Faster Diffusion of Oxygen Along Dislocations in (La,Sr)MnO3+δ Is a Space‐Charge Phenomenon

In displaying accelerated oxygen diffusion along extended defects, (La,Sr)MnO3+δ is an atypical acceptor‐doped perovskite‐type oxide. In this study, 18O/16O diffusion experiments on epitaxial thin films of La0.8Sr0.2MnO3+δ and molecular dynamics (MD) simulations are combined to elucidate the origin...

Full description

Saved in:
Bibliographic Details
Published inAdvanced functional materials Vol. 31; no. 51
Main Authors Börgers, Jacqueline M., Kler, Joe, Ran, Ke, Larenz, Elizabeth, Weirich, Thomas E., Dittmann, Regina, De Souza, Roger A.
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc 01.12.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In displaying accelerated oxygen diffusion along extended defects, (La,Sr)MnO3+δ is an atypical acceptor‐doped perovskite‐type oxide. In this study, 18O/16O diffusion experiments on epitaxial thin films of La0.8Sr0.2MnO3+δ and molecular dynamics (MD) simulations are combined to elucidate the origin of this phenomenon for dislocations: Does diffusion occur along dislocation cores or along space‐charge tubes? Transmission electron microscopy studies of the films revealed dislocations extending from the surface. 18O penetration profiles measured by secondary ion mass spectrometry indicated (slow) bulk diffusion and faster diffusion along dislocations. Oxygen tracer diffusivities obtained for temperatures 873 ≤ T [K] ≤ 973 were over two orders of magnitude higher for dislocations than for the bulk. The activation enthalpy of oxygen diffusion along dislocations, of (2.95 ± 0.21) eV, is surprisingly high relative to that for bulk diffusion, (2.67 ± 0.13) eV. This result militates against fast diffusion along dislocation cores. MD simulations confirmed no accelerated migration of oxide ions along dislocation cores. Faster diffusion of oxygen along dislocations in La0.8Sr0.2MnO3+δ is thus concluded to occur within space‐charge tubes in which oxygen vacancies are strongly accumulated. Reasons for and the consequences of space‐charge zones at extended defects in manganite perovskites are discussed. A judicious combination of experimental and computational methods is used to identify the origin of faster oxygen diffusion along dislocations in the perovskite‐oxide (La,Sr)MnO3+δ. Taken together, the results from 18O diffusion experiments and molecular dynamics simulations indicate that faster diffusion cannot occur along the structural core of the dislocations but rather along enveloping space‐charge tubes.
AbstractList In displaying accelerated oxygen diffusion along extended defects, (La,Sr)MnO3+δ is an atypical acceptor‐doped perovskite‐type oxide. In this study, 18O/16O diffusion experiments on epitaxial thin films of La0.8Sr0.2MnO3+δ and molecular dynamics (MD) simulations are combined to elucidate the origin of this phenomenon for dislocations: Does diffusion occur along dislocation cores or along space‐charge tubes? Transmission electron microscopy studies of the films revealed dislocations extending from the surface. 18O penetration profiles measured by secondary ion mass spectrometry indicated (slow) bulk diffusion and faster diffusion along dislocations. Oxygen tracer diffusivities obtained for temperatures 873 ≤ T [K] ≤ 973 were over two orders of magnitude higher for dislocations than for the bulk. The activation enthalpy of oxygen diffusion along dislocations, of (2.95 ± 0.21) eV, is surprisingly high relative to that for bulk diffusion, (2.67 ± 0.13) eV. This result militates against fast diffusion along dislocation cores. MD simulations confirmed no accelerated migration of oxide ions along dislocation cores. Faster diffusion of oxygen along dislocations in La0.8Sr0.2MnO3+δ is thus concluded to occur within space‐charge tubes in which oxygen vacancies are strongly accumulated. Reasons for and the consequences of space‐charge zones at extended defects in manganite perovskites are discussed.
In displaying accelerated oxygen diffusion along extended defects, (La,Sr)MnO3+δ is an atypical acceptor‐doped perovskite‐type oxide. In this study, 18O/16O diffusion experiments on epitaxial thin films of La0.8Sr0.2MnO3+δ and molecular dynamics (MD) simulations are combined to elucidate the origin of this phenomenon for dislocations: Does diffusion occur along dislocation cores or along space‐charge tubes? Transmission electron microscopy studies of the films revealed dislocations extending from the surface. 18O penetration profiles measured by secondary ion mass spectrometry indicated (slow) bulk diffusion and faster diffusion along dislocations. Oxygen tracer diffusivities obtained for temperatures 873 ≤ T [K] ≤ 973 were over two orders of magnitude higher for dislocations than for the bulk. The activation enthalpy of oxygen diffusion along dislocations, of (2.95 ± 0.21) eV, is surprisingly high relative to that for bulk diffusion, (2.67 ± 0.13) eV. This result militates against fast diffusion along dislocation cores. MD simulations confirmed no accelerated migration of oxide ions along dislocation cores. Faster diffusion of oxygen along dislocations in La0.8Sr0.2MnO3+δ is thus concluded to occur within space‐charge tubes in which oxygen vacancies are strongly accumulated. Reasons for and the consequences of space‐charge zones at extended defects in manganite perovskites are discussed. A judicious combination of experimental and computational methods is used to identify the origin of faster oxygen diffusion along dislocations in the perovskite‐oxide (La,Sr)MnO3+δ. Taken together, the results from 18O diffusion experiments and molecular dynamics simulations indicate that faster diffusion cannot occur along the structural core of the dislocations but rather along enveloping space‐charge tubes.
Author Dittmann, Regina
Weirich, Thomas E.
De Souza, Roger A.
Börgers, Jacqueline M.
Larenz, Elizabeth
Ran, Ke
Kler, Joe
Author_xml – sequence: 1
  givenname: Jacqueline M.
  orcidid: 0000-0001-8945-3142
  surname: Börgers
  fullname: Börgers, Jacqueline M.
  organization: Forschungszentrum Juelich GmbH
– sequence: 2
  givenname: Joe
  surname: Kler
  fullname: Kler, Joe
  organization: RWTH Aachen University
– sequence: 3
  givenname: Ke
  surname: Ran
  fullname: Ran, Ke
  organization: RWTH Aachen University
– sequence: 4
  givenname: Elizabeth
  surname: Larenz
  fullname: Larenz, Elizabeth
  organization: RWTH Aachen University
– sequence: 5
  givenname: Thomas E.
  surname: Weirich
  fullname: Weirich, Thomas E.
  organization: RWTH Aachen University
– sequence: 6
  givenname: Regina
  surname: Dittmann
  fullname: Dittmann, Regina
  organization: Forschungszentrum Juelich GmbH
– sequence: 7
  givenname: Roger A.
  orcidid: 0000-0001-7721-4128
  surname: De Souza
  fullname: De Souza, Roger A.
  email: desouza@pc.rwth-aachen.de
  organization: RWTH Aachen University
BookMark eNo9kMFOAjEQhhuDiYBePTfxotHF6XZpd48EREkgmKCJJ5tutwtLlnbdQpSbj-DD-Bw-hE9iCYbDZGby_5l_8rVQw1ijETon0CEA4a3M8lUnhJBAl0X8CDUJIyygEMaNw0xeTlDLuSUA4ZxGTfQ6lG6tazwo8nzjCmuwzfH0YzvXBvdKa-ZecaVVcu01hwuDL8fyZlZfTcyUXv9845HDEs8qqfTv51d_Ieu5xo8LbezKlzlFx7ksnT777230PLx76j8E4-n9qN8bB1VIKQ-U9O8onQFTKkoJy2nOSASpDClLuVSMJRxYmsQaAGJIOc2Ud_JuqjIVR5K20cX-blXbt412a7G0m9r4SBEyAixhwIl3JXvXe1HqrajqYiXrrSAgdgDFDqA4ABS9wXBy2OgfxSlpBg
ContentType Journal Article
Copyright 2021 The Authors. Advanced Functional Materials published by Wiley‐VCH GmbH
2021. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2021 The Authors. Advanced Functional Materials published by Wiley‐VCH GmbH
– notice: 2021. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
WIN
7SP
7SR
7U5
8BQ
8FD
JG9
L7M
DOI 10.1002/adfm.202105647
DatabaseName Wiley-Blackwell Open Access Collection
Wiley Free Archive
Electronics & Communications Abstracts
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList Materials Research Database

Database_xml – sequence: 1
  dbid: 24P
  name: Wiley-Blackwell Open Access Collection
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1616-3028
EndPage n/a
ExternalDocumentID ADFM202105647
Genre article
GrantInformation_xml – fundername: Deutsche Forschungsgemeinschaft
  funderid: SFB917 Nanoswitches; DE 2854/12‐1
GroupedDBID -~X
.3N
.GA
05W
0R~
10A
1L6
1OC
23M
24P
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AAXRX
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
UB1
V2E
W8V
W99
WBKPD
WFSAM
WIH
WIK
WIN
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
~IA
~WT
7SP
7SR
7U5
8BQ
8FD
JG9
L7M
ID FETCH-LOGICAL-p2337-ca177ced06cc4b16f3f6140ba236b7ac669706b98e00080b73dccc475bcdc84a3
IEDL.DBID 24P
ISSN 1616-301X
IngestDate Thu Oct 10 20:27:18 EDT 2024
Sat Aug 24 00:58:42 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 51
Language English
License Attribution-NonCommercial-NoDerivs
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-p2337-ca177ced06cc4b16f3f6140ba236b7ac669706b98e00080b73dccc475bcdc84a3
ORCID 0000-0001-7721-4128
0000-0001-8945-3142
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.202105647
PQID 2610696071
PQPubID 2045204
PageCount 8
ParticipantIDs proquest_journals_2610696071
wiley_primary_10_1002_adfm_202105647_ADFM202105647
PublicationCentury 2000
PublicationDate 2021-12-01
PublicationDateYYYYMMDD 2021-12-01
PublicationDate_xml – month: 12
  year: 2021
  text: 2021-12-01
  day: 01
PublicationDecade 2020
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
PublicationTitle Advanced functional materials
PublicationYear 2021
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2017; 5
2021; 25
2001; 144
2017; 8
1974; 10
2005; 176
2015; 103
2000; 43
1999; 122
2011; 15
2020; 10
2012; 14
1996; 79
2009; 11
1991; 49
1996; 86–88
2012; 211
2015; 137
2017; 39
2016; 118
2000; 129
1993; 76
1984; 12
2019; 28
2002; 106
2014; 161
2014; 162
2012; 24
2014; 6
2003; 86
2021; 7
2015; 17
2015; 5
2004; 104
2019; 31
2019; 30
2019; 1
2017; 27
1983; 75
1995; 117
2002; 4
2005; 87
2020; 103
2017; 299
1996; 124
1996; 123
2018; 20
2009; 34
2021; 15
2020; 195
2009; 70
2017; 11
1992; 53–56
2021; 17
2017; 56
1981; 14
2000; 83
2005; 97
2005; 53
1970; 42
1975; 25
2001; 3
2017; 19
1998; 106
2020; 22
2008; 178
1998; 73
2012; 4
1998; 145
2016; 8
References_xml – volume: 27
  year: 2017
  publication-title: Adv. Funct. Mater.
– volume: 137
  start-page: 4735
  year: 2015
  publication-title: J. Am. Chem. Soc.
– volume: 176
  start-page: 1465
  year: 2005
  publication-title: Solid State Ionics
– volume: 11
  start-page: 9939
  year: 2009
  publication-title: Phys. Chem. Chem. Phys.
– volume: 7
  year: 2021
  publication-title: Adv. Electron. Mater.
– volume: 161
  start-page: F344
  year: 2014
  publication-title: J. Electrochem. Soc.
– volume: 97
  year: 2005
  publication-title: J. Appl. Phys.
– volume: 129
  start-page: 163
  year: 2000
  publication-title: Solid State Ionics
– volume: 28
  start-page: 63
  year: 2019
  publication-title: Mater. Today
– volume: 20
  year: 2018
  publication-title: Phys. Chem. Chem. Phys.
– volume: 24
  start-page: 338
  year: 2012
  publication-title: Chem. Mater.
– volume: 53
  start-page: 5007
  year: 2005
  publication-title: Acta Mater.
– volume: 6
  year: 2014
  publication-title: Nanoscale
– volume: 86–88
  start-page: 1223
  year: 1996
  publication-title: Solid State Ionics
– volume: 144
  start-page: 71
  year: 2001
  publication-title: Solid State Ionics
– volume: 8
  year: 2017
  publication-title: Nat. Commun.
– volume: 11
  year: 2017
  publication-title: ACS Nano
– volume: 106
  start-page: 175
  year: 1998
  publication-title: Solid State Ionics
– volume: 211
  start-page: 51
  year: 2012
  publication-title: Solid State Ionics
– volume: 176
  start-page: 1915
  year: 2005
  publication-title: Solid State Ionics
– volume: 83
  start-page: 1129
  year: 2000
  publication-title: J. Am. Ceram. Soc.
– volume: 178
  start-page: 1950
  year: 2008
  publication-title: Solid State Ionics
– volume: 103
  start-page: 231
  year: 2015
  publication-title: Comput. Mater. Sci.
– volume: 42
  start-page: 11
  year: 1970
  publication-title: Phys. Status Solidi
– volume: 70
  start-page: 510
  year: 2009
  publication-title: SIAM J. Appl. Math.
– volume: 117
  start-page: 1
  year: 1995
  publication-title: J. Comp. Phys.
– volume: 43
  start-page: 43
  year: 2000
  publication-title: Mater. Lett.
– volume: 76
  start-page: 563
  year: 1993
  publication-title: J. Am. Ceram. Soc.
– volume: 103
  start-page: 5
  year: 2020
  publication-title: J. Am. Ceram. Soc.
– volume: 25
  start-page: 221
  year: 1975
  publication-title: Thin Solid Films
– volume: 14
  start-page: 290
  year: 2012
  publication-title: Phys. Chem. Chem. Phys.
– volume: 39
  start-page: 185
  year: 2017
  publication-title: J. Electroceram.
– volume: 123
  start-page: 382
  year: 1996
  publication-title: J. Solid State Chem.
– volume: 12
  start-page: 309
  year: 1984
  publication-title: Solid State Ionics
– volume: 49
  start-page: 111
  year: 1991
  publication-title: Solid State Ionics
– volume: 124
  start-page: 230
  year: 1996
  publication-title: J. Solid State Chem.
– volume: 87
  year: 2005
  publication-title: Appl. Phys. Lett.
– volume: 86
  start-page: 922
  year: 2003
  publication-title: J. Am. Ceram. Soc.
– volume: 4
  start-page: 2541
  year: 2012
  publication-title: ACS Appl. Mater. Interfaces
– volume: 53–56
  start-page: 597
  year: 1992
  publication-title: Solid State Ionics
– volume: 17
  start-page: 7659
  year: 2015
  publication-title: Phys. Chem. Chem. Phys.
– volume: 75
  start-page: 183
  year: 1983
  publication-title: Radiat. Eff.
– volume: 34
  start-page: 907
  year: 2009
  publication-title: MRS Bull.
– volume: 3
  start-page: 1331
  year: 2001
  publication-title: Int. J. Inorg. Mater.
– volume: 106
  start-page: 224
  year: 2002
  publication-title: J. Power Sources
– volume: 122
  start-page: 41
  year: 1999
  publication-title: Solid State Ionics
– volume: 79
  start-page: 8323
  year: 1996
  publication-title: J. Appl. Phys.
– volume: 5
  year: 2017
  publication-title: J. Mater. Chem. A
– volume: 129
  start-page: 145
  year: 2000
  publication-title: Solid State Ionics
– volume: 22
  year: 2020
  publication-title: Phys. Chem. Chem. Phys.
– volume: 1
  start-page: 675
  year: 2019
  publication-title: ACS Appl. Electron. Mater.
– volume: 299
  start-page: 70
  year: 2017
  publication-title: Solid State Ionics
– volume: 73
  start-page: 2920
  year: 1998
  publication-title: Appl. Phys. Lett.
– volume: 15
  start-page: 9355
  year: 2021
  publication-title: ACS Nano
– volume: 30
  year: 2019
  publication-title: Adv. Electron. Mater.
– volume: 17
  year: 2021
  publication-title: Small
– volume: 162
  start-page: F229
  year: 2014
  publication-title: J. Electrochem. Soc.
– volume: 17
  start-page: 1060
  year: 2015
  publication-title: Phys. Chem. Chem. Phys
– volume: 31
  year: 2019
  publication-title: Adv. Mater.
– volume: 14
  start-page: 3863
  year: 1981
  publication-title: J. Phys. C Solid State Phys.
– volume: 25
  year: 2021
  publication-title: Curr. Opin. Solid State Mater. Sci.
– volume: 19
  year: 2017
  publication-title: Phys. Chem. Chem. Phys.
– volume: 118
  start-page: 286
  year: 2016
  publication-title: Acta Mater.
– volume: 10
  start-page: 933
  year: 2020
  publication-title: Crystals
– volume: 56
  year: 2017
  publication-title: Angew. Chem. Int. Ed.
– volume: 86–88
  start-page: 1197
  year: 1996
  publication-title: Solid State Ionics
– volume: 5
  year: 2015
  publication-title: Adv. Energy Mater.
– volume: 8
  year: 2016
  publication-title: ACS Appl. Mater. Interfaces
– volume: 195
  start-page: 383
  year: 2020
  publication-title: Acta Mater.
– volume: 104
  start-page: 4791
  year: 2004
  publication-title: Chem. Rev.
– volume: 145
  start-page: 3196
  year: 1998
  publication-title: J. Electrochem. Soc.
– volume: 10
  start-page: 183
  year: 1974
  publication-title: J. Solid State Chem.
– volume: 15
  start-page: 861
  year: 2011
  publication-title: J. Solid State Electrochem.
– volume: 3
  start-page: 113
  year: 2001
  publication-title: Int. J. Inorg. Mater.
– volume: 4
  start-page: 125
  year: 2002
  publication-title: Solid State Sci.
SSID ssj0017734
Score 2.5060751
Snippet In displaying accelerated oxygen diffusion along extended defects, (La,Sr)MnO3+δ is an atypical acceptor‐doped perovskite‐type oxide. In this study, 18O/16O...
SourceID proquest
wiley
SourceType Aggregation Database
Publisher
SubjectTerms Defects
Diffusion rate
dislocations
Enthalpy
Manganese oxides
manganite perovskite
Materials science
Molecular dynamics
Oxygen
oxygen diffusion
Perovskites
Secondary ion mass spectrometry
Strontium
Thin films
Tubes
Title Faster Diffusion of Oxygen Along Dislocations in (La,Sr)MnO3+δ Is a Space‐Charge Phenomenon
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.202105647
https://www.proquest.com/docview/2610696071
Volume 31
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LTsMwELWgbGCB-IpCQV6wAEHU1E7teFlRooIorSiVuiLyt1RCadWPBDuOwGE4B4fgJNhJG8qWTZTIcaRMnjNvPJ5nAE6riIbCOgJPMIm8QDLjCc19j2Ff2BYaMuoKhZv3pNENbnvV3lIVf6YPkU-4uZGR_q_dAOdiUv4VDeXKuEpy5LaOD-gqWLPcJnS4RkE7zyNQmuWVScWt8Kr0FrKNPir_7f-HYC7T1NTPRFtgc04QYS37ottgRSc7YGNJNnAXPEXcyRvA-sCYmZvtgkMDW69vFguw9jJM-rZl4pxUiik4SODZHb_sjM-bSQtffH3CmwnksGOjZf39_uES7n0N2886cWoMw2QPdKPrx6uGN98nwRshjKknuX1PqZVPpAxEhRhsrNP1BUeYCMolIYz6RLBQpwRRUKykvZNWhVQyDDjeBwX7dH0AICU23lKhDquKBz6XHDOuuEaKcmaMUkVQWpgpnoN9EtsgzCfMCdUVAUpNF48yqYw4E0VGsTN2nBs7rtWjZn51-J9OR2DdnWcLS0qgMB3P9LGlB1NxkiLAHusP6AcezLSd
link.rule.ids 315,786,790,1382,11589,27955,27956,46085,46327,46509,46751
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JTsMwFLUYFsACMYqhgBcsQBCR2qkdLytKVKAFJKjUFZHHUgmlqC0S7DgCh-EcHIKT4J-0BbYsE8eR8v2d__70jNB-hfBYeUMQKKFJEGnhAmVlGAgaKj_CY8GhUbh5xeqt6KJdGVcTQi9MwQ8xCbjBzsj_17DBISB98sMaKo2DVnICZ8dHfBrNRsAGB-TO0c0kkcB5kVhmZSjxKrfHvI0hOfk7_w_C_I1Tc0OTLKHFEULE1WJJl9GUzVbQwi_ewFV0n0jgN8C1rnPPEO7CPYevX169MuDqYy_r-JEBWKlcqXA3wwcNeXzbP2xm1_To8wOfD7DEt95dtl9v75Bx71h882AzoGPoZWuolZzdndaD0UEJwROhlAda-u_U1oRM60iVmaPOW91QSUKZ4lIzJnjIlIhtjhAVp0b7J3lFaaPjSNJ1NOPfbjcQ5sw7XCa2ccXIKJRaUiGNtMRwKZwzZhOVxmJKR9o-SL0XFjIBTHWbiOSiS58Kroy0YEUmKQg7nQg7rdaS5uRq6z-T9tBc_a7ZSBvnV5fbaB7uF1UmJTQz7D_bHY8Vhmo314ZvqFO3HA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LTsMwELWgSAgWiK8oFPCCBQgiUjux42VFiQq0UKkgdUXkLyChtOpHgh1H4DCcg0NwEuykDWXL0nEcyeNx5s2M5xmAwxDRSFhD4AkmkRdIZjyhue8x7AvbQyNGXaFw64Y07oOrbtidqeLP-SGKgJvbGdn_2m3wvjJnv6ShXBlXSY7c1fEBnQcLAbHwwXE7B-0ij0BpnlcmVXfCq9qd0jb66Ozv-D8AcxamZnYmXgUrE4AIa_mKroE5na6D5RnawA3wEHNHbwDrz8aMXbQL9gy8fX2zugBrL7300fYMnZHKdAo-p_CoyU87g-NWeotPvj7h5RBy2LHesv5-_3AJ90cN2086dWwMvXQT3McXd-cNb3JPgtdHGFNPcjtPqZVPpAxElRhsrNH1BUeYCMolIYz6RLBIZwBRUKykfZOGQioZBRxvgZL9ut4GkBLrb6lIR6Higc8lx4wrrpGinBmjVBlUpmJKJso-TKwT5hPmiOrKAGWiS_o5VUaSkyKjxAk7KYSd1Opxq2jt_GfQAVhs1-OkeXlzvQuW3OP8jEkFlEaDsd6zSGEk9jNl-AHAaLZF
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Faster+Diffusion+of+Oxygen+Along+Dislocations+in+%28La%2CSr%29MnO3%2B%CE%B4+Is+a+Space%E2%80%90Charge+Phenomenon&rft.jtitle=Advanced+functional+materials&rft.au=B%C3%B6rgers%2C+Jacqueline+M&rft.au=Kler%2C+Joe&rft.au=Ke+Ran&rft.au=Larenz%2C+Elizabeth&rft.date=2021-12-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=31&rft.issue=51&rft_id=info:doi/10.1002%2Fadfm.202105647&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon