An Air‐Stable High‐Nickel Cathode with Reinforced Electrochemical Performance Enabled by Convertible Amorphous Li2CO3 Modification
High‐nickel (Ni ≥ 90%) cathodes with high specific capacity hold great potential for next‐generation lithium‐ion batteries (LIBs). However, their practical application is restricted by the high interfacial reactivity under continuous air erosion and electrolyte assault. Herein, a stable high‐nickel...
Saved in:
Published in | Advanced materials (Weinheim) Vol. 34; no. 12 |
---|---|
Main Authors | , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
Wiley Subscription Services, Inc
01.03.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | High‐nickel (Ni ≥ 90%) cathodes with high specific capacity hold great potential for next‐generation lithium‐ion batteries (LIBs). However, their practical application is restricted by the high interfacial reactivity under continuous air erosion and electrolyte assault. Herein, a stable high‐nickel cathode is rationally designed via in situ induction of a dense amorphous Li2CO3 on the particle surface by a preemptive atmosphere control. Among the residual lithium compounds, Li2CO3 is the most thermodynamically stable one, so a dense Li2CO3 coating layer can serve as a physical protection layer to isolate the cathode from contact with moist air. Furthermore, amorphous Li2CO3 can be transformed into a robust F‐rich cathode electrolyte interphase (CEI) during cycling, which reinforces the cathode's interfacial stability and improves the electrochemical performance. The assembled coin cell with this modified cathode delivers a high discharge capacity of 232.4 mAh g–1 with a superior initial Coulombic efficiency (CE) of 95.1%, and considerable capacity retention of 90.4% after 100 cycles. Furthermore, no slurry gelation occurs during the large‐scale electrode fabrication process. This work opens a valuable perspective on the evolution of amorphous Li2CO3 in LIBs and provides guidance on protecting unstable high‐capacity cathodes for energy‐storage devices.
A high‐nickel cathode (Ni ≥ 90%) is developed through controlling the surface residual lithium composition with a formed amorphous Li2CO3 protective layer. This cathode can resist corrosion by air, and will be converted into a stable cathode electrolyte interphase during the electrochemical process, resulting in enhanced storage performance and extended cycle life for high‐nickel cathodes. |
---|---|
AbstractList | High‐nickel (Ni ≥ 90%) cathodes with high specific capacity hold great potential for next‐generation lithium‐ion batteries (LIBs). However, their practical application is restricted by the high interfacial reactivity under continuous air erosion and electrolyte assault. Herein, a stable high‐nickel cathode is rationally designed via in situ induction of a dense amorphous Li2CO3 on the particle surface by a preemptive atmosphere control. Among the residual lithium compounds, Li2CO3 is the most thermodynamically stable one, so a dense Li2CO3 coating layer can serve as a physical protection layer to isolate the cathode from contact with moist air. Furthermore, amorphous Li2CO3 can be transformed into a robust F‐rich cathode electrolyte interphase (CEI) during cycling, which reinforces the cathode's interfacial stability and improves the electrochemical performance. The assembled coin cell with this modified cathode delivers a high discharge capacity of 232.4 mAh g–1 with a superior initial Coulombic efficiency (CE) of 95.1%, and considerable capacity retention of 90.4% after 100 cycles. Furthermore, no slurry gelation occurs during the large‐scale electrode fabrication process. This work opens a valuable perspective on the evolution of amorphous Li2CO3 in LIBs and provides guidance on protecting unstable high‐capacity cathodes for energy‐storage devices.
A high‐nickel cathode (Ni ≥ 90%) is developed through controlling the surface residual lithium composition with a formed amorphous Li2CO3 protective layer. This cathode can resist corrosion by air, and will be converted into a stable cathode electrolyte interphase during the electrochemical process, resulting in enhanced storage performance and extended cycle life for high‐nickel cathodes. High‐nickel (Ni ≥ 90%) cathodes with high specific capacity hold great potential for next‐generation lithium‐ion batteries (LIBs). However, their practical application is restricted by the high interfacial reactivity under continuous air erosion and electrolyte assault. Herein, a stable high‐nickel cathode is rationally designed via in situ induction of a dense amorphous Li2CO3 on the particle surface by a preemptive atmosphere control. Among the residual lithium compounds, Li2CO3 is the most thermodynamically stable one, so a dense Li2CO3 coating layer can serve as a physical protection layer to isolate the cathode from contact with moist air. Furthermore, amorphous Li2CO3 can be transformed into a robust F‐rich cathode electrolyte interphase (CEI) during cycling, which reinforces the cathode's interfacial stability and improves the electrochemical performance. The assembled coin cell with this modified cathode delivers a high discharge capacity of 232.4 mAh g–1 with a superior initial Coulombic efficiency (CE) of 95.1%, and considerable capacity retention of 90.4% after 100 cycles. Furthermore, no slurry gelation occurs during the large‐scale electrode fabrication process. This work opens a valuable perspective on the evolution of amorphous Li2CO3 in LIBs and provides guidance on protecting unstable high‐capacity cathodes for energy‐storage devices. |
Author | Xiao, Dong‐Dong Meng, Xin‐Hai Fan, Min Sheng, Hang Wang, Fuyi Tang, Jilin Zou, Yu‐Gang Guo, Yu‐Guo Wan, Jing Shi, Ji‐Lei Chen, Wan‐Ping Wen, Rui |
Author_xml | – sequence: 1 givenname: Hang surname: Sheng fullname: Sheng, Hang organization: University of Chinese Academy of Sciences – sequence: 2 givenname: Xin‐Hai surname: Meng fullname: Meng, Xin‐Hai organization: University of Chinese Academy of Sciences – sequence: 3 givenname: Dong‐Dong surname: Xiao fullname: Xiao, Dong‐Dong organization: Chinese Academy of Sciences – sequence: 4 givenname: Min surname: Fan fullname: Fan, Min organization: University of Chinese Academy of Sciences – sequence: 5 givenname: Wan‐Ping surname: Chen fullname: Chen, Wan‐Ping organization: University of Chinese Academy of Sciences – sequence: 6 givenname: Jing surname: Wan fullname: Wan, Jing organization: University of Chinese Academy of Sciences – sequence: 7 givenname: Jilin surname: Tang fullname: Tang, Jilin organization: Chinese Academy of Sciences – sequence: 8 givenname: Yu‐Gang surname: Zou fullname: Zou, Yu‐Gang organization: University of Chinese Academy of Sciences – sequence: 9 givenname: Fuyi surname: Wang fullname: Wang, Fuyi organization: Chinese Academy of Sciences – sequence: 10 givenname: Rui surname: Wen fullname: Wen, Rui organization: University of Chinese Academy of Sciences – sequence: 11 givenname: Ji‐Lei surname: Shi fullname: Shi, Ji‐Lei email: jileishi@iccas.ac.cn organization: University of Chinese Academy of Sciences – sequence: 12 givenname: Yu‐Guo orcidid: 0000-0003-0322-8476 surname: Guo fullname: Guo, Yu‐Guo email: ygguo@iccas.ac.cn organization: University of Chinese Academy of Sciences |
BookMark | eNo9kEtPwzAQhC1UJNrClbMlzil-Ja2PUSgUqTzE4xy59oYYErs4KVVvnDjzG_klJCritBrt7ozmG6GB8w4QOqVkQglh58rUasIIo2QmxfQADWnMaCSIjAdoSCSPI5mI2REaNc0rIUQmJBmir9Th1Iafz-_HVq0qwAv7Unbq1uo3qHCm2tIbwFvblvgBrCt80GDwvALdBq9LqK1WFb6H0G1q5TTgueuNDF7tcObdB4TW9sZp7cO69JsGLy3L7ji-8cYW3XdrvTtGh4WqGjj5m2P0fDl_yhbR8u7qOkuX0ZpxPo20UHzGDCFKJRwIKxgtuOArY-JYQ9dOJ8CJTiQDGU-ViRVIKlY6mQkw1Ag-Rmd733Xw7xto2vzVb4LrInOWCEY7Sl3QGMn91dZWsMvXwdYq7HJK8h503oPO_0Hn6cVN-q_4L_T_eQI |
ContentType | Journal Article |
Copyright | 2022 Wiley‐VCH GmbH |
Copyright_xml | – notice: 2022 Wiley‐VCH GmbH |
DBID | 7SR 8BQ 8FD JG9 |
DOI | 10.1002/adma.202108947 |
DatabaseName | Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database |
DatabaseTitle | Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX |
DatabaseTitleList | Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1521-4095 |
EndPage | n/a |
ExternalDocumentID | ADMA202108947 |
Genre | article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 51902314; 22179133 – fundername: Transformational Technologies for Clean Energy and Demonstration – fundername: Strategic Priority Research Program of the Chinese Academy of Sciences funderid: XDA21070300 – fundername: Basic Science Center Project of National Natural Science Foundation funderid: 51788104 – fundername: Youth Innovation Promotion Association CAS funderid: 2019033 |
GroupedDBID | --- .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABIJN ABJNI ABLJU ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RWM RX1 RYL SUPJJ TN5 UB1 UPT V2E W8V W99 WBKPD WFSAM WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 YR2 ZZTAW ~02 ~IA ~WT 7SR 8BQ 8FD AAMMB ADMLS AEFGJ AEYWJ AGHNM AGXDD AGYGG AIDQK AIDYY JG9 |
ID | FETCH-LOGICAL-p2337-c4a382d00aa63e02f21f343bdd55ce648c6e30c692e957ad5ae914bc684ed1d43 |
IEDL.DBID | DR2 |
ISSN | 0935-9648 |
IngestDate | Fri Jul 25 02:58:26 EDT 2025 Wed Jan 22 16:25:44 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-p2337-c4a382d00aa63e02f21f343bdd55ce648c6e30c692e957ad5ae914bc684ed1d43 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-0322-8476 |
PQID | 2642193523 |
PQPubID | 2045203 |
PageCount | 9 |
ParticipantIDs | proquest_journals_2642193523 wiley_primary_10_1002_adma_202108947_ADMA202108947 |
PublicationCentury | 2000 |
PublicationDate | 2022-03-01 |
PublicationDateYYYYMMDD | 2022-03-01 |
PublicationDate_xml | – month: 03 year: 2022 text: 2022-03-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim |
PublicationTitle | Advanced materials (Weinheim) |
PublicationYear | 2022 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2021; 9 2019; 7 2011; 334 2021; 6 2021; 87 2004; 104 2019; 31 2008; 18 2004; 7 2020; 59 2009; 156 2000; 2 2020; 167 2020; 12 2020; 11 2020; 10 2020; 32 2011; 4 2015; 8 1970; 2 2006; 311 2016; 4 2021; 35 2010; 22 2016; 6 2020; 5 2016; 7 1987; 134 2021; 33 2021; 11 2007; 173 2013; 233 2002; 107 2018; 30 2020; 24 2017; 164 2008; 20 2011; 184 2008; 451 1998; 76 2018; 57 |
References_xml | – volume: 107 start-page: 1 year: 2002 publication-title: J. Power Sources – volume: 10 year: 2020 publication-title: Adv. Energy Mater. – volume: 156 year: 2009 publication-title: J. Electrochem. Soc. – volume: 11 start-page: 3204 year: 2020 publication-title: Nat. Commun. – volume: 57 start-page: 6480 year: 2018 publication-title: Angew. Chem., Int. Ed. – volume: 9 start-page: 3995 year: 2021 publication-title: J. Mater. Chem. A – volume: 233 start-page: 121 year: 2013 publication-title: J. Power Sources – volume: 184 start-page: 304 year: 2011 publication-title: J. Solid State Chem. – volume: 11 start-page: 1550 year: 2020 publication-title: Nat. Commun. – volume: 76 start-page: 159 year: 1998 publication-title: J. Power Sources – volume: 87 year: 2021 publication-title: Nano Energy – volume: 134 start-page: 1611 year: 1987 publication-title: J. Electrochem. Soc. – volume: 164 year: 2017 publication-title: J. Electrochem. Soc. – volume: 7 year: 2016 publication-title: Nat. Commun. – volume: 30 start-page: 8852 year: 2018 publication-title: Chem. Mater. – volume: 12 year: 2020 publication-title: ACS Appl. Mat. Interfaces – volume: 32 start-page: 9479 year: 2020 publication-title: Chem. Mater. – volume: 59 year: 2020 publication-title: Angew. Chem., Int. Ed. – volume: 2 start-page: 1319 year: 2000 publication-title: Phys. Chem. Chem. Phys. – volume: 22 start-page: 587 year: 2010 publication-title: Chem. Mater. – volume: 8 start-page: 1464 year: 2015 publication-title: Nano Res. – volume: 24 start-page: 247 year: 2020 publication-title: Energy Storage Mater. – volume: 2 start-page: 70 year: 1970 publication-title: Phys. Scr. – volume: 104 start-page: 4271 year: 2004 publication-title: Chem. Rev. – volume: 7 start-page: 2694 year: 2019 publication-title: J. Mater. Chem. A – volume: 31 start-page: 7574 year: 2019 publication-title: Chem. Mater. – volume: 167 year: 2020 publication-title: J. Electrochem. Soc. – volume: 4 start-page: 5839 year: 2016 publication-title: J. Mater. Chem. A – volume: 33 year: 2021 publication-title: Adv. Mater. – volume: 30 year: 2018 publication-title: Adv. Mater. – volume: 6 year: 2016 publication-title: Adv. Energy Mater. – volume: 311 start-page: 977 year: 2006 publication-title: Science – volume: 11 year: 2021 publication-title: Adv. Energy Mater. – volume: 7 start-page: A190 year: 2004 publication-title: Electrochem. Solid‐State Lett. – volume: 334 start-page: 928 year: 2011 publication-title: Science – volume: 20 start-page: 2878 year: 2008 publication-title: Adv. Mater. – volume: 5 start-page: 26 year: 2020 publication-title: Nat. Energy – volume: 18 start-page: 57 year: 2008 publication-title: J. Met. Mater. Miner. – volume: 6 start-page: 362 year: 2021 publication-title: Nat. Energy – volume: 4 start-page: 3243 year: 2011 publication-title: Energy Environ. Sci. – volume: 173 start-page: 556 year: 2007 publication-title: J. Power Sources – volume: 451 start-page: 652 year: 2008 publication-title: Nature – volume: 4 start-page: 2223 year: 2011 publication-title: Energy Environ. Sci. – volume: 35 year: 2021 publication-title: Energy Fuels |
SSID | ssj0009606 |
Score | 2.6663795 |
Snippet | High‐nickel (Ni ≥ 90%) cathodes with high specific capacity hold great potential for next‐generation lithium‐ion batteries (LIBs). However, their practical... |
SourceID | proquest wiley |
SourceType | Aggregation Database Publisher |
SubjectTerms | air stability amorphous Li 2CO 3 cathode electrolyte interphase Cathodes Cathodic protection Electrochemical analysis Electrolytes Energy storage high‐nickel cathodes Interface stability Lithium compounds Lithium-ion batteries Materials science Nickel Preempting |
Title | An Air‐Stable High‐Nickel Cathode with Reinforced Electrochemical Performance Enabled by Convertible Amorphous Li2CO3 Modification |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.202108947 https://www.proquest.com/docview/2642193523 |
Volume | 34 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELYQEwy8EY-CPLCmJLbz8BiVVhWigCqQ2CI_rhICmqqPASYmZn4jvwSf0xeMMFqK7cR3F39n3feZkDOwUewSNhuYVMlA6FgFGeuZQCZMScANzIv6dK6T9r24fIgfllj8lT7E_MANI8P_rzHAlR6dL0RDlfW6QS5lyaRAOjkWbCEq6i70oxCee7E9HrvZRTZTbQzZ-c_uP_DlMkr120xrk6jZC1bVJU_1yVjXzdsv7cb_fMEW2ZhiUJpXTrNNVqC_Q9aXlAl3yUfep_nj8Ov906FR_QwU60FcyznOEzxT5A2WFiie4tIuePVVA5Y2q0t1zFSFgN4uaAm06VlalupX2sBSdzc7Dpy_lM7U5WRErx5Z44bTTmmxfMl7zB65bzXvGu1gemVDMGCcp4ERimfMhqFSCYeQ9VjU44Jra-PYgLOASYCHJpEMZJwqGyuQkdAmyYTzGiv4Plntl304IDSKgKtUSttzOR-oRCV4BSJom0YqdM8ektrMZMU07kYFQ96uszbjh4T5tS8GlWpHUekzswJXvZivepFfdPJ56-gvnY7JGkNOhC9Mq5HV8XACJw6pjPWp98ZvOuDkXQ |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1Z3NbtQwEIBHpRygB_4rCgV8gGPaxHac-MAh2t1qS3cLqlqpt-DYs1LVsqm6u6rKiRNnXoVX4RF4EjxOdrfliNQDR0uJE3tm7Blr5jPAW3RJ6gM2F9nM6EhWqYlyPrKRVtxopA0sQH2G-6p_JD8cp8cr8HNeC9PwIRYHbmQZYb0mA6cD6e0lNdS4AA7yMUuuZdbmVe7h1aWP2ibvd7texO843-kddvpRe7FAdM6FyCIrjci5i2NjlMCYj3gyElJUzqWpRSVzq1DEVmmOOs2MSw3qRFZW5dKPzUnh-70Dd-kaccL1dw-WxCoKCALeT6R-vDKfcyJjvn3zf294tNf94rCx7TyEX_MpafJZTrdm02rLfv2LFvlfzdkjeNC62axo7OIxrOD4Caxdgy8-he_FmBUnF7-__fAOd3WGjFJefMvbximeMSqNrB0yOqhmBxgAsxYd6zX3BtkWtMA-LSsvWC8UojlWXbEOZfP7r1PHxZfaa3M9m7DBCe98FGxYO8rQCkbxDI5uZSLWYXVcj_E5sCRBYTKt3ciHtWiUUXTLI1YuS0zsn92AzbmOlO3SMik5lSZ79eJiA3gQdnnegEnKBkHNS5JyuZByWXSHxaL14l9eegP3-ofDQTnY3d97Cfc5lYCEPLxNWJ1ezPCVd8ym1etgCgw-37Ye_QGaz0LG |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT9wwEB5RkKpy6BtBoa0P9BhIbMeJDxyifYjXAkJF4pY69kRCwGbF7grRU0-c-Sn8Ff5Cf0ltJ7sLPVbi0KOlxInnYc9Y33wDsI4mim3CZgKdKBnwIlZBSksdSEGVRHeAeVKf3oHYPuG7p_HpHNxPamFqfojphZvzDL9fOwcfmHJzRhqqjOcNsilLKnnSwCr38ObaJm3DrZ221fA3Srud763toOkrEAwoY0mguWIpNWGolGAY0pJGJeOsMCaONQqeaoEs1EJSlHGiTKxQRrzQIuV2aYYzO-8LWOAilK5ZRPt4Rljl8gHP7sdiu1yeTmgiQ7r59H-fBLSPw2J_rnXfwMNEIjWc5XxjPCo29M-_yCL_J5G9hddNkE2y2ivewRz238PiI-rFD3Cb9Ul2dvX7150Nt4sLJA7wYkfWM87xgrjCyMogcdfU5Bg9vaxGQzp11yDd0CyQo1ndBen4MjRDihvSclh--3U3cXZZWVuuxkOyf0Zbh4z0KuPwWd4lPsLJswhiCeb7VR-XgUQRMpVIaUqb1KISSrgej1iYJFKhfXYF1iYmkjcbyzCnrjDZWhdlK0C9rvNBTUuS1wTUNHdazqdazrN2L5uOPv3LS1_h5VG7m-_vHOytwivq6j88CG8N5kdXY_xso7JR8cU7AoEfz21GfwB2XUF1 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Air%E2%80%90Stable+High%E2%80%90Nickel+Cathode+with+Reinforced+Electrochemical+Performance+Enabled+by+Convertible+Amorphous+Li2CO3+Modification&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Sheng%2C+Hang&rft.au=Xin%E2%80%90Hai+Meng&rft.au=Dong%E2%80%90Dong+Xiao&rft.au=Fan%2C+Min&rft.date=2022-03-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0935-9648&rft.eissn=1521-4095&rft.volume=34&rft.issue=12&rft_id=info:doi/10.1002%2Fadma.202108947&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon |