Superior Energy‐Storage Capacitors with Simultaneously Giant Energy Density and Efficiency Using Nanodomain Engineered BiFeO3‐BaTiO3‐NaNbO3 Lead‐Free Bulk Ferroelectrics

Dielectric capacitors are receiving a great deal of attention for advanced pulsed power owing to their high power density and quick charge/discharge rate. However, the energy density is limited and the efficiency and the thermal stability are also not ideal, which has been a longstanding obstacle to...

Full description

Saved in:
Bibliographic Details
Published inAdvanced energy materials Vol. 10; no. 6
Main Authors Qi, He, Xie, Aiwen, Tian, Ao, Zuo, Ruzhong
Format Journal Article
LanguageEnglish
Published Weinheim Wiley Subscription Services, Inc 01.02.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Dielectric capacitors are receiving a great deal of attention for advanced pulsed power owing to their high power density and quick charge/discharge rate. However, the energy density is limited and the efficiency and the thermal stability are also not ideal, which has been a longstanding obstacle to developing desirable dielectric materials. These concerns have are addressed herein by fabricating nanodomain‐engineered BiFeO3‐BaTiO3‐NaNbO3 bulk ferroelectrics, integrating a high‐spontaneous‐polarization gene, wide band gaps, and a heterogeneous nanodomain structure, generating record‐excellent comprehensive performance of giant energy‐storage density Wrec ≈8.12 J cm−3, high efficiency η ≈90% and excellent thermal stability (±10%, −50 to 250 °C) and ultrafast discharge rate (t0.9 < 100 ns). Significantly enhanced dielectric breakdown strength of BiFeO3‐based solid solutions is mainly attributed to the substitution of NaNbO3, which provides an increased band gap, refined grain size, and increased resistivity. The formation of nanoscale domains as evidenced by piezoresponse force microscopy and transmission electron microscopy enables nearly hysteresis‐free polarization‐field response and temperature‐insensitive dielectric response. In comparison with antiferroelectric capacitors, the current work provides a new solution to successfully design next‐generation pulsed power capacitors by fully utilizing relaxor ferroelectrics in energy‐storage efficiency and thermal stability. Superior energy‐storage performance of a giant energy‐storage density Wrec ≈8.12 J cm−3, a high efficiency η ≈90%, and an excellent thermal stability (±10%, −50 to 250 °C) and an ultrafast discharge rate (t0.9 < 100 ns) are reported in a nanodomain engineered BiFeO3‐BaTiO3‐NaNbO3 bulk ferroelectrics integrating a high spontaneous polarization gene, wide band gap, and a heterogeneous nanodomain structure, showing good potential for next‐generation pulsed power capacitors.
AbstractList Dielectric capacitors are receiving a great deal of attention for advanced pulsed power owing to their high power density and quick charge/discharge rate. However, the energy density is limited and the efficiency and the thermal stability are also not ideal, which has been a longstanding obstacle to developing desirable dielectric materials. These concerns have are addressed herein by fabricating nanodomain‐engineered BiFeO3‐BaTiO3‐NaNbO3 bulk ferroelectrics, integrating a high‐spontaneous‐polarization gene, wide band gaps, and a heterogeneous nanodomain structure, generating record‐excellent comprehensive performance of giant energy‐storage density Wrec ≈8.12 J cm−3, high efficiency η ≈90% and excellent thermal stability (±10%, −50 to 250 °C) and ultrafast discharge rate (t0.9 < 100 ns). Significantly enhanced dielectric breakdown strength of BiFeO3‐based solid solutions is mainly attributed to the substitution of NaNbO3, which provides an increased band gap, refined grain size, and increased resistivity. The formation of nanoscale domains as evidenced by piezoresponse force microscopy and transmission electron microscopy enables nearly hysteresis‐free polarization‐field response and temperature‐insensitive dielectric response. In comparison with antiferroelectric capacitors, the current work provides a new solution to successfully design next‐generation pulsed power capacitors by fully utilizing relaxor ferroelectrics in energy‐storage efficiency and thermal stability. Superior energy‐storage performance of a giant energy‐storage density Wrec ≈8.12 J cm−3, a high efficiency η ≈90%, and an excellent thermal stability (±10%, −50 to 250 °C) and an ultrafast discharge rate (t0.9 < 100 ns) are reported in a nanodomain engineered BiFeO3‐BaTiO3‐NaNbO3 bulk ferroelectrics integrating a high spontaneous polarization gene, wide band gap, and a heterogeneous nanodomain structure, showing good potential for next‐generation pulsed power capacitors.
Dielectric capacitors are receiving a great deal of attention for advanced pulsed power owing to their high power density and quick charge/discharge rate. However, the energy density is limited and the efficiency and the thermal stability are also not ideal, which has been a longstanding obstacle to developing desirable dielectric materials. These concerns have are addressed herein by fabricating nanodomain‐engineered BiFeO3‐BaTiO3‐NaNbO3 bulk ferroelectrics, integrating a high‐spontaneous‐polarization gene, wide band gaps, and a heterogeneous nanodomain structure, generating record‐excellent comprehensive performance of giant energy‐storage density Wrec ≈8.12 J cm−3, high efficiency η ≈90% and excellent thermal stability (±10%, −50 to 250 °C) and ultrafast discharge rate (t0.9 < 100 ns). Significantly enhanced dielectric breakdown strength of BiFeO3‐based solid solutions is mainly attributed to the substitution of NaNbO3, which provides an increased band gap, refined grain size, and increased resistivity. The formation of nanoscale domains as evidenced by piezoresponse force microscopy and transmission electron microscopy enables nearly hysteresis‐free polarization‐field response and temperature‐insensitive dielectric response. In comparison with antiferroelectric capacitors, the current work provides a new solution to successfully design next‐generation pulsed power capacitors by fully utilizing relaxor ferroelectrics in energy‐storage efficiency and thermal stability.
Author Xie, Aiwen
Qi, He
Tian, Ao
Zuo, Ruzhong
Author_xml – sequence: 1
  givenname: He
  surname: Qi
  fullname: Qi, He
  organization: Hefei University of Technology
– sequence: 2
  givenname: Aiwen
  surname: Xie
  fullname: Xie, Aiwen
  organization: Hefei University of Technology
– sequence: 3
  givenname: Ao
  surname: Tian
  fullname: Tian, Ao
  organization: Hefei University of Technology
– sequence: 4
  givenname: Ruzhong
  orcidid: 0000-0001-8295-4323
  surname: Zuo
  fullname: Zuo, Ruzhong
  email: piezolab@hfut.edu.cn
  organization: Hefei University of Technology
BookMark eNo9kc9O4zAQxi1UJFjgytnSnlv8r0l8pN2WXam0h8I5cpxxMKR21k6EcuMReJV9pX2SNQvqXGY-6TfzSfN9QxPnHSB0TcmMEsJuFLjDjBEqCee8OEHnNKNimhWCTI4zZ2foKsZnkkpImshz9Gc_dBCsD3jlIDTj37f3fe-DagAvVae0TSLiV9s_4b09DG2vHPghtiO-s8r1X1v4B7ho-xErV-OVMVZbcHrEj9G6Bm-V87U_KOsS3lgHEKDGC7uGHU9-C_Vg_w9bta12HG9A1UmtAwBeDO0LXkMIHlrQfbA6XqJTo9oIV1_9Aj2uVw_Ln9PN7u7X8nYz7Vj6wLSQIOrM1IRTmZtKclVxbQzPFZCs0jA3pphnlaBQUEk1pULXFdN5LoTkAmp-gb5_3u2C_z1A7MtnPwSXLEvG50xmnOUsUfKTerUtjGUX7EGFsaSk_Iil_IilPMZS3q6290fF_wHy2ovL
ContentType Journal Article
Copyright 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
2020 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2020 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
DBID 7SP
7TB
8FD
F28
FR3
H8D
L7M
DOI 10.1002/aenm.201903338
DatabaseName Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitle Aerospace Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
DatabaseTitleList
Aerospace Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1614-6840
EndPage n/a
ExternalDocumentID AENM201903338
Genre article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 51472069
– fundername: Postdoctoral Research Foundation of China
  funderid: 2018M642998
– fundername: China Postdoctoral Science Foundation
  funderid: 2018M642998
GroupedDBID 05W
0R~
1OC
33P
4.4
50Y
5VS
8-0
8-1
A00
AAESR
AAHHS
AAHQN
AAIHA
AAMNL
AANLZ
AASGY
AAXRX
AAYCA
AAZKR
ABCUV
ABJNI
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADKYN
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AENEX
AEQDE
AEUYR
AFBPY
AFFPM
AFWVQ
AFZJQ
AHBTC
AIACR
AITYG
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMYDB
AZVAB
BDRZF
BFHJK
BMXJE
BRXPI
D-A
DCZOG
EBS
G-S
HGLYW
HZ~
KBYEO
LATKE
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MY.
MY~
O9-
P2W
P4E
RNS
ROL
RX1
SUPJJ
WBKPD
WOHZO
WXSBR
WYJ
ZZTAW
~S-
7SP
7TB
8FD
AAMMB
ADMLS
AEFGJ
AEYWJ
AGHNM
AGXDD
AGYGG
AIDQK
AIDYY
F28
FR3
H8D
L7M
ID FETCH-LOGICAL-p2338-89e4d6fd03197fb93ab3cff37ae06bce5ff856b41e8191c114cdb2c7744934ed3
ISSN 1614-6832
IngestDate Fri Jul 25 12:15:23 EDT 2025
Wed Jan 22 16:34:36 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-p2338-89e4d6fd03197fb93ab3cff37ae06bce5ff856b41e8191c114cdb2c7744934ed3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-8295-4323
PQID 2352963272
PQPubID 886389
PageCount 8
ParticipantIDs proquest_journals_2352963272
wiley_primary_10_1002_aenm_201903338_AENM201903338
PublicationCentury 2000
PublicationDate 2020-02-01
PublicationDateYYYYMMDD 2020-02-01
PublicationDate_xml – month: 02
  year: 2020
  text: 2020-02-01
  day: 01
PublicationDecade 2020
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Advanced energy materials
PublicationYear 2020
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2015; 35
2017; 5
1984; 61
2019; 7
2019; 9
2015; 3
2015; 93
2019; 12
2015; 98
2019; 39
2004; 3
2019; 102
2007; 91
2013; 103
2005; 86
1975; 31
2017; 29
2008; 77
1999; 60
2015; 8
1996; 15
2016; 120
2017; 9
2019; 365
2016; 4
2018; 6
2018; 9
2006; 41
2012; 111
2017; 37
2016; 119
1992; 133
1951; 18
1992; 358
2019; 29
2018; 52
2018; 30
1992; 68
2018; 50
2005; 71
2014; 34
1996; 8
2009; 103
2014; 104
2012; 86
References_xml – volume: 68
  start-page: 847
  year: 1992
  publication-title: Phys. Rev. Lett.
– volume: 91
  year: 2007
  publication-title: Appl. Phys. Lett.
– volume: 6
  year: 2018
  publication-title: J. Mater. Chem. C
– volume: 358
  start-page: 136
  year: 1992
  publication-title: Nature
– volume: 86
  year: 2012
  publication-title: Phys. Rev. B
– volume: 8
  start-page: 6985
  year: 1996
  publication-title: J. Phys.: Condens. Matter
– volume: 71
  year: 2005
  publication-title: Phys. Rev. B
– volume: 6
  start-page: 8528
  year: 2018
  publication-title: J. Mater. Chem. C
– volume: 41
  start-page: 31
  year: 2006
  publication-title: J. Mater. Sci.
– volume: 3
  start-page: 5851
  year: 2015
  publication-title: J. Mater. Chem. C
– volume: 34
  start-page: 3159
  year: 2014
  publication-title: J. Eur. Ceram. Soc.
– volume: 15
  start-page: 1767
  year: 1996
  publication-title: J. Mater. Sci. Lett.
– volume: 39
  start-page: 4735
  year: 2019
  publication-title: J. Eur. Ceram. Soc.
– volume: 86
  year: 2005
  publication-title: Appl. Phys. Lett.
– volume: 61
  start-page: 494
  year: 1984
  publication-title: J. Chem. Educ.
– volume: 29
  year: 2019
  publication-title: Adv. Funct. Mater.
– volume: 103
  year: 2009
  publication-title: Phys. Rev. Lett.
– volume: 6
  start-page: 134
  year: 2018
  publication-title: J. Mater. Chem. C
– volume: 77
  year: 2008
  publication-title: Phys. Rev. B
– volume: 50
  start-page: 723
  year: 2018
  publication-title: Nano Energy
– volume: 35
  start-page: 1469
  year: 2015
  publication-title: J. Eur. Ceram. Soc.
– volume: 9
  start-page: 1813
  year: 2018
  publication-title: Nat. Commun.
– volume: 60
  year: 1999
  publication-title: Phys. Rev. B
– volume: 34
  start-page: 4363
  year: 2014
  publication-title: J. Eur. Ceram. Soc.
– volume: 3
  start-page: 91
  year: 2004
  publication-title: Nat. Mater.
– volume: 8
  start-page: 8009
  year: 2015
  publication-title: Materials
– volume: 4
  year: 2016
  publication-title: J. Mater. Chem. A
– volume: 7
  year: 2019
  publication-title: J. Mater. Chem. A
– volume: 6
  start-page: 4133
  year: 2018
  publication-title: J. Mater. Chem. A
– volume: 18
  start-page: 293
  year: 1951
  publication-title: J. Appl. Mech.
– volume: 29
  year: 2017
  publication-title: Adv. Mater.
– volume: 111
  year: 2012
  publication-title: J. Appl. Phys.
– volume: 7
  start-page: 3971
  year: 2019
  publication-title: J. Mater. Chem. A
– volume: 133
  start-page: 109
  year: 1992
  publication-title: Ferroelectrics
– volume: 5
  start-page: 554
  year: 2017
  publication-title: J. Mater. Chem. A
– volume: 119
  year: 2016
  publication-title: J. Appl. Phys.
– volume: 98
  start-page: 2692
  year: 2015
  publication-title: J. Am. Ceram. Soc.
– volume: 365
  start-page: 578
  year: 2019
  publication-title: Science
– volume: 104
  year: 2014
  publication-title: Appl. Phys. Lett.
– volume: 9
  year: 2019
  publication-title: Adv. Energy Mater.
– volume: 120
  year: 2016
  publication-title: J. Phys. Chem. C
– volume: 9
  year: 2017
  publication-title: ACS Appl. Mater. Interfaces
– volume: 37
  start-page: 413
  year: 2017
  publication-title: J. Eur. Ceram. Soc.
– volume: 103
  year: 2013
  publication-title: Appl. Phys. Lett.
– volume: 30
  year: 2018
  publication-title: Adv. Mater.
– volume: 52
  start-page: 203
  year: 2018
  publication-title: Nano Energy
– volume: 31
  start-page: 756
  year: 1975
  publication-title: Acta Crystallogr. A
– volume: 102
  start-page: 72
  year: 2019
  publication-title: Prog. Mater. Sci.
– volume: 12
  start-page: 582
  year: 2019
  publication-title: Energy Environ. Sci.
– volume: 93
  year: 2015
  publication-title: IOP Conf. Ser.: Mater. Sci. Eng.
SSID ssj0000491033
Score 2.688795
Snippet Dielectric capacitors are receiving a great deal of attention for advanced pulsed power owing to their high power density and quick charge/discharge rate....
SourceID proquest
wiley
SourceType Aggregation Database
Publisher
SubjectTerms Antiferroelectricity
Barium titanates
BiFeO3
Bismuth ferrite
Capacitors
Charge density
Dielectric breakdown
Dielectric strength
Discharge
Efficiency
Energy gap
Energy storage
energy‐storage capacitors
Ferroelectric materials
Ferroelectrics
Flux density
Grain size
lead‐free relaxor ferroelectrics
Microscopy
nanodomains
Polarization
Power efficiency
Relaxors
Sodium compounds
Solid solutions
Thermal stability
Title Superior Energy‐Storage Capacitors with Simultaneously Giant Energy Density and Efficiency Using Nanodomain Engineered BiFeO3‐BaTiO3‐NaNbO3 Lead‐Free Bulk Ferroelectrics
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Faenm.201903338
https://www.proquest.com/docview/2352963272
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3NjtMwEMetsnuBA2L5EAsL8oFbFUjiNEmP2aXdFWpTQVup4hLZiSMiIF2FVog98Qi8Cg_CS_AkzNjOl7TiS6qi2FKaKPOrPTMd_03IMy7GtgyzzHLAF7c832ZW6DDfEtwPPJ7l8MGE_jz2L9beq81oMxj86FQt7XfieXp17bqS_7Eq9IFdcZXsP1i2-VLogHOwLxzBwnD8Kxsv96hTvK2GE7WCrylcWEIgjbU4ZzATpoXaT0flW5cF1g_yUkK4_-HL8BzQ2JlrYeApVXkGJtInSldCLcrUJQUwBkP4-pEXZSNgCI7qaTGVC9bc9ZSvik4z5rFYMBRwzZq-aSUlKn6_H05lVW31Hjx1vX2thVtXJUj9YOBS63fZpm2Ri9dF3d7ov1ii4nO7rC3CDW1a8N_uVUb4zf7q3dZM1SbTAWGt3asa-fN42hnHweuw_NCkTmW3T6tDNYO_3YHcv3ZO0Rq1XJYoXAD-E2Naj6Yv3h0vkul6NktWk83qBjl0IWqBYfcwejmfLZukH4RjDlyPSYD6AWshUdt90b9FL-TpBk7K81ndIbdNyEIjzd8RGcjyLrnVEbK8R77XJFJN08-v3wyDtGWQIoO0zyBVDJqrqGGQAoO0ZZAqBmnLIG0ZpJpBuJ-mD040dxS5gxYSR5E42ifuPllPJ6uzC8tsBmJduvA2rHAsvczPM1x1F-RizLhgaZ6zgEvbF6kc5Xk48oXnSExBpBDmp5lwU4huvDHzZMYekINyW8qHhOY2D1zwDQMvlB7LBMyzDueBh0pHI5_JY3JSv_nE_No_JS7DCgXmBu4xcZU1kkutB5No5W83Qfsljf2SaBLPm9aj33_nY3KzJf6EHOyqvXwC3u5OPDUM_QJO-rAV
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Superior+Energy%E2%80%90Storage+Capacitors+with+Simultaneously+Giant+Energy+Density+and+Efficiency+Using+Nanodomain+Engineered+BiFeO3%E2%80%90BaTiO3%E2%80%90NaNbO3+Lead%E2%80%90Free+Bulk+Ferroelectrics&rft.jtitle=Advanced+energy+materials&rft.au=He%2C+Qi&rft.au=Xie%2C+Aiwen&rft.au=Ao+Tian&rft.au=Zuo%2C+Ruzhong&rft.date=2020-02-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1614-6832&rft.eissn=1614-6840&rft.volume=10&rft.issue=6&rft_id=info:doi/10.1002%2Faenm.201903338&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1614-6832&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1614-6832&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1614-6832&client=summon