A Multi‐Active Site Subnano Heterostructures Catalyst Grown In situ POM and Fe0.2Ni0.8Co2O4 onto Nickel Foam Toward Efficient Electrocatalytic Overall Water Splitting

Designing efficient, durable, and cheap bifunctional electrocatalysts is a challenging goal in water splitting. Herein, trivanadium‐substituted Keggin‐type polyoxometalate H6PV3Mo9O40 (POM) and Fe0.2Ni0.8Co2O4 (FNCO) are in situ grown onto nickel foam (NF) yielding a self‐supporting nanoflower‐like...

Full description

Saved in:
Bibliographic Details
Published inAdvanced functional materials Vol. 34; no. 49
Main Authors Cui, Li‐ping, Wang, Yu‐wen, Yu, Kai, Ma, Ya‐jie, Zhou, Bai‐bin
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc 02.12.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Designing efficient, durable, and cheap bifunctional electrocatalysts is a challenging goal in water splitting. Herein, trivanadium‐substituted Keggin‐type polyoxometalate H6PV3Mo9O40 (POM) and Fe0.2Ni0.8Co2O4 (FNCO) are in situ grown onto nickel foam (NF) yielding a self‐supporting nanoflower‐like heterojunction via convenient hydrothermal reaction. The POM‐Fe0.2Ni0.8Co2O4/NF as HER and OER electrocatalyst, displays low overpotential (89 and 259 mV) and high electrode stability at 10 mA cm−2. POM‐FNCO/NF as the cathode and anode requires a lower voltage (1.58 V) to provide 10 mA cm−2 for overall water splitting (OWS), which is better than that of commercial catalysts. The electronic sponge characteristics of POM provide more active sites and fast reaction kinetics for HER and OER. The synergy of POM and FNCO optimizes the electron distribution at the interface and enhances the intrinsic activity of HER/OER. Density Functional Theory (DFT) calculations show that water molecules preferentially bind to Co sites on POM‐FNCO. Additionally, POM has proton‐coupled electron transfer properties and its modified FNCO exhibits thermodynamic advantages. The synergistic effect of these two factors enables the efficient overall water splitting of POM‐FNCO. This study offers a novel pathway for the construction of self‐supporting efficient catalysts by in situ growth of POM nanoclusters and spinel oxide sub‐nanometer heterojunctions on NF. POM and Fe0.2Ni0.8Co2O4 is grown in situ on nickel foam yielding multi‐active site heterostructures, which display excellent electrocatalytic activity for total water splitting ascribing to a good synergistic effect of POM nanoclusters and spinel oxide subnano flowers.
AbstractList Designing efficient, durable, and cheap bifunctional electrocatalysts is a challenging goal in water splitting. Herein, trivanadium‐substituted Keggin‐type polyoxometalate H6PV3Mo9O40 (POM) and Fe0.2Ni0.8Co2O4 (FNCO) are in situ grown onto nickel foam (NF) yielding a self‐supporting nanoflower‐like heterojunction via convenient hydrothermal reaction. The POM‐Fe0.2Ni0.8Co2O4/NF as HER and OER electrocatalyst, displays low overpotential (89 and 259 mV) and high electrode stability at 10 mA cm−2. POM‐FNCO/NF as the cathode and anode requires a lower voltage (1.58 V) to provide 10 mA cm−2 for overall water splitting (OWS), which is better than that of commercial catalysts. The electronic sponge characteristics of POM provide more active sites and fast reaction kinetics for HER and OER. The synergy of POM and FNCO optimizes the electron distribution at the interface and enhances the intrinsic activity of HER/OER. Density Functional Theory (DFT) calculations show that water molecules preferentially bind to Co sites on POM‐FNCO. Additionally, POM has proton‐coupled electron transfer properties and its modified FNCO exhibits thermodynamic advantages. The synergistic effect of these two factors enables the efficient overall water splitting of POM‐FNCO. This study offers a novel pathway for the construction of self‐supporting efficient catalysts by in situ growth of POM nanoclusters and spinel oxide sub‐nanometer heterojunctions on NF.
Designing efficient, durable, and cheap bifunctional electrocatalysts is a challenging goal in water splitting. Herein, trivanadium‐substituted Keggin‐type polyoxometalate H6PV3Mo9O40 (POM) and Fe0.2Ni0.8Co2O4 (FNCO) are in situ grown onto nickel foam (NF) yielding a self‐supporting nanoflower‐like heterojunction via convenient hydrothermal reaction. The POM‐Fe0.2Ni0.8Co2O4/NF as HER and OER electrocatalyst, displays low overpotential (89 and 259 mV) and high electrode stability at 10 mA cm−2. POM‐FNCO/NF as the cathode and anode requires a lower voltage (1.58 V) to provide 10 mA cm−2 for overall water splitting (OWS), which is better than that of commercial catalysts. The electronic sponge characteristics of POM provide more active sites and fast reaction kinetics for HER and OER. The synergy of POM and FNCO optimizes the electron distribution at the interface and enhances the intrinsic activity of HER/OER. Density Functional Theory (DFT) calculations show that water molecules preferentially bind to Co sites on POM‐FNCO. Additionally, POM has proton‐coupled electron transfer properties and its modified FNCO exhibits thermodynamic advantages. The synergistic effect of these two factors enables the efficient overall water splitting of POM‐FNCO. This study offers a novel pathway for the construction of self‐supporting efficient catalysts by in situ growth of POM nanoclusters and spinel oxide sub‐nanometer heterojunctions on NF. POM and Fe0.2Ni0.8Co2O4 is grown in situ on nickel foam yielding multi‐active site heterostructures, which display excellent electrocatalytic activity for total water splitting ascribing to a good synergistic effect of POM nanoclusters and spinel oxide subnano flowers.
Author Cui, Li‐ping
Zhou, Bai‐bin
Wang, Yu‐wen
Ma, Ya‐jie
Yu, Kai
Author_xml – sequence: 1
  givenname: Li‐ping
  surname: Cui
  fullname: Cui, Li‐ping
  organization: Harbin Normal University
– sequence: 2
  givenname: Yu‐wen
  surname: Wang
  fullname: Wang, Yu‐wen
  organization: Harbin Normal University
– sequence: 3
  givenname: Kai
  orcidid: 0000-0002-6662-3724
  surname: Yu
  fullname: Yu, Kai
  email: yukai@hrbnu.edu.cn
  organization: Harbin Normal University
– sequence: 4
  givenname: Ya‐jie
  surname: Ma
  fullname: Ma, Ya‐jie
  organization: Harbin Normal University
– sequence: 5
  givenname: Bai‐bin
  surname: Zhou
  fullname: Zhou, Bai‐bin
  email: zhou_bai_bin@hrbnu.edu.cn
  organization: Harbin Normal University
BookMark eNo9kc1OwzAQhC0EEr9XzitxblnbSRofq9ICEqVIgOAWuckGGVy7OA5VbzwCj8Fz8SSEH_UyuyONZg7fPtt23hFjxxz7HFGc6qpe9AWKBHOV5Vtsj2c860kU-fbm54-7bL9pnhH5YCCTPfY5hGlro_l6_xiW0bwR3JrYSTt32nm4oEjBNzG0ZWwDNTDSUdt1E-E8-JWDSweNiS3czKagXQUTwr64NtjPR17MEvAuerg25QtZmHi9gDu_0qGCcV2b0pCLMLZUxuDL395oSpi9UdDWwoPupuF2aU2Mxj0dsp1a24aO_u8Bu5-M70YXvavZ-eVoeNVbCinzXi6QKi5VmvB5milFmKKec4FSSpXIpJpnmmqiqkKhsFOZCslTTDjqeiBSecBO_nqXwb-21MTi2bfBdZOF5DLFVKlEdSn1l1oZS-tiGcxCh3XBsfhBUfygKDYoiuHZZLpx8hsVcIIv
ContentType Journal Article
Copyright 2024 Wiley‐VCH GmbH
Copyright_xml – notice: 2024 Wiley‐VCH GmbH
DBID 7SP
7SR
7U5
8BQ
8FD
JG9
L7M
DOI 10.1002/adfm.202408968
DatabaseName Electronics & Communications Abstracts
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList Materials Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1616-3028
EndPage n/a
ExternalDocumentID ADFM202408968
Genre article
GrantInformation_xml – fundername: Reform and Development Fund of Local Universities
  funderid: 2020GSP03
– fundername: Natural Science Foundation of Heilongjiang Province of China
  funderid: ZD2021B002
– fundername: National Science Foundation of China
  funderid: 22171061; 21771046
GroupedDBID -~X
.3N
.GA
05W
0R~
10A
1L6
1OC
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
UB1
V2E
W8V
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
~IA
~WT
7SP
7SR
7U5
8BQ
8FD
AAMMB
AEFGJ
AEYWJ
AGHNM
AGXDD
AGYGG
AIDQK
AIDYY
JG9
L7M
ID FETCH-LOGICAL-p2338-820ed139541b5699e050ab1203339434db6aefeedd0290dd03523150410af7253
IEDL.DBID DR2
ISSN 1616-301X
IngestDate Fri Jul 25 23:44:51 EDT 2025
Wed Jan 22 17:14:26 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 49
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-p2338-820ed139541b5699e050ab1203339434db6aefeedd0290dd03523150410af7253
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-6662-3724
PQID 3135059949
PQPubID 2045204
PageCount 10
ParticipantIDs proquest_journals_3135059949
wiley_primary_10_1002_adfm_202408968_ADFM202408968
PublicationCentury 2000
PublicationDate December 2, 2024
PublicationDateYYYYMMDD 2024-12-02
PublicationDate_xml – month: 12
  year: 2024
  text: December 2, 2024
  day: 02
PublicationDecade 2020
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
PublicationTitle Advanced functional materials
PublicationYear 2024
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2017; 7
2017; 8
2021; 64
2023; 6
2019; 11
2019; 10
2019; 58
2020; 16
2020; 15
2020; 59
2023; 466
2020; 13
2022; 618
2022; 22
2018; 6
2021; 439
2022; 164
2018; 8
2021; 31
2023; 23
2018; 1
2019; 25
2019; 797
2023; 932
2007; 1
2022; 446
2020; 418
2021; 9
2022; 430
2019; 7
2023; 10
2018; 221
2021; 4
2023; 482
2019; 1
2023; 19
2022; 518
2004; 108
2016; 55
2021; 13
2021; 57
1997; 126
2015; 115
2020; 394
2022; 61
2022; 5
2015; 114
2021; 18
2018; 357
2017; 56
2022; 12
2020; 24
2022; 628
2024; 136
2021; 60
References_xml – volume: 6
  start-page: 3095
  year: 2023
  publication-title: ACS Appl. Nano Mater
– volume: 24
  year: 2020
  publication-title: Sustainable Mater. Technol.
– volume: 56
  start-page: 4941
  year: 2017
  publication-title: Angew. Chem., Int. Ed.
– volume: 115
  start-page: 4893
  year: 2015
  publication-title: Chem. Rev.
– volume: 61
  year: 2022
  publication-title: Inorg. Chem.
– volume: 23
  start-page: 6403
  year: 2023
  publication-title: Cryst. Growth Des.
– volume: 10
  year: 2023
  publication-title: Adv. Sci.
– volume: 518
  year: 2022
  publication-title: Mol. Catal.
– volume: 439
  year: 2021
  publication-title: Coord. Chem. Rev.
– volume: 136
  year: 2024
  publication-title: Angew. Chem.
– volume: 18
  start-page: 2079
  year: 2021
  publication-title: J. Iran. Chem. Soc.
– volume: 466
  year: 2023
  publication-title: Chem. Eng. J.
– volume: 628
  start-page: 467
  year: 2022
  publication-title: J. Colloid Interface Sci.
– volume: 418
  year: 2020
  publication-title: Coord. Chem. Rev.
– volume: 16
  year: 2020
  publication-title: Small
– volume: 114
  start-page: 1350
  year: 2015
  publication-title: Int. J. Quantum Chem.
– volume: 7
  start-page: 7196
  year: 2017
  publication-title: ACS Catal.
– volume: 64
  start-page: 14
  year: 2021
  publication-title: Sci. China: Chem.
– volume: 6
  year: 2018
  publication-title: J. Mater. Chem. A.
– volume: 394
  year: 2020
  publication-title: Chem. Eng. J.
– volume: 126
  start-page: 43
  year: 1997
  publication-title: Mol. Catal.
– volume: 618
  start-page: 419
  year: 2022
  publication-title: J. Colloid Interface Sci.
– volume: 55
  start-page: 6290
  year: 2016
  publication-title: Angew. Chem., Int. Ed.
– volume: 22
  start-page: 3503
  year: 2022
  publication-title: Nano Lett.
– volume: 932
  year: 2023
  publication-title: J. Alloys Compd.
– volume: 11
  year: 2019
  publication-title: Nanoscale
– volume: 19
  year: 2023
  publication-title: Small
– volume: 12
  year: 2022
  publication-title: ACS Catal.
– volume: 1
  year: 2019
  publication-title: Energy Chem
– volume: 13
  year: 2021
  publication-title: Nanoscale
– volume: 58
  start-page: 4644
  year: 2019
  publication-title: Angew. Chem., Int. Ed.
– volume: 5
  year: 2022
  publication-title: ACS Appl. Nano Mater.
– volume: 430
  year: 2022
  publication-title: Electrochim. Acta
– volume: 13
  start-page: 3361
  year: 2020
  publication-title: Energy Environ. Sci.
– volume: 15
  year: 2020
  publication-title: Nano
– volume: 482
  year: 2023
  publication-title: Coord. Chem. Rev.
– volume: 57
  start-page: 9910
  year: 2021
  publication-title: Chem. Commun.
– volume: 1
  start-page: 208
  year: 2018
  publication-title: Nat. Catal.
– volume: 1
  start-page: 296
  year: 2007
  publication-title: Front. Chem. Eng. China.
– volume: 59
  year: 2020
  publication-title: Angew. Chem., Int. Ed.
– volume: 60
  year: 2021
  publication-title: Inorg. Chem.
– volume: 8
  year: 2018
  publication-title: Wiley Interdiscip. Rev.: Comput. Mol. Sci.
– volume: 108
  year: 2004
  publication-title: J. Phys. Chem. B
– volume: 9
  start-page: 3180
  year: 2021
  publication-title: J. Mater. Chem. A
– volume: 221
  start-page: 264
  year: 2018
  publication-title: Mater. Lett.
– volume: 25
  start-page: 5141
  year: 2019
  publication-title: Ionics
– volume: 4
  year: 2021
  publication-title: ACS Appl. Energy Mater.
– volume: 797
  start-page: 1216
  year: 2019
  publication-title: J. Alloys Compd.
– volume: 31
  year: 2021
  publication-title: Adv. Funct. Mater.
– volume: 8
  start-page: 458
  year: 2017
  publication-title: Chem. Sci.
– volume: 7
  start-page: 4784
  year: 2019
  publication-title: ACS Sustainable Chem. Eng.
– volume: 10
  start-page: 5599
  year: 2019
  publication-title: Nat. Commun.
– volume: 446
  year: 2022
  publication-title: Chem. Eng. J.
– volume: 164
  year: 2022
  publication-title: J. Phys. Chem. Solids.
– volume: 357
  start-page: 238
  year: 2018
  publication-title: J. Catal.
SSID ssj0017734
Score 2.5804224
Snippet Designing efficient, durable, and cheap bifunctional electrocatalysts is a challenging goal in water splitting. Herein, trivanadium‐substituted Keggin‐type...
SourceID proquest
wiley
SourceType Aggregation Database
Publisher
SubjectTerms Catalysts
Density functional theory
Electrocatalysts
Electron distribution
Electron transfer
Heterojunctions
Heterostructures
Hydrothermal reactions
Metal foams
Nanoclusters
nanometer heterostructures
Nickel
overall water splitting
polymetallic oxide nanoflowers
polyoxometalates
Polyoxometallates
Reaction kinetics
Synergistic effect
Water chemistry
Water splitting
Title A Multi‐Active Site Subnano Heterostructures Catalyst Grown In situ POM and Fe0.2Ni0.8Co2O4 onto Nickel Foam Toward Efficient Electrocatalytic Overall Water Splitting
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.202408968
https://www.proquest.com/docview/3135059949
Volume 34
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3NTttAEMdXFSd6aKGlKiWgOfTqsN4PJz5GISZUCqkaELlZu_ZaQgQbNQkSnHgEHoPn4kmYWSdp6BEu1vqw0lqzH_8Zz_yWsZ-ZtdZFMg9iZ3SgDPopbSoEFspabTPtIo_YGJxG_XP1a6zHa1X8NR9iFXCjleH3a1rgxk4P_0FDTV5QJTkhuuKIqn0pYYtU0Z8VPypsterfylFICV7heElt5OLwdfdX-nJdpfpjJvnMzHKAdXbJVXM-s83s_j9243u-YIt9WmhQ6NSTZpt9cOUX9nGNTPiVPXXAl-Y-Pzx2_I4II9SmgNtMacoK-pREU9Xs2Tk67NClKNDddAbH5NbDSQnTy9kcfg8HYMocEseb4vSSN9vdSgwVEDQBcBJeuQkklbmGM5-9Cz0PtMBzEHr19Tw-unSH44ThLUXPJnCB4vgvjFA7-4ztHXae9M66_WBxqUNwI9AdDlBxuBxlp1ah1VEcO665saHgUkpi1eU2Mq7AkzvnIub4RIUoUbWqkJuiJbT8xjbKqnTfGcTCaXI4VaG4KsK2zVQutbOtIkMvTBS7rLE0arpYmdNUhlITk0bFu0x466Q3NdcjrQnOIiW7pCu7pJ2jZLB6-_GWTntsk9o-C0Y02AZax-2jlpnZAz9fXwB3nO2t
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1Z3NbtNAEMdXVTkAB74RLQXmAEen6_WuEx96iJKYhDYJoqnIzezaa6lqa1d1QhVOPAKPwZVX4RF4EmbWSWg5IvXAxZItWVqtZ2b_M579LWOvU2OMDYPMi6xWntSYp7RoI7CQxiiTKhs6xMZwFPaP5Lupmm6wH6u9MDUfYl1wI89w8ZocnArSu3-ooTrLaSs5MbqisLXsq9y3i0vM2qq9QRc_8Rsh4t6k0_eWBwt45wJTMg9XPZuh9FHSNyqMIssV18YXPAgC4qVlJtQ2x9Uj4yLieEWVEqBykj7XeVPQQREY9W_RMeKE6-9-WBOr_Gaz_pEd-tRS5k9XnEgudq-P95qivaqL3cIW32c_V1NS97OcNOYz00i__EWL_K_m7AG7t5TZ0K794iHbsMUjdvcKfPEx-94Gt_v419dvbRf04RDlN2AkLXRRQp_6hMoarzu_sBV0qNC1qGbwlioXMCigOp7N4f14CLrIILa8IUbHvNHqlGIsgbgQgH52Yk8hLvUZTFyDMvQcswOXeujVJxC5AtoCxwnjz1QgPIWPqP8v4BDTA9eU_oQd3chUPWWbRVnYZwwiYRXl1DKXXOZ-y6QyC5Q1zTzFRFPkW2xnZUXJMvhUSeAHirA7MtpiwplDcl6jS5IaUi0SsoNkbQdJuxsP13fb__LSK3a7PxkeJAeD0f5zdoeeu6YfscM28UvZFyjdZualcxZgn27a0n4D2KZH4Q
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtNAEF5VRUJw4B_RUmAOcHS6Xu868aGHKIlJKEkq2orczK69lqq2dlQnVOHEI_AYHHkVXoEnYWadhJYjUg9cLNnSSqvd-flmPPMNY69TY4wNg8yLrFae1BintKgRWEhjlEmVDR3FxnAU9o_lu4mabLAfq16Ymh9inXAjzXD2mhR8muW7f0hDdZZTJzlRdEVha1lWuW8Xlxi0VXuDLt7wGyHi3lGn7y3nCnhTgRGZh07PZoh8lPSNCqPIcsW18QUPgoDo0jITapuj88i4iDg-EaQECJykz3XeFDQnAo3-LRnyiIZFdD-sCav8ZrP-jx36VFHmT1Y0kVzsXt_vNUB7FRY7vxbfZz9XJ1KXs5w25jPTSL_8RRb5Px3ZA3ZvCbKhXWvFQ7Zhi0fs7hXqxcfsextc7_Gvr9_azuTDIYJvQDta6KKEPlUJlTW57vzCVtChNNeimsFbylvAoIDqZDaHg_EQdJFBbHlDjE54o9UpxVgCsUIAatmpPYO41Odw5MqToecYO9DRQ6-eP-TSZwvcJ4w_U3rwDD4i-r-AQwwOXEn6E3Z8I0f1lG0WZWGfMYiEVRRRy1xymfstk8osUNY08xTDTJFvsZ2VECVL01MlgR8oIt2R0RYTThqSaU1cktQU1SIhOUjWcpC0u_Fw_bb9L4tesdsH3Th5PxjtP2d36LOr-BE7bBMvyr5A3DYzL52qAPt004L2G44DRpA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Multi%E2%80%90Active+Site+Subnano+Heterostructures+Catalyst+Grown+In+situ+POM+and+Fe0.2Ni0.8Co2O4+onto+Nickel+Foam+Toward+Efficient+Electrocatalytic+Overall+Water+Splitting&rft.jtitle=Advanced+functional+materials&rft.au=Li%E2%80%90ping+Cui&rft.au=Yu%E2%80%90wen+Wang&rft.au=Yu%2C+Kai&rft.au=Ya%E2%80%90jie+Ma&rft.date=2024-12-02&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=34&rft.issue=49&rft_id=info:doi/10.1002%2Fadfm.202408968&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon