Superior Energy‐Storage Capacitors with Simultaneously Giant Energy Density and Efficiency Using Nanodomain Engineered BiFeO3‐BaTiO3‐NaNbO3 Lead‐Free Bulk Ferroelectrics
Dielectric capacitors are receiving a great deal of attention for advanced pulsed power owing to their high power density and quick charge/discharge rate. However, the energy density is limited and the efficiency and the thermal stability are also not ideal, which has been a longstanding obstacle to...
Saved in:
Published in | Advanced energy materials Vol. 10; no. 6 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
Wiley Subscription Services, Inc
01.02.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Dielectric capacitors are receiving a great deal of attention for advanced pulsed power owing to their high power density and quick charge/discharge rate. However, the energy density is limited and the efficiency and the thermal stability are also not ideal, which has been a longstanding obstacle to developing desirable dielectric materials. These concerns have are addressed herein by fabricating nanodomain‐engineered BiFeO3‐BaTiO3‐NaNbO3 bulk ferroelectrics, integrating a high‐spontaneous‐polarization gene, wide band gaps, and a heterogeneous nanodomain structure, generating record‐excellent comprehensive performance of giant energy‐storage density Wrec ≈8.12 J cm−3, high efficiency η ≈90% and excellent thermal stability (±10%, −50 to 250 °C) and ultrafast discharge rate (t0.9 < 100 ns). Significantly enhanced dielectric breakdown strength of BiFeO3‐based solid solutions is mainly attributed to the substitution of NaNbO3, which provides an increased band gap, refined grain size, and increased resistivity. The formation of nanoscale domains as evidenced by piezoresponse force microscopy and transmission electron microscopy enables nearly hysteresis‐free polarization‐field response and temperature‐insensitive dielectric response. In comparison with antiferroelectric capacitors, the current work provides a new solution to successfully design next‐generation pulsed power capacitors by fully utilizing relaxor ferroelectrics in energy‐storage efficiency and thermal stability.
Superior energy‐storage performance of a giant energy‐storage density Wrec ≈8.12 J cm−3, a high efficiency η ≈90%, and an excellent thermal stability (±10%, −50 to 250 °C) and an ultrafast discharge rate (t0.9 < 100 ns) are reported in a nanodomain engineered BiFeO3‐BaTiO3‐NaNbO3 bulk ferroelectrics integrating a high spontaneous polarization gene, wide band gap, and a heterogeneous nanodomain structure, showing good potential for next‐generation pulsed power capacitors. |
---|---|
AbstractList | Dielectric capacitors are receiving a great deal of attention for advanced pulsed power owing to their high power density and quick charge/discharge rate. However, the energy density is limited and the efficiency and the thermal stability are also not ideal, which has been a longstanding obstacle to developing desirable dielectric materials. These concerns have are addressed herein by fabricating nanodomain‐engineered BiFeO3‐BaTiO3‐NaNbO3 bulk ferroelectrics, integrating a high‐spontaneous‐polarization gene, wide band gaps, and a heterogeneous nanodomain structure, generating record‐excellent comprehensive performance of giant energy‐storage density Wrec ≈8.12 J cm−3, high efficiency η ≈90% and excellent thermal stability (±10%, −50 to 250 °C) and ultrafast discharge rate (t0.9 < 100 ns). Significantly enhanced dielectric breakdown strength of BiFeO3‐based solid solutions is mainly attributed to the substitution of NaNbO3, which provides an increased band gap, refined grain size, and increased resistivity. The formation of nanoscale domains as evidenced by piezoresponse force microscopy and transmission electron microscopy enables nearly hysteresis‐free polarization‐field response and temperature‐insensitive dielectric response. In comparison with antiferroelectric capacitors, the current work provides a new solution to successfully design next‐generation pulsed power capacitors by fully utilizing relaxor ferroelectrics in energy‐storage efficiency and thermal stability.
Superior energy‐storage performance of a giant energy‐storage density Wrec ≈8.12 J cm−3, a high efficiency η ≈90%, and an excellent thermal stability (±10%, −50 to 250 °C) and an ultrafast discharge rate (t0.9 < 100 ns) are reported in a nanodomain engineered BiFeO3‐BaTiO3‐NaNbO3 bulk ferroelectrics integrating a high spontaneous polarization gene, wide band gap, and a heterogeneous nanodomain structure, showing good potential for next‐generation pulsed power capacitors. Dielectric capacitors are receiving a great deal of attention for advanced pulsed power owing to their high power density and quick charge/discharge rate. However, the energy density is limited and the efficiency and the thermal stability are also not ideal, which has been a longstanding obstacle to developing desirable dielectric materials. These concerns have are addressed herein by fabricating nanodomain‐engineered BiFeO3‐BaTiO3‐NaNbO3 bulk ferroelectrics, integrating a high‐spontaneous‐polarization gene, wide band gaps, and a heterogeneous nanodomain structure, generating record‐excellent comprehensive performance of giant energy‐storage density Wrec ≈8.12 J cm−3, high efficiency η ≈90% and excellent thermal stability (±10%, −50 to 250 °C) and ultrafast discharge rate (t0.9 < 100 ns). Significantly enhanced dielectric breakdown strength of BiFeO3‐based solid solutions is mainly attributed to the substitution of NaNbO3, which provides an increased band gap, refined grain size, and increased resistivity. The formation of nanoscale domains as evidenced by piezoresponse force microscopy and transmission electron microscopy enables nearly hysteresis‐free polarization‐field response and temperature‐insensitive dielectric response. In comparison with antiferroelectric capacitors, the current work provides a new solution to successfully design next‐generation pulsed power capacitors by fully utilizing relaxor ferroelectrics in energy‐storage efficiency and thermal stability. |
Author | Xie, Aiwen Qi, He Tian, Ao Zuo, Ruzhong |
Author_xml | – sequence: 1 givenname: He surname: Qi fullname: Qi, He organization: Hefei University of Technology – sequence: 2 givenname: Aiwen surname: Xie fullname: Xie, Aiwen organization: Hefei University of Technology – sequence: 3 givenname: Ao surname: Tian fullname: Tian, Ao organization: Hefei University of Technology – sequence: 4 givenname: Ruzhong orcidid: 0000-0001-8295-4323 surname: Zuo fullname: Zuo, Ruzhong email: piezolab@hfut.edu.cn organization: Hefei University of Technology |
BookMark | eNo9kc9O4zAQxi1UJFjgytnSnlv8r0l8pN2WXam0h8I5cpxxMKR21k6EcuMReJV9pX2SNQvqXGY-6TfzSfN9QxPnHSB0TcmMEsJuFLjDjBEqCee8OEHnNKNimhWCTI4zZ2foKsZnkkpImshz9Gc_dBCsD3jlIDTj37f3fe-DagAvVae0TSLiV9s_4b09DG2vHPghtiO-s8r1X1v4B7ho-xErV-OVMVZbcHrEj9G6Bm-V87U_KOsS3lgHEKDGC7uGHU9-C_Vg_w9bta12HG9A1UmtAwBeDO0LXkMIHlrQfbA6XqJTo9oIV1_9Aj2uVw_Ln9PN7u7X8nYz7Vj6wLSQIOrM1IRTmZtKclVxbQzPFZCs0jA3pphnlaBQUEk1pULXFdN5LoTkAmp-gb5_3u2C_z1A7MtnPwSXLEvG50xmnOUsUfKTerUtjGUX7EGFsaSk_Iil_IilPMZS3q6290fF_wHy2ovL |
ContentType | Journal Article |
Copyright | 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim 2020 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim |
Copyright_xml | – notice: 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2020 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim |
DBID | 7SP 7TB 8FD F28 FR3 H8D L7M |
DOI | 10.1002/aenm.201903338 |
DatabaseName | Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitle | Aerospace Database Technology Research Database Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts Engineering Research Database Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering |
DatabaseTitleList | Aerospace Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1614-6840 |
EndPage | n/a |
ExternalDocumentID | AENM201903338 |
Genre | article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 51472069 – fundername: Postdoctoral Research Foundation of China funderid: 2018M642998 – fundername: China Postdoctoral Science Foundation funderid: 2018M642998 |
GroupedDBID | 05W 0R~ 1OC 33P 4.4 50Y 5VS 8-0 8-1 A00 AAESR AAHHS AAHQN AAIHA AAMNL AANLZ AASGY AAXRX AAYCA AAZKR ABCUV ABJNI ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADKYN ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AENEX AEQDE AEUYR AFBPY AFFPM AFWVQ AFZJQ AHBTC AIACR AITYG AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMYDB AZVAB BDRZF BFHJK BMXJE BRXPI D-A DCZOG EBS G-S HGLYW HZ~ KBYEO LATKE LEEKS LITHE LOXES LUTES LYRES MEWTI MY. MY~ O9- P2W P4E RNS ROL RX1 SUPJJ WBKPD WOHZO WXSBR WYJ ZZTAW ~S- 7SP 7TB 8FD AAMMB ADMLS AEFGJ AEYWJ AGHNM AGXDD AGYGG AIDQK AIDYY F28 FR3 H8D L7M |
ID | FETCH-LOGICAL-p2338-89e4d6fd03197fb93ab3cff37ae06bce5ff856b41e8191c114cdb2c7744934ed3 |
ISSN | 1614-6832 |
IngestDate | Fri Jul 25 12:15:23 EDT 2025 Wed Jan 22 16:34:36 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-p2338-89e4d6fd03197fb93ab3cff37ae06bce5ff856b41e8191c114cdb2c7744934ed3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-8295-4323 |
PQID | 2352963272 |
PQPubID | 886389 |
PageCount | 8 |
ParticipantIDs | proquest_journals_2352963272 wiley_primary_10_1002_aenm_201903338_AENM201903338 |
PublicationCentury | 2000 |
PublicationDate | 2020-02-01 |
PublicationDateYYYYMMDD | 2020-02-01 |
PublicationDate_xml | – month: 02 year: 2020 text: 2020-02-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim |
PublicationTitle | Advanced energy materials |
PublicationYear | 2020 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2015; 35 2017; 5 1984; 61 2019; 7 2019; 9 2015; 3 2015; 93 2019; 12 2015; 98 2019; 39 2004; 3 2019; 102 2007; 91 2013; 103 2005; 86 1975; 31 2017; 29 2008; 77 1999; 60 2015; 8 1996; 15 2016; 120 2017; 9 2019; 365 2016; 4 2018; 6 2018; 9 2006; 41 2012; 111 2017; 37 2016; 119 1992; 133 1951; 18 1992; 358 2019; 29 2018; 52 2018; 30 1992; 68 2018; 50 2005; 71 2014; 34 1996; 8 2009; 103 2014; 104 2012; 86 |
References_xml | – volume: 68 start-page: 847 year: 1992 publication-title: Phys. Rev. Lett. – volume: 91 year: 2007 publication-title: Appl. Phys. Lett. – volume: 6 year: 2018 publication-title: J. Mater. Chem. C – volume: 358 start-page: 136 year: 1992 publication-title: Nature – volume: 86 year: 2012 publication-title: Phys. Rev. B – volume: 8 start-page: 6985 year: 1996 publication-title: J. Phys.: Condens. Matter – volume: 71 year: 2005 publication-title: Phys. Rev. B – volume: 6 start-page: 8528 year: 2018 publication-title: J. Mater. Chem. C – volume: 41 start-page: 31 year: 2006 publication-title: J. Mater. Sci. – volume: 3 start-page: 5851 year: 2015 publication-title: J. Mater. Chem. C – volume: 34 start-page: 3159 year: 2014 publication-title: J. Eur. Ceram. Soc. – volume: 15 start-page: 1767 year: 1996 publication-title: J. Mater. Sci. Lett. – volume: 39 start-page: 4735 year: 2019 publication-title: J. Eur. Ceram. Soc. – volume: 86 year: 2005 publication-title: Appl. Phys. Lett. – volume: 61 start-page: 494 year: 1984 publication-title: J. Chem. Educ. – volume: 29 year: 2019 publication-title: Adv. Funct. Mater. – volume: 103 year: 2009 publication-title: Phys. Rev. Lett. – volume: 6 start-page: 134 year: 2018 publication-title: J. Mater. Chem. C – volume: 77 year: 2008 publication-title: Phys. Rev. B – volume: 50 start-page: 723 year: 2018 publication-title: Nano Energy – volume: 35 start-page: 1469 year: 2015 publication-title: J. Eur. Ceram. Soc. – volume: 9 start-page: 1813 year: 2018 publication-title: Nat. Commun. – volume: 60 year: 1999 publication-title: Phys. Rev. B – volume: 34 start-page: 4363 year: 2014 publication-title: J. Eur. Ceram. Soc. – volume: 3 start-page: 91 year: 2004 publication-title: Nat. Mater. – volume: 8 start-page: 8009 year: 2015 publication-title: Materials – volume: 4 year: 2016 publication-title: J. Mater. Chem. A – volume: 7 year: 2019 publication-title: J. Mater. Chem. A – volume: 6 start-page: 4133 year: 2018 publication-title: J. Mater. Chem. A – volume: 18 start-page: 293 year: 1951 publication-title: J. Appl. Mech. – volume: 29 year: 2017 publication-title: Adv. Mater. – volume: 111 year: 2012 publication-title: J. Appl. Phys. – volume: 7 start-page: 3971 year: 2019 publication-title: J. Mater. Chem. A – volume: 133 start-page: 109 year: 1992 publication-title: Ferroelectrics – volume: 5 start-page: 554 year: 2017 publication-title: J. Mater. Chem. A – volume: 119 year: 2016 publication-title: J. Appl. Phys. – volume: 98 start-page: 2692 year: 2015 publication-title: J. Am. Ceram. Soc. – volume: 365 start-page: 578 year: 2019 publication-title: Science – volume: 104 year: 2014 publication-title: Appl. Phys. Lett. – volume: 9 year: 2019 publication-title: Adv. Energy Mater. – volume: 120 year: 2016 publication-title: J. Phys. Chem. C – volume: 9 year: 2017 publication-title: ACS Appl. Mater. Interfaces – volume: 37 start-page: 413 year: 2017 publication-title: J. Eur. Ceram. Soc. – volume: 103 year: 2013 publication-title: Appl. Phys. Lett. – volume: 30 year: 2018 publication-title: Adv. Mater. – volume: 52 start-page: 203 year: 2018 publication-title: Nano Energy – volume: 31 start-page: 756 year: 1975 publication-title: Acta Crystallogr. A – volume: 102 start-page: 72 year: 2019 publication-title: Prog. Mater. Sci. – volume: 12 start-page: 582 year: 2019 publication-title: Energy Environ. Sci. – volume: 93 year: 2015 publication-title: IOP Conf. Ser.: Mater. Sci. Eng. |
SSID | ssj0000491033 |
Score | 2.688795 |
Snippet | Dielectric capacitors are receiving a great deal of attention for advanced pulsed power owing to their high power density and quick charge/discharge rate.... |
SourceID | proquest wiley |
SourceType | Aggregation Database Publisher |
SubjectTerms | Antiferroelectricity Barium titanates BiFeO3 Bismuth ferrite Capacitors Charge density Dielectric breakdown Dielectric strength Discharge Efficiency Energy gap Energy storage energy‐storage capacitors Ferroelectric materials Ferroelectrics Flux density Grain size lead‐free relaxor ferroelectrics Microscopy nanodomains Polarization Power efficiency Relaxors Sodium compounds Solid solutions Thermal stability |
Title | Superior Energy‐Storage Capacitors with Simultaneously Giant Energy Density and Efficiency Using Nanodomain Engineered BiFeO3‐BaTiO3‐NaNbO3 Lead‐Free Bulk Ferroelectrics |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Faenm.201903338 https://www.proquest.com/docview/2352963272 |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3NjtMwEMetsnuBA2L5EAsL8oFbFUjiNEmP2aXdFWpTQVup4hLZiSMiIF2FVog98Qi8Cg_CS_AkzNjOl7TiS6qi2FKaKPOrPTMd_03IMy7GtgyzzHLAF7c832ZW6DDfEtwPPJ7l8MGE_jz2L9beq81oMxj86FQt7XfieXp17bqS_7Eq9IFdcZXsP1i2-VLogHOwLxzBwnD8Kxsv96hTvK2GE7WCrylcWEIgjbU4ZzATpoXaT0flW5cF1g_yUkK4_-HL8BzQ2JlrYeApVXkGJtInSldCLcrUJQUwBkP4-pEXZSNgCI7qaTGVC9bc9ZSvik4z5rFYMBRwzZq-aSUlKn6_H05lVW31Hjx1vX2thVtXJUj9YOBS63fZpm2Ri9dF3d7ov1ii4nO7rC3CDW1a8N_uVUb4zf7q3dZM1SbTAWGt3asa-fN42hnHweuw_NCkTmW3T6tDNYO_3YHcv3ZO0Rq1XJYoXAD-E2Naj6Yv3h0vkul6NktWk83qBjl0IWqBYfcwejmfLZukH4RjDlyPSYD6AWshUdt90b9FL-TpBk7K81ndIbdNyEIjzd8RGcjyLrnVEbK8R77XJFJN08-v3wyDtGWQIoO0zyBVDJqrqGGQAoO0ZZAqBmnLIG0ZpJpBuJ-mD040dxS5gxYSR5E42ifuPllPJ6uzC8tsBmJduvA2rHAsvczPM1x1F-RizLhgaZ6zgEvbF6kc5Xk48oXnSExBpBDmp5lwU4huvDHzZMYekINyW8qHhOY2D1zwDQMvlB7LBMyzDueBh0pHI5_JY3JSv_nE_No_JS7DCgXmBu4xcZU1kkutB5No5W83Qfsljf2SaBLPm9aj33_nY3KzJf6EHOyqvXwC3u5OPDUM_QJO-rAV |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Superior+Energy%E2%80%90Storage+Capacitors+with+Simultaneously+Giant+Energy+Density+and+Efficiency+Using+Nanodomain+Engineered+BiFeO3%E2%80%90BaTiO3%E2%80%90NaNbO3+Lead%E2%80%90Free+Bulk+Ferroelectrics&rft.jtitle=Advanced+energy+materials&rft.au=He%2C+Qi&rft.au=Xie%2C+Aiwen&rft.au=Ao+Tian&rft.au=Zuo%2C+Ruzhong&rft.date=2020-02-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1614-6832&rft.eissn=1614-6840&rft.volume=10&rft.issue=6&rft_id=info:doi/10.1002%2Faenm.201903338&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1614-6832&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1614-6832&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1614-6832&client=summon |