Insight into the Mechanism of Axial Ligands Regulating the Catalytic Activity of Fe–N4 Sites for Oxygen Reduction Reaction
Identifying the actual structure and tuning the catalytic activity of Fe–N4‐based moieties, well‐recognized high‐activity sites in the oxygen reduction reaction (ORR) are challenging problems. Herein, by using poly(iron phthalocyanine) (PFePc) as an Fe–N4‐based model electrocatalyst, a mechanistic i...
Saved in:
Published in | Advanced energy materials Vol. 12; no. 11 |
---|---|
Main Authors | , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
Wiley Subscription Services, Inc
01.03.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Identifying the actual structure and tuning the catalytic activity of Fe–N4‐based moieties, well‐recognized high‐activity sites in the oxygen reduction reaction (ORR) are challenging problems. Herein, by using poly(iron phthalocyanine) (PFePc) as an Fe–N4‐based model electrocatalyst, a mechanistic insight into the effect of axial ligands on the ORR catalytic activity of Fe–N4 is provided and it is revealed that the ORR activity of Fe–N4 sites with OH desorption as a rate‐determining step is related to the energy level gap between the OH pxpy and Fe 3dz2, which can be tuned by regulating the field strength of the axial ligands. Thus, PFePc coordinated with a weak‐field ligand I− (PFePc‐I) with a low energy level of Fe 3dz2 exhibits high activity evidenced by an ORR half‐wave potential as high as 0.948 V versus RHE. This work develops a novel strategy for tuning the ORR activity of Fe–N4 and reveals the correlation between the electronic/geometric structure and catalytic activity of Fe–N4.
Structure activity correlation of axial‐coordinated Fe–N4 sites in the oxygen reduction reaction (ORR) is unraveled by studying a series of axial‐coordinated poly(iron phthalocyanine) (PFePc). The energy gap (ηDA) between the Fe 3dz2 and OH px/py is proposed as a new descriptor for the ORR activity of the Fe–N4 sites with OH desorption as a rate‐determining step. |
---|---|
AbstractList | Identifying the actual structure and tuning the catalytic activity of Fe–N4‐based moieties, well‐recognized high‐activity sites in the oxygen reduction reaction (ORR) are challenging problems. Herein, by using poly(iron phthalocyanine) (PFePc) as an Fe–N4‐based model electrocatalyst, a mechanistic insight into the effect of axial ligands on the ORR catalytic activity of Fe–N4 is provided and it is revealed that the ORR activity of Fe–N4 sites with OH desorption as a rate‐determining step is related to the energy level gap between the OH pxpy and Fe 3dz2, which can be tuned by regulating the field strength of the axial ligands. Thus, PFePc coordinated with a weak‐field ligand I− (PFePc‐I) with a low energy level of Fe 3dz2 exhibits high activity evidenced by an ORR half‐wave potential as high as 0.948 V versus RHE. This work develops a novel strategy for tuning the ORR activity of Fe–N4 and reveals the correlation between the electronic/geometric structure and catalytic activity of Fe–N4.
Structure activity correlation of axial‐coordinated Fe–N4 sites in the oxygen reduction reaction (ORR) is unraveled by studying a series of axial‐coordinated poly(iron phthalocyanine) (PFePc). The energy gap (ηDA) between the Fe 3dz2 and OH px/py is proposed as a new descriptor for the ORR activity of the Fe–N4 sites with OH desorption as a rate‐determining step. Identifying the actual structure and tuning the catalytic activity of Fe–N4‐based moieties, well‐recognized high‐activity sites in the oxygen reduction reaction (ORR) are challenging problems. Herein, by using poly(iron phthalocyanine) (PFePc) as an Fe–N4‐based model electrocatalyst, a mechanistic insight into the effect of axial ligands on the ORR catalytic activity of Fe–N4 is provided and it is revealed that the ORR activity of Fe–N4 sites with OH desorption as a rate‐determining step is related to the energy level gap between the OH pxpy and Fe 3dz2, which can be tuned by regulating the field strength of the axial ligands. Thus, PFePc coordinated with a weak‐field ligand I− (PFePc‐I) with a low energy level of Fe 3dz2 exhibits high activity evidenced by an ORR half‐wave potential as high as 0.948 V versus RHE. This work develops a novel strategy for tuning the ORR activity of Fe–N4 and reveals the correlation between the electronic/geometric structure and catalytic activity of Fe–N4. |
Author | Su, Yuke Zhou, Zhi‐You Wang, Jue Wei, Xianli He, Zhen Liu, Suqin Ye, Guanying Sun, Shi‐Gang Liu, Hongtao Li, Yu‐Yang Zhu, Weiwei Zhao, Kuang‐Min |
Author_xml | – sequence: 1 givenname: Kuang‐Min orcidid: 0000-0002-5533-6199 surname: Zhao fullname: Zhao, Kuang‐Min organization: Xiamen University – sequence: 2 givenname: Suqin surname: Liu fullname: Liu, Suqin email: sqliu2003@126.com organization: Central South University – sequence: 3 givenname: Yu‐Yang surname: Li fullname: Li, Yu‐Yang organization: Xiamen University – sequence: 4 givenname: Xianli surname: Wei fullname: Wei, Xianli organization: Central South University – sequence: 5 givenname: Guanying surname: Ye fullname: Ye, Guanying organization: Central South University – sequence: 6 givenname: Weiwei surname: Zhu fullname: Zhu, Weiwei organization: Central South University – sequence: 7 givenname: Yuke surname: Su fullname: Su, Yuke organization: Central South University – sequence: 8 givenname: Jue surname: Wang fullname: Wang, Jue organization: Central South University – sequence: 9 givenname: Hongtao surname: Liu fullname: Liu, Hongtao organization: Central South University – sequence: 10 givenname: Zhen orcidid: 0000-0002-8742-5962 surname: He fullname: He, Zhen email: zhenhe@csu.edu.cn organization: Central South University – sequence: 11 givenname: Zhi‐You orcidid: 0000-0001-5181-0642 surname: Zhou fullname: Zhou, Zhi‐You organization: Xiamen University – sequence: 12 givenname: Shi‐Gang orcidid: 0000-0003-2327-4090 surname: Sun fullname: Sun, Shi‐Gang email: sgsun@xmu.edu.cn organization: Xiamen University |
BookMark | eNo9kEtLw0AUhQepYK3duh5wnTqPJCbLUFot9AE-1sMkc5NOSSc1mWoDLvwP_kN_iZNWejb3XPjOvXCuUc9UBhC6pWRECWH3Esx2xAijhAdRdIH6NKS-F0Y-6Z09Z1do2DQb4uTHjuR99DUzjS7WFmtjK2zXgBeQraXRzRZXOU4OWpZ4rgtpVIOfodiX0mpTHMmxtLJsrc5wkln9oW3bRabw-_2z9PGLttDgvKrx6tAWYFxa7R1XdU4ezQ26zGXZwPB_DtDbdPI6fvLmq8fZOJl7O8Z55OUZoYGUuQLwg5gFiqVREHKuGKNhBCnlURSkEh5Y6qdM-XFAwjzMMwVcpY7mA3R3ururq_c9NFZsqn1t3EvBQh7HfujkqPhEfeoSWrGr9VbWraBEdA2LrmFxblgkk-XivPE_HFJ1KA |
ContentType | Journal Article |
Copyright | 2022 Wiley‐VCH GmbH |
Copyright_xml | – notice: 2022 Wiley‐VCH GmbH |
DBID | 7SP 7TB 8FD F28 FR3 H8D L7M |
DOI | 10.1002/aenm.202103588 |
DatabaseName | Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitle | Aerospace Database Technology Research Database Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts Engineering Research Database Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering |
DatabaseTitleList | Aerospace Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1614-6840 |
EndPage | n/a |
ExternalDocumentID | AENM202103588 |
Genre | article |
GrantInformation_xml | – fundername: Hunan Provincial Science and Technology Plan funderid: 2018RS3008; 2017TP1001 – fundername: Natural Science Foundation of Hunan Province funderid: 2021JJ30790 – fundername: National Natural Science Foundation of China funderid: 51972345; 51772332 – fundername: National Key R&D Program of China funderid: 2019YFA0210300 – fundername: China Postdoctoral Science Foundation funderid: 2021M691876 |
GroupedDBID | 05W 0R~ 1OC 33P 4.4 50Y 5VS 8-0 8-1 A00 AAESR AAHHS AAHQN AAIHA AAMNL AANLZ AAXRX AAYCA AAZKR ABCUV ABJNI ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADKYN ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AENEX AEQDE AEUYR AFBPY AFFPM AFWVQ AFZJQ AHBTC AIACR AITYG AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMYDB AZVAB BDRZF BFHJK BMXJE BRXPI D-A DCZOG EBS G-S HGLYW HZ~ KBYEO LATKE LEEKS LITHE LOXES LUTES LYRES MEWTI MY. MY~ O9- P2W P4E RNS ROL RX1 SUPJJ WBKPD WOHZO WXSBR WYJ ZZTAW ~S- 7SP 7TB 8FD AAMMB ADMLS AEFGJ AEYWJ AGHNM AGXDD AGYGG AIDQK AIDYY F28 FR3 H8D L7M |
ID | FETCH-LOGICAL-p2338-fc015aafdee45925d2b85633d22168eb13885bae72b4b2d49506f6fcde3db5d23 |
ISSN | 1614-6832 |
IngestDate | Fri Jul 25 12:08:47 EDT 2025 Wed Jan 22 16:27:12 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-p2338-fc015aafdee45925d2b85633d22168eb13885bae72b4b2d49506f6fcde3db5d23 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-5181-0642 0000-0003-2327-4090 0000-0002-5533-6199 0000-0002-8742-5962 |
PQID | 2639946666 |
PQPubID | 886389 |
PageCount | 7 |
ParticipantIDs | proquest_journals_2639946666 wiley_primary_10_1002_aenm_202103588_AENM202103588 |
PublicationCentury | 2000 |
PublicationDate | 2022-03-01 |
PublicationDateYYYYMMDD | 2022-03-01 |
PublicationDate_xml | – month: 03 year: 2022 text: 2022-03-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim |
PublicationTitle | Advanced energy materials |
PublicationYear | 2022 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2011; 257 2018; 122 2019; 9 2021; 4 2019; 3 2016; 649 2020; 142 2015; 51 2019; 10 2019; 13 2017; 46 2021; 280 2020; 14 2020; 13 2020; 11 2019; 327 2020; 32 2019; 141 2005; 28 2019; 364 2017; 357 2020; 7 2018; 8 2001; 497 2014; 5 2018; 3 2020; 2 2019; 48 2017; 56 2014; 16 1992; 339 2013; 135 2016; 138 2013 2018; 11 2012; 159 2018; 10 2016; 351 2016; 8 2016; 9 2014; 53 |
References_xml | – volume: 364 start-page: 1091 year: 2019 publication-title: Science – volume: 9 start-page: 2418 year: 2016 publication-title: Energy Environ. Sci. – volume: 46 start-page: 1803 year: 2017 publication-title: Dalton Trans. – volume: 16 year: 2014 publication-title: Phys. Chem. Chem. Phys. – volume: 141 year: 2019 publication-title: J. Am. Chem. Soc. – volume: 357 start-page: 479 year: 2017 publication-title: Science – volume: 11 start-page: 2348 year: 2018 publication-title: Energy Environ. Sci. – volume: 48 start-page: 5207 year: 2019 publication-title: Chem. Soc. Rev. – volume: 56 year: 2017 publication-title: Angew. Chem., Int. Ed. – volume: 11 start-page: 4173 year: 2020 publication-title: Nat. Commun. – volume: 280 year: 2021 publication-title: Appl. Catal., B – volume: 3 start-page: 883 year: 2018 publication-title: ACS Energy Lett. – volume: 10 start-page: 2303 year: 2019 publication-title: Nat. Commun. – volume: 51 year: 2015 publication-title: Chem. Commun. – volume: 339 start-page: 13 year: 1992 publication-title: J. Electroanal. Chem. – volume: 4 start-page: 753 year: 2021 publication-title: Nat. Catal. – volume: 8 start-page: 5067 year: 2016 publication-title: Nanoscale – volume: 10 start-page: 1278 year: 2019 publication-title: Nat. Commun. – volume: 7 year: 2020 publication-title: Adv. Sci. – volume: 122 start-page: 1396 year: 2018 publication-title: J. Phys. Chem. C – volume: 135 year: 2013 publication-title: J. Am. Chem. Soc. – volume: 10 start-page: 704 year: 2019 publication-title: Nat. Commun. – volume: 141 start-page: 6254 year: 2019 publication-title: J. Am. Chem. Soc. – volume: 14 year: 2020 publication-title: ACS Nano – volume: 142 start-page: 8104 year: 2020 publication-title: J. Am. Chem. Soc. – volume: 3 year: 2019 publication-title: Small Methods – volume: 28 start-page: 147 year: 2005 publication-title: Appl. Clay Sci. – volume: 2 start-page: 536 year: 2020 publication-title: Nanoscale Adv. – volume: 649 start-page: 48 year: 2016 publication-title: Chem. Phys. Lett. – volume: 5 start-page: 452 year: 2014 publication-title: J. Phys. Chem. Lett. – volume: 32 year: 2020 publication-title: Adv. Mater. – volume: 53 start-page: 7361 year: 2014 publication-title: Inorg. Chem. – volume: 56 start-page: 6937 year: 2017 publication-title: Angew. Chem., Int. Ed. – volume: 13 start-page: 1556 year: 2020 publication-title: ChemSusChem – volume: 8 start-page: 8406 year: 2018 publication-title: ACS Catal. – volume: 138 year: 2016 publication-title: J. Am. Chem. Soc. – volume: 159 start-page: 11 year: 2012 publication-title: J. Electrochem. Soc. – volume: 351 start-page: 361 year: 2016 publication-title: Science – volume: 13 start-page: 878 year: 2019 publication-title: ACS Nano – volume: 257 start-page: 2717 year: 2011 publication-title: Appl. Surf. Sci. – volume: 10 year: 2018 publication-title: ACS Appl. Mater. Interfaces – volume: 497 start-page: 55 year: 2001 publication-title: J. Electroanal. Chem. – volume: 9 start-page: 9359 year: 2019 publication-title: ACS Catal. – volume: 327 year: 2019 publication-title: Electrochim. Acta – year: 2013 |
SSID | ssj0000491033 |
Score | 2.6770182 |
Snippet | Identifying the actual structure and tuning the catalytic activity of Fe–N4‐based moieties, well‐recognized high‐activity sites in the oxygen reduction... |
SourceID | proquest wiley |
SourceType | Aggregation Database Publisher |
SubjectTerms | Activity recognition axial ligands Catalytic activity electrocatalysis Electrocatalysts Energy levels Fe–N–C Field strength in‐situ spectroscopy Iron Ligands Metal phthalocyanines orbital configuration Oxygen reduction reactions Tuning |
Title | Insight into the Mechanism of Axial Ligands Regulating the Catalytic Activity of Fe–N4 Sites for Oxygen Reduction Reaction |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Faenm.202103588 https://www.proquest.com/docview/2639946666 |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtNAEF6F9gKHil_RUtAeuCGDs14722NUGhWow6GtFE6W17tGliq30FhqEQfegZfheXgSZvYvG4EQ9GJF61kn2fmy85OZbwl5LlOmuGR7SZNrkXDQciLbZpy0SgoY56kyfdzlvDg85W8X-WI0-hFVLQ1L-bL58se-kptoFcZAr9gl-x-aDQ-FAXgN-oUraBiu_6TjN_0lxtbI-WA9yFJjIy-ee4EO5hVmw4-6j9jNC-toDp333VH7mLa5RrbWaeMOkIApM-2LH7I5f3HcYVIW6xDfX13Dh4BnKEs2i7X3TVCpJ7H15QTa9hOCL2wXIUpOm8TsuwGT1L7KouxWVUHdYCuFPsVjxkoMQf5D7Yyt-T_J3F0Axs-6OIEBsW-o4HJ7LngISSFcmlPHY5bJKWzULAbkOLLZwaL9ZhAswWyte2QdgPA2y-0pguvM20Ey_7usJQo-mJfh_i2yySBAgR12c_q6PDoO-T2IvEDC9Hf47-c5Q1P2av1N1qKbOEYyTs7JXbLlohM6tVC7R0a6v0_uRJyVD8hXBzqKoKMAJRpAR89bakBHHejoCnRGMoCOetDhlJn--e37nFMDNwpwoxZuNMCNerg9JKezg5P9w8Qd4ZFcsAxMaduAu1nXrdKa53ssV0yKvMgyxdi4EOAnZELkstYTJmFnUBCtp0VbtI3SmZIgnT0iG_15rx8TKrTQdVFDuJBKDm6XbEQ7mUxSnUmBbug22fWLWLnf6GXF0AHnEKIX24SZha0uLItLZfm6WYWqqIIqqjXt7txk0hNyewXzXbKx_Dzop-C5LuUzB5Jfo46SIw |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Insight+into+the+Mechanism+of+Axial+Ligands+Regulating+the+Catalytic+Activity+of+Fe%E2%80%93N4+Sites+for+Oxygen+Reduction+Reaction&rft.jtitle=Advanced+energy+materials&rft.au=Zhao%2C+Kuang%E2%80%90Min&rft.au=Liu%2C+Suqin&rft.au=Li%2C+Yu%E2%80%90Yang&rft.au=Wei%2C+Xianli&rft.date=2022-03-01&rft.issn=1614-6832&rft.eissn=1614-6840&rft.volume=12&rft.issue=11&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Faenm.202103588&rft.externalDBID=10.1002%252Faenm.202103588&rft.externalDocID=AENM202103588 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1614-6832&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1614-6832&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1614-6832&client=summon |