A Multi‐Active Site Subnano Heterostructures Catalyst Grown In situ POM and Fe0.2Ni0.8Co2O4 onto Nickel Foam Toward Efficient Electrocatalytic Overall Water Splitting
Designing efficient, durable, and cheap bifunctional electrocatalysts is a challenging goal in water splitting. Herein, trivanadium‐substituted Keggin‐type polyoxometalate H6PV3Mo9O40 (POM) and Fe0.2Ni0.8Co2O4 (FNCO) are in situ grown onto nickel foam (NF) yielding a self‐supporting nanoflower‐like...
Saved in:
Published in | Advanced functional materials Vol. 34; no. 49 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken
Wiley Subscription Services, Inc
02.12.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Designing efficient, durable, and cheap bifunctional electrocatalysts is a challenging goal in water splitting. Herein, trivanadium‐substituted Keggin‐type polyoxometalate H6PV3Mo9O40 (POM) and Fe0.2Ni0.8Co2O4 (FNCO) are in situ grown onto nickel foam (NF) yielding a self‐supporting nanoflower‐like heterojunction via convenient hydrothermal reaction. The POM‐Fe0.2Ni0.8Co2O4/NF as HER and OER electrocatalyst, displays low overpotential (89 and 259 mV) and high electrode stability at 10 mA cm−2. POM‐FNCO/NF as the cathode and anode requires a lower voltage (1.58 V) to provide 10 mA cm−2 for overall water splitting (OWS), which is better than that of commercial catalysts. The electronic sponge characteristics of POM provide more active sites and fast reaction kinetics for HER and OER. The synergy of POM and FNCO optimizes the electron distribution at the interface and enhances the intrinsic activity of HER/OER. Density Functional Theory (DFT) calculations show that water molecules preferentially bind to Co sites on POM‐FNCO. Additionally, POM has proton‐coupled electron transfer properties and its modified FNCO exhibits thermodynamic advantages. The synergistic effect of these two factors enables the efficient overall water splitting of POM‐FNCO. This study offers a novel pathway for the construction of self‐supporting efficient catalysts by in situ growth of POM nanoclusters and spinel oxide sub‐nanometer heterojunctions on NF.
POM and Fe0.2Ni0.8Co2O4 is grown in situ on nickel foam yielding multi‐active site heterostructures, which display excellent electrocatalytic activity for total water splitting ascribing to a good synergistic effect of POM nanoclusters and spinel oxide subnano flowers. |
---|---|
AbstractList | Designing efficient, durable, and cheap bifunctional electrocatalysts is a challenging goal in water splitting. Herein, trivanadium‐substituted Keggin‐type polyoxometalate H6PV3Mo9O40 (POM) and Fe0.2Ni0.8Co2O4 (FNCO) are in situ grown onto nickel foam (NF) yielding a self‐supporting nanoflower‐like heterojunction via convenient hydrothermal reaction. The POM‐Fe0.2Ni0.8Co2O4/NF as HER and OER electrocatalyst, displays low overpotential (89 and 259 mV) and high electrode stability at 10 mA cm−2. POM‐FNCO/NF as the cathode and anode requires a lower voltage (1.58 V) to provide 10 mA cm−2 for overall water splitting (OWS), which is better than that of commercial catalysts. The electronic sponge characteristics of POM provide more active sites and fast reaction kinetics for HER and OER. The synergy of POM and FNCO optimizes the electron distribution at the interface and enhances the intrinsic activity of HER/OER. Density Functional Theory (DFT) calculations show that water molecules preferentially bind to Co sites on POM‐FNCO. Additionally, POM has proton‐coupled electron transfer properties and its modified FNCO exhibits thermodynamic advantages. The synergistic effect of these two factors enables the efficient overall water splitting of POM‐FNCO. This study offers a novel pathway for the construction of self‐supporting efficient catalysts by in situ growth of POM nanoclusters and spinel oxide sub‐nanometer heterojunctions on NF. Designing efficient, durable, and cheap bifunctional electrocatalysts is a challenging goal in water splitting. Herein, trivanadium‐substituted Keggin‐type polyoxometalate H6PV3Mo9O40 (POM) and Fe0.2Ni0.8Co2O4 (FNCO) are in situ grown onto nickel foam (NF) yielding a self‐supporting nanoflower‐like heterojunction via convenient hydrothermal reaction. The POM‐Fe0.2Ni0.8Co2O4/NF as HER and OER electrocatalyst, displays low overpotential (89 and 259 mV) and high electrode stability at 10 mA cm−2. POM‐FNCO/NF as the cathode and anode requires a lower voltage (1.58 V) to provide 10 mA cm−2 for overall water splitting (OWS), which is better than that of commercial catalysts. The electronic sponge characteristics of POM provide more active sites and fast reaction kinetics for HER and OER. The synergy of POM and FNCO optimizes the electron distribution at the interface and enhances the intrinsic activity of HER/OER. Density Functional Theory (DFT) calculations show that water molecules preferentially bind to Co sites on POM‐FNCO. Additionally, POM has proton‐coupled electron transfer properties and its modified FNCO exhibits thermodynamic advantages. The synergistic effect of these two factors enables the efficient overall water splitting of POM‐FNCO. This study offers a novel pathway for the construction of self‐supporting efficient catalysts by in situ growth of POM nanoclusters and spinel oxide sub‐nanometer heterojunctions on NF. POM and Fe0.2Ni0.8Co2O4 is grown in situ on nickel foam yielding multi‐active site heterostructures, which display excellent electrocatalytic activity for total water splitting ascribing to a good synergistic effect of POM nanoclusters and spinel oxide subnano flowers. |
Author | Cui, Li‐ping Zhou, Bai‐bin Wang, Yu‐wen Ma, Ya‐jie Yu, Kai |
Author_xml | – sequence: 1 givenname: Li‐ping surname: Cui fullname: Cui, Li‐ping organization: Harbin Normal University – sequence: 2 givenname: Yu‐wen surname: Wang fullname: Wang, Yu‐wen organization: Harbin Normal University – sequence: 3 givenname: Kai orcidid: 0000-0002-6662-3724 surname: Yu fullname: Yu, Kai email: yukai@hrbnu.edu.cn organization: Harbin Normal University – sequence: 4 givenname: Ya‐jie surname: Ma fullname: Ma, Ya‐jie organization: Harbin Normal University – sequence: 5 givenname: Bai‐bin surname: Zhou fullname: Zhou, Bai‐bin email: zhou_bai_bin@hrbnu.edu.cn organization: Harbin Normal University |
BookMark | eNo9kc1OwzAQhC0EEr9XzitxblnbSRofq9ICEqVIgOAWuckGGVy7OA5VbzwCj8Fz8SSEH_UyuyONZg7fPtt23hFjxxz7HFGc6qpe9AWKBHOV5Vtsj2c860kU-fbm54-7bL9pnhH5YCCTPfY5hGlro_l6_xiW0bwR3JrYSTt32nm4oEjBNzG0ZWwDNTDSUdt1E-E8-JWDSweNiS3czKagXQUTwr64NtjPR17MEvAuerg25QtZmHi9gDu_0qGCcV2b0pCLMLZUxuDL395oSpi9UdDWwoPupuF2aU2Mxj0dsp1a24aO_u8Bu5-M70YXvavZ-eVoeNVbCinzXi6QKi5VmvB5milFmKKec4FSSpXIpJpnmmqiqkKhsFOZCslTTDjqeiBSecBO_nqXwb-21MTi2bfBdZOF5DLFVKlEdSn1l1oZS-tiGcxCh3XBsfhBUfygKDYoiuHZZLpx8hsVcIIv |
ContentType | Journal Article |
Copyright | 2024 Wiley‐VCH GmbH |
Copyright_xml | – notice: 2024 Wiley‐VCH GmbH |
DBID | 7SP 7SR 7U5 8BQ 8FD JG9 L7M |
DOI | 10.1002/adfm.202408968 |
DatabaseName | Electronics & Communications Abstracts Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | Materials Research Database Engineered Materials Abstracts Technology Research Database Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace METADEX |
DatabaseTitleList | Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1616-3028 |
EndPage | n/a |
ExternalDocumentID | ADFM202408968 |
Genre | article |
GrantInformation_xml | – fundername: Reform and Development Fund of Local Universities funderid: 2020GSP03 – fundername: Natural Science Foundation of Heilongjiang Province of China funderid: ZD2021B002 – fundername: National Science Foundation of China funderid: 22171061; 21771046 |
GroupedDBID | -~X .3N .GA 05W 0R~ 10A 1L6 1OC 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ UB1 V2E W8V W99 WBKPD WFSAM WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 ~IA ~WT 7SP 7SR 7U5 8BQ 8FD AAMMB AEFGJ AEYWJ AGHNM AGXDD AGYGG AIDQK AIDYY JG9 L7M |
ID | FETCH-LOGICAL-p2338-820ed139541b5699e050ab1203339434db6aefeedd0290dd03523150410af7253 |
IEDL.DBID | DR2 |
ISSN | 1616-301X |
IngestDate | Fri Jul 25 23:44:51 EDT 2025 Wed Jan 22 17:14:26 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 49 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-p2338-820ed139541b5699e050ab1203339434db6aefeedd0290dd03523150410af7253 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-6662-3724 |
PQID | 3135059949 |
PQPubID | 2045204 |
PageCount | 10 |
ParticipantIDs | proquest_journals_3135059949 wiley_primary_10_1002_adfm_202408968_ADFM202408968 |
PublicationCentury | 2000 |
PublicationDate | December 2, 2024 |
PublicationDateYYYYMMDD | 2024-12-02 |
PublicationDate_xml | – month: 12 year: 2024 text: December 2, 2024 day: 02 |
PublicationDecade | 2020 |
PublicationPlace | Hoboken |
PublicationPlace_xml | – name: Hoboken |
PublicationTitle | Advanced functional materials |
PublicationYear | 2024 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2017; 7 2017; 8 2021; 64 2023; 6 2019; 11 2019; 10 2019; 58 2020; 16 2020; 15 2020; 59 2023; 466 2020; 13 2022; 618 2022; 22 2018; 6 2021; 439 2022; 164 2018; 8 2021; 31 2023; 23 2018; 1 2019; 25 2019; 797 2023; 932 2007; 1 2022; 446 2020; 418 2021; 9 2022; 430 2019; 7 2023; 10 2018; 221 2021; 4 2023; 482 2019; 1 2023; 19 2022; 518 2004; 108 2016; 55 2021; 13 2021; 57 1997; 126 2015; 115 2020; 394 2022; 61 2022; 5 2015; 114 2021; 18 2018; 357 2017; 56 2022; 12 2020; 24 2022; 628 2024; 136 2021; 60 |
References_xml | – volume: 6 start-page: 3095 year: 2023 publication-title: ACS Appl. Nano Mater – volume: 24 year: 2020 publication-title: Sustainable Mater. Technol. – volume: 56 start-page: 4941 year: 2017 publication-title: Angew. Chem., Int. Ed. – volume: 115 start-page: 4893 year: 2015 publication-title: Chem. Rev. – volume: 61 year: 2022 publication-title: Inorg. Chem. – volume: 23 start-page: 6403 year: 2023 publication-title: Cryst. Growth Des. – volume: 10 year: 2023 publication-title: Adv. Sci. – volume: 518 year: 2022 publication-title: Mol. Catal. – volume: 439 year: 2021 publication-title: Coord. Chem. Rev. – volume: 136 year: 2024 publication-title: Angew. Chem. – volume: 18 start-page: 2079 year: 2021 publication-title: J. Iran. Chem. Soc. – volume: 466 year: 2023 publication-title: Chem. Eng. J. – volume: 628 start-page: 467 year: 2022 publication-title: J. Colloid Interface Sci. – volume: 418 year: 2020 publication-title: Coord. Chem. Rev. – volume: 16 year: 2020 publication-title: Small – volume: 114 start-page: 1350 year: 2015 publication-title: Int. J. Quantum Chem. – volume: 7 start-page: 7196 year: 2017 publication-title: ACS Catal. – volume: 64 start-page: 14 year: 2021 publication-title: Sci. China: Chem. – volume: 6 year: 2018 publication-title: J. Mater. Chem. A. – volume: 394 year: 2020 publication-title: Chem. Eng. J. – volume: 126 start-page: 43 year: 1997 publication-title: Mol. Catal. – volume: 618 start-page: 419 year: 2022 publication-title: J. Colloid Interface Sci. – volume: 55 start-page: 6290 year: 2016 publication-title: Angew. Chem., Int. Ed. – volume: 22 start-page: 3503 year: 2022 publication-title: Nano Lett. – volume: 932 year: 2023 publication-title: J. Alloys Compd. – volume: 11 year: 2019 publication-title: Nanoscale – volume: 19 year: 2023 publication-title: Small – volume: 12 year: 2022 publication-title: ACS Catal. – volume: 1 year: 2019 publication-title: Energy Chem – volume: 13 year: 2021 publication-title: Nanoscale – volume: 58 start-page: 4644 year: 2019 publication-title: Angew. Chem., Int. Ed. – volume: 5 year: 2022 publication-title: ACS Appl. Nano Mater. – volume: 430 year: 2022 publication-title: Electrochim. Acta – volume: 13 start-page: 3361 year: 2020 publication-title: Energy Environ. Sci. – volume: 15 year: 2020 publication-title: Nano – volume: 482 year: 2023 publication-title: Coord. Chem. Rev. – volume: 57 start-page: 9910 year: 2021 publication-title: Chem. Commun. – volume: 1 start-page: 208 year: 2018 publication-title: Nat. Catal. – volume: 1 start-page: 296 year: 2007 publication-title: Front. Chem. Eng. China. – volume: 59 year: 2020 publication-title: Angew. Chem., Int. Ed. – volume: 60 year: 2021 publication-title: Inorg. Chem. – volume: 8 year: 2018 publication-title: Wiley Interdiscip. Rev.: Comput. Mol. Sci. – volume: 108 year: 2004 publication-title: J. Phys. Chem. B – volume: 9 start-page: 3180 year: 2021 publication-title: J. Mater. Chem. A – volume: 221 start-page: 264 year: 2018 publication-title: Mater. Lett. – volume: 25 start-page: 5141 year: 2019 publication-title: Ionics – volume: 4 year: 2021 publication-title: ACS Appl. Energy Mater. – volume: 797 start-page: 1216 year: 2019 publication-title: J. Alloys Compd. – volume: 31 year: 2021 publication-title: Adv. Funct. Mater. – volume: 8 start-page: 458 year: 2017 publication-title: Chem. Sci. – volume: 7 start-page: 4784 year: 2019 publication-title: ACS Sustainable Chem. Eng. – volume: 10 start-page: 5599 year: 2019 publication-title: Nat. Commun. – volume: 446 year: 2022 publication-title: Chem. Eng. J. – volume: 164 year: 2022 publication-title: J. Phys. Chem. Solids. – volume: 357 start-page: 238 year: 2018 publication-title: J. Catal. |
SSID | ssj0017734 |
Score | 2.5804224 |
Snippet | Designing efficient, durable, and cheap bifunctional electrocatalysts is a challenging goal in water splitting. Herein, trivanadium‐substituted Keggin‐type... |
SourceID | proquest wiley |
SourceType | Aggregation Database Publisher |
SubjectTerms | Catalysts Density functional theory Electrocatalysts Electron distribution Electron transfer Heterojunctions Heterostructures Hydrothermal reactions Metal foams Nanoclusters nanometer heterostructures Nickel overall water splitting polymetallic oxide nanoflowers polyoxometalates Polyoxometallates Reaction kinetics Synergistic effect Water chemistry Water splitting |
Title | A Multi‐Active Site Subnano Heterostructures Catalyst Grown In situ POM and Fe0.2Ni0.8Co2O4 onto Nickel Foam Toward Efficient Electrocatalytic Overall Water Splitting |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.202408968 https://www.proquest.com/docview/3135059949 |
Volume | 34 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3NTttAEMdXFSd6aKGlKiWgOfTqsN4PJz5GISZUCqkaELlZu_ZaQgQbNQkSnHgEHoPn4kmYWSdp6BEu1vqw0lqzH_8Zz_yWsZ-ZtdZFMg9iZ3SgDPopbSoEFspabTPtIo_YGJxG_XP1a6zHa1X8NR9iFXCjleH3a1rgxk4P_0FDTV5QJTkhuuKIqn0pYYtU0Z8VPypsterfylFICV7heElt5OLwdfdX-nJdpfpjJvnMzHKAdXbJVXM-s83s_j9243u-YIt9WmhQ6NSTZpt9cOUX9nGNTPiVPXXAl-Y-Pzx2_I4II9SmgNtMacoK-pREU9Xs2Tk67NClKNDddAbH5NbDSQnTy9kcfg8HYMocEseb4vSSN9vdSgwVEDQBcBJeuQkklbmGM5-9Cz0PtMBzEHr19Tw-unSH44ThLUXPJnCB4vgvjFA7-4ztHXae9M66_WBxqUNwI9AdDlBxuBxlp1ah1VEcO665saHgUkpi1eU2Mq7AkzvnIub4RIUoUbWqkJuiJbT8xjbKqnTfGcTCaXI4VaG4KsK2zVQutbOtIkMvTBS7rLE0arpYmdNUhlITk0bFu0x466Q3NdcjrQnOIiW7pCu7pJ2jZLB6-_GWTntsk9o-C0Y02AZax-2jlpnZAz9fXwB3nO2t |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1Z3NbtNAEMdXVTkAB74RLQXmAEen6_WuEx96iJKYhDYJoqnIzezaa6lqa1d1QhVOPAKPwZVX4RF4EmbWSWg5IvXAxZItWVqtZ2b_M579LWOvU2OMDYPMi6xWntSYp7RoI7CQxiiTKhs6xMZwFPaP5Lupmm6wH6u9MDUfYl1wI89w8ZocnArSu3-ooTrLaSs5MbqisLXsq9y3i0vM2qq9QRc_8Rsh4t6k0_eWBwt45wJTMg9XPZuh9FHSNyqMIssV18YXPAgC4qVlJtQ2x9Uj4yLieEWVEqBykj7XeVPQQREY9W_RMeKE6-9-WBOr_Gaz_pEd-tRS5k9XnEgudq-P95qivaqL3cIW32c_V1NS97OcNOYz00i__EWL_K_m7AG7t5TZ0K794iHbsMUjdvcKfPEx-94Gt_v419dvbRf04RDlN2AkLXRRQp_6hMoarzu_sBV0qNC1qGbwlioXMCigOp7N4f14CLrIILa8IUbHvNHqlGIsgbgQgH52Yk8hLvUZTFyDMvQcswOXeujVJxC5AtoCxwnjz1QgPIWPqP8v4BDTA9eU_oQd3chUPWWbRVnYZwwiYRXl1DKXXOZ-y6QyC5Q1zTzFRFPkW2xnZUXJMvhUSeAHirA7MtpiwplDcl6jS5IaUi0SsoNkbQdJuxsP13fb__LSK3a7PxkeJAeD0f5zdoeeu6YfscM28UvZFyjdZualcxZgn27a0n4D2KZH4Q |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtNAEF5VRUJw4B_RUmAOcHS6Xu868aGHKIlJKEkq2orczK69lqq2dlQnVOHEI_AYHHkVXoEnYWadhJYjUg9cLNnSSqvd-flmPPMNY69TY4wNg8yLrFae1BintKgRWEhjlEmVDR3FxnAU9o_lu4mabLAfq16Ymh9inXAjzXD2mhR8muW7f0hDdZZTJzlRdEVha1lWuW8Xlxi0VXuDLt7wGyHi3lGn7y3nCnhTgRGZh07PZoh8lPSNCqPIcsW18QUPgoDo0jITapuj88i4iDg-EaQECJykz3XeFDQnAo3-LRnyiIZFdD-sCav8ZrP-jx36VFHmT1Y0kVzsXt_vNUB7FRY7vxbfZz9XJ1KXs5w25jPTSL_8RRb5Px3ZA3ZvCbKhXWvFQ7Zhi0fs7hXqxcfsextc7_Gvr9_azuTDIYJvQDta6KKEPlUJlTW57vzCVtChNNeimsFbylvAoIDqZDaHg_EQdJFBbHlDjE54o9UpxVgCsUIAatmpPYO41Odw5MqToecYO9DRQ6-eP-TSZwvcJ4w_U3rwDD4i-r-AQwwOXEn6E3Z8I0f1lG0WZWGfMYiEVRRRy1xymfstk8osUNY08xTDTJFvsZ2VECVL01MlgR8oIt2R0RYTThqSaU1cktQU1SIhOUjWcpC0u_Fw_bb9L4tesdsH3Th5PxjtP2d36LOr-BE7bBMvyr5A3DYzL52qAPt004L2G44DRpA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Multi%E2%80%90Active+Site+Subnano+Heterostructures+Catalyst+Grown+In+situ+POM+and+Fe0.2Ni0.8Co2O4+onto+Nickel+Foam+Toward+Efficient+Electrocatalytic+Overall+Water+Splitting&rft.jtitle=Advanced+functional+materials&rft.au=Li%E2%80%90ping+Cui&rft.au=Yu%E2%80%90wen+Wang&rft.au=Yu%2C+Kai&rft.au=Ya%E2%80%90jie+Ma&rft.date=2024-12-02&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=34&rft.issue=49&rft_id=info:doi/10.1002%2Fadfm.202408968&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon |