe 3dz2, which can be tuned by regulating the field strength of the axial ligands. Thus, PFePc coordinated with a weak‐field ligand I− (PFePc‐I) with a low energy level of Fe 3dz2 exhibits high activity evidenced by an ORR half‐wave potential as high as 0.948 V versus RHE. This work develops a novel strategy for tuning the ORR activity of Fe–N4 and reveals the correlation between the electronic/geometric structure and catalytic activity of Fe–N4. Structure activity correlation of axial‐coordinated Fe–N4 sites in the oxygen reduction reaction (ORR) is unraveled by studying a series of axial‐coordinated poly(iron phthalocyanine) (PFePc). The energy gap (ηDA) between the Fe 3dz2 and OH px/py is proposed as a new descriptor for the ORR activity of the Fe–N4 sites with OH desorption as a rate‐determining step.
AbstractList Identifying the actual structure and tuning the catalytic activity of Fe–N4‐based moieties, well‐recognized high‐activity sites in the oxygen reduction reaction (ORR) are challenging problems. Herein, by using poly(iron phthalocyanine) (PFePc) as an Fe–N4‐based model electrocatalyst, a mechanistic insight into the effect of axial ligands on the ORR catalytic activity of Fe–N4 is provided and it is revealed that the ORR activity of Fe–N4 sites with OH desorption as a rate‐determining step is related to the energy level gap between the OH pxpy and Fe 3dz2, which can be tuned by regulating the field strength of the axial ligands. Thus, PFePc coordinated with a weak‐field ligand I− (PFePc‐I) with a low energy level of Fe 3dz2 exhibits high activity evidenced by an ORR half‐wave potential as high as 0.948 V versus RHE. This work develops a novel strategy for tuning the ORR activity of Fe–N4 and reveals the correlation between the electronic/geometric structure and catalytic activity of Fe–N4. Structure activity correlation of axial‐coordinated Fe–N4 sites in the oxygen reduction reaction (ORR) is unraveled by studying a series of axial‐coordinated poly(iron phthalocyanine) (PFePc). The energy gap (ηDA) between the Fe 3dz2 and OH px/py is proposed as a new descriptor for the ORR activity of the Fe–N4 sites with OH desorption as a rate‐determining step.
Identifying the actual structure and tuning the catalytic activity of Fe–N4‐based moieties, well‐recognized high‐activity sites in the oxygen reduction reaction (ORR) are challenging problems. Herein, by using poly(iron phthalocyanine) (PFePc) as an Fe–N4‐based model electrocatalyst, a mechanistic insight into the effect of axial ligands on the ORR catalytic activity of Fe–N4 is provided and it is revealed that the ORR activity of Fe–N4 sites with OH desorption as a rate‐determining step is related to the energy level gap between the OH pxpy and Fe 3dz2, which can be tuned by regulating the field strength of the axial ligands. Thus, PFePc coordinated with a weak‐field ligand I− (PFePc‐I) with a low energy level of Fe 3dz2 exhibits high activity evidenced by an ORR half‐wave potential as high as 0.948 V versus RHE. This work develops a novel strategy for tuning the ORR activity of Fe–N4 and reveals the correlation between the electronic/geometric structure and catalytic activity of Fe–N4.
Author Su, Yuke
Zhou, Zhi‐You
Wang, Jue
Wei, Xianli
He, Zhen
Liu, Suqin
Ye, Guanying
Sun, Shi‐Gang
Liu, Hongtao
Li, Yu‐Yang
Zhu, Weiwei
Zhao, Kuang‐Min
Author_xml – sequence: 1
  givenname: Kuang‐Min
  orcidid: 0000-0002-5533-6199
  surname: Zhao
  fullname: Zhao, Kuang‐Min
  organization: Xiamen University
– sequence: 2
  givenname: Suqin
  surname: Liu
  fullname: Liu, Suqin
  email: sqliu2003@126.com
  organization: Central South University
– sequence: 3
  givenname: Yu‐Yang
  surname: Li
  fullname: Li, Yu‐Yang
  organization: Xiamen University
– sequence: 4
  givenname: Xianli
  surname: Wei
  fullname: Wei, Xianli
  organization: Central South University
– sequence: 5
  givenname: Guanying
  surname: Ye
  fullname: Ye, Guanying
  organization: Central South University
– sequence: 6
  givenname: Weiwei
  surname: Zhu
  fullname: Zhu, Weiwei
  organization: Central South University
– sequence: 7
  givenname: Yuke
  surname: Su
  fullname: Su, Yuke
  organization: Central South University
– sequence: 8
  givenname: Jue
  surname: Wang
  fullname: Wang, Jue
  organization: Central South University
– sequence: 9
  givenname: Hongtao
  surname: Liu
  fullname: Liu, Hongtao
  organization: Central South University
– sequence: 10
  givenname: Zhen
  orcidid: 0000-0002-8742-5962
  surname: He
  fullname: He, Zhen
  email: zhenhe@csu.edu.cn
  organization: Central South University
– sequence: 11
  givenname: Zhi‐You
  orcidid: 0000-0001-5181-0642
  surname: Zhou
  fullname: Zhou, Zhi‐You
  organization: Xiamen University
– sequence: 12
  givenname: Shi‐Gang
  orcidid: 0000-0003-2327-4090
  surname: Sun
  fullname: Sun, Shi‐Gang
  email: sgsun@xmu.edu.cn
  organization: Xiamen University
BookMark eNo9kEtLw0AUhQepYK3duh5wnTqPJCbLUFot9AE-1sMkc5NOSSc1mWoDLvwP_kN_iZNWejb3XPjOvXCuUc9UBhC6pWRECWH3Esx2xAijhAdRdIH6NKS-F0Y-6Z09Z1do2DQb4uTHjuR99DUzjS7WFmtjK2zXgBeQraXRzRZXOU4OWpZ4rgtpVIOfodiX0mpTHMmxtLJsrc5wkln9oW3bRabw-_2z9PGLttDgvKrx6tAWYFxa7R1XdU4ezQ26zGXZwPB_DtDbdPI6fvLmq8fZOJl7O8Z55OUZoYGUuQLwg5gFiqVREHKuGKNhBCnlURSkEh5Y6qdM-XFAwjzMMwVcpY7mA3R3ururq_c9NFZsqn1t3EvBQh7HfujkqPhEfeoSWrGr9VbWraBEdA2LrmFxblgkk-XivPE_HFJ1KA
ContentType Journal Article
Copyright 2022 Wiley‐VCH GmbH
Copyright_xml – notice: 2022 Wiley‐VCH GmbH
DBID 7SP
7TB
8FD
F28
FR3
H8D
L7M
DOI 10.1002/aenm.202103588
DatabaseName Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitle Aerospace Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
DatabaseTitleList
Aerospace Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1614-6840
EndPage n/a
ExternalDocumentID AENM202103588
Genre article
GrantInformation_xml – fundername: Hunan Provincial Science and Technology Plan
  funderid: 2018RS3008; 2017TP1001
– fundername: Natural Science Foundation of Hunan Province
  funderid: 2021JJ30790
– fundername: National Natural Science Foundation of China
  funderid: 51972345; 51772332
– fundername: National Key R&D Program of China
  funderid: 2019YFA0210300
– fundername: China Postdoctoral Science Foundation
  funderid: 2021M691876
GroupedDBID 05W
0R~
1OC
33P
4.4
50Y
5VS
8-0
8-1
A00
AAESR
AAHHS
AAHQN
AAIHA
AAMNL
AANLZ
AAXRX
AAYCA
AAZKR
ABCUV
ABJNI
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADKYN
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AENEX
AEQDE
AEUYR
AFBPY
AFFPM
AFWVQ
AFZJQ
AHBTC
AIACR
AITYG
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMYDB
AZVAB
BDRZF
BFHJK
BMXJE
BRXPI
D-A
DCZOG
EBS
G-S
HGLYW
HZ~
KBYEO
LATKE
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MY.
MY~
O9-
P2W
P4E
RNS
ROL
RX1
SUPJJ
WBKPD
WOHZO
WXSBR
WYJ
ZZTAW
~S-
7SP
7TB
8FD
AAMMB
ADMLS
AEFGJ
AEYWJ
AGHNM
AGXDD
AGYGG
AIDQK
AIDYY
F28
FR3
H8D
L7M
ID FETCH-LOGICAL-p2338-fc015aafdee45925d2b85633d22168eb13885bae72b4b2d49506f6fcde3db5d23
ISSN 1614-6832
IngestDate Fri Jul 25 12:08:47 EDT 2025
Wed Jan 22 16:27:12 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-p2338-fc015aafdee45925d2b85633d22168eb13885bae72b4b2d49506f6fcde3db5d23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-5181-0642
0000-0003-2327-4090
0000-0002-5533-6199
0000-0002-8742-5962
PQID 2639946666
PQPubID 886389
PageCount 7
ParticipantIDs proquest_journals_2639946666
wiley_primary_10_1002_aenm_202103588_AENM202103588
PublicationCentury 2000
PublicationDate 2022-03-01
PublicationDateYYYYMMDD 2022-03-01
PublicationDate_xml – month: 03
  year: 2022
  text: 2022-03-01
  day: 01
PublicationDecade 2020
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Advanced energy materials
PublicationYear 2022
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2011; 257
2018; 122
2019; 9
2021; 4
2019; 3
2016; 649
2020; 142
2015; 51
2019; 10
2019; 13
2017; 46
2021; 280
2020; 14
2020; 13
2020; 11
2019; 327
2020; 32
2019; 141
2005; 28
2019; 364
2017; 357
2020; 7
2018; 8
2001; 497
2014; 5
2018; 3
2020; 2
2019; 48
2017; 56
2014; 16
1992; 339
2013; 135
2016; 138
2013
2018; 11
2012; 159
2018; 10
2016; 351
2016; 8
2016; 9
2014; 53
References_xml – volume: 364
  start-page: 1091
  year: 2019
  publication-title: Science
– volume: 9
  start-page: 2418
  year: 2016
  publication-title: Energy Environ. Sci.
– volume: 46
  start-page: 1803
  year: 2017
  publication-title: Dalton Trans.
– volume: 16
  year: 2014
  publication-title: Phys. Chem. Chem. Phys.
– volume: 141
  year: 2019
  publication-title: J. Am. Chem. Soc.
– volume: 357
  start-page: 479
  year: 2017
  publication-title: Science
– volume: 11
  start-page: 2348
  year: 2018
  publication-title: Energy Environ. Sci.
– volume: 48
  start-page: 5207
  year: 2019
  publication-title: Chem. Soc. Rev.
– volume: 56
  year: 2017
  publication-title: Angew. Chem., Int. Ed.
– volume: 11
  start-page: 4173
  year: 2020
  publication-title: Nat. Commun.
– volume: 280
  year: 2021
  publication-title: Appl. Catal., B
– volume: 3
  start-page: 883
  year: 2018
  publication-title: ACS Energy Lett.
– volume: 10
  start-page: 2303
  year: 2019
  publication-title: Nat. Commun.
– volume: 51
  year: 2015
  publication-title: Chem. Commun.
– volume: 339
  start-page: 13
  year: 1992
  publication-title: J. Electroanal. Chem.
– volume: 4
  start-page: 753
  year: 2021
  publication-title: Nat. Catal.
– volume: 8
  start-page: 5067
  year: 2016
  publication-title: Nanoscale
– volume: 10
  start-page: 1278
  year: 2019
  publication-title: Nat. Commun.
– volume: 7
  year: 2020
  publication-title: Adv. Sci.
– volume: 122
  start-page: 1396
  year: 2018
  publication-title: J. Phys. Chem. C
– volume: 135
  year: 2013
  publication-title: J. Am. Chem. Soc.
– volume: 10
  start-page: 704
  year: 2019
  publication-title: Nat. Commun.
– volume: 141
  start-page: 6254
  year: 2019
  publication-title: J. Am. Chem. Soc.
– volume: 14
  year: 2020
  publication-title: ACS Nano
– volume: 142
  start-page: 8104
  year: 2020
  publication-title: J. Am. Chem. Soc.
– volume: 3
  year: 2019
  publication-title: Small Methods
– volume: 28
  start-page: 147
  year: 2005
  publication-title: Appl. Clay Sci.
– volume: 2
  start-page: 536
  year: 2020
  publication-title: Nanoscale Adv.
– volume: 649
  start-page: 48
  year: 2016
  publication-title: Chem. Phys. Lett.
– volume: 5
  start-page: 452
  year: 2014
  publication-title: J. Phys. Chem. Lett.
– volume: 32
  year: 2020
  publication-title: Adv. Mater.
– volume: 53
  start-page: 7361
  year: 2014
  publication-title: Inorg. Chem.
– volume: 56
  start-page: 6937
  year: 2017
  publication-title: Angew. Chem., Int. Ed.
– volume: 13
  start-page: 1556
  year: 2020
  publication-title: ChemSusChem
– volume: 8
  start-page: 8406
  year: 2018
  publication-title: ACS Catal.
– volume: 138
  year: 2016
  publication-title: J. Am. Chem. Soc.
– volume: 159
  start-page: 11
  year: 2012
  publication-title: J. Electrochem. Soc.
– volume: 351
  start-page: 361
  year: 2016
  publication-title: Science
– volume: 13
  start-page: 878
  year: 2019
  publication-title: ACS Nano
– volume: 257
  start-page: 2717
  year: 2011
  publication-title: Appl. Surf. Sci.
– volume: 10
  year: 2018
  publication-title: ACS Appl. Mater. Interfaces
– volume: 497
  start-page: 55
  year: 2001
  publication-title: J. Electroanal. Chem.
– volume: 9
  start-page: 9359
  year: 2019
  publication-title: ACS Catal.
– volume: 327
  year: 2019
  publication-title: Electrochim. Acta
– year: 2013
SSID ssj0000491033
Score 2.6770182
Snippet Identifying the actual structure and tuning the catalytic activity of Fe–N4‐based moieties, well‐recognized high‐activity sites in the oxygen reduction...
SourceID proquest
wiley
SourceType Aggregation Database
Publisher
SubjectTerms Activity recognition
axial ligands
Catalytic activity
electrocatalysis
Electrocatalysts
Energy levels
Fe–N–C
Field strength
in‐situ spectroscopy
Iron
Ligands
Metal phthalocyanines
orbital configuration
Oxygen reduction reactions
Tuning
Title Insight into the Mechanism of Axial Ligands Regulating the Catalytic Activity of Fe–N4 Sites for Oxygen Reduction Reaction
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Faenm.202103588
https://www.proquest.com/docview/2639946666
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtNAEF6F9gKHil_RUtAeuCGDs14722NUGhWow6GtFE6W17tGliq30FhqEQfegZfheXgSZvYvG4EQ9GJF61kn2fmy85OZbwl5LlOmuGR7SZNrkXDQciLbZpy0SgoY56kyfdzlvDg85W8X-WI0-hFVLQ1L-bL58se-kptoFcZAr9gl-x-aDQ-FAXgN-oUraBiu_6TjN_0lxtbI-WA9yFJjIy-ee4EO5hVmw4-6j9jNC-toDp333VH7mLa5RrbWaeMOkIApM-2LH7I5f3HcYVIW6xDfX13Dh4BnKEs2i7X3TVCpJ7H15QTa9hOCL2wXIUpOm8TsuwGT1L7KouxWVUHdYCuFPsVjxkoMQf5D7Yyt-T_J3F0Axs-6OIEBsW-o4HJ7LngISSFcmlPHY5bJKWzULAbkOLLZwaL9ZhAswWyte2QdgPA2y-0pguvM20Ey_7usJQo-mJfh_i2yySBAgR12c_q6PDoO-T2IvEDC9Hf47-c5Q1P2av1N1qKbOEYyTs7JXbLlohM6tVC7R0a6v0_uRJyVD8hXBzqKoKMAJRpAR89bakBHHejoCnRGMoCOetDhlJn--e37nFMDNwpwoxZuNMCNerg9JKezg5P9w8Qd4ZFcsAxMaduAu1nXrdKa53ssV0yKvMgyxdi4EOAnZELkstYTJmFnUBCtp0VbtI3SmZIgnT0iG_15rx8TKrTQdVFDuJBKDm6XbEQ7mUxSnUmBbug22fWLWLnf6GXF0AHnEKIX24SZha0uLItLZfm6WYWqqIIqqjXt7txk0hNyewXzXbKx_Dzop-C5LuUzB5Jfo46SIw
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Insight+into+the+Mechanism+of+Axial+Ligands+Regulating+the+Catalytic+Activity+of+Fe%E2%80%93N4+Sites+for+Oxygen+Reduction+Reaction&rft.jtitle=Advanced+energy+materials&rft.au=Zhao%2C+Kuang%E2%80%90Min&rft.au=Liu%2C+Suqin&rft.au=Li%2C+Yu%E2%80%90Yang&rft.au=Wei%2C+Xianli&rft.date=2022-03-01&rft.issn=1614-6832&rft.eissn=1614-6840&rft.volume=12&rft.issue=11&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Faenm.202103588&rft.externalDBID=10.1002%252Faenm.202103588&rft.externalDocID=AENM202103588
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1614-6832&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1614-6832&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1614-6832&client=summon