An Air‐Stable High‐Nickel Cathode with Reinforced Electrochemical Performance Enabled by Convertible Amorphous Li2CO3 Modification

High‐nickel (Ni ≥ 90%) cathodes with high specific capacity hold great potential for next‐generation lithium‐ion batteries (LIBs). However, their practical application is restricted by the high interfacial reactivity under continuous air erosion and electrolyte assault. Herein, a stable high‐nickel...

Full description

Saved in:
Bibliographic Details
Published inAdvanced materials (Weinheim) Vol. 34; no. 12
Main Authors Sheng, Hang, Meng, Xin‐Hai, Xiao, Dong‐Dong, Fan, Min, Chen, Wan‐Ping, Wan, Jing, Tang, Jilin, Zou, Yu‐Gang, Wang, Fuyi, Wen, Rui, Shi, Ji‐Lei, Guo, Yu‐Guo
Format Journal Article
LanguageEnglish
Published Weinheim Wiley Subscription Services, Inc 01.03.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract High‐nickel (Ni ≥ 90%) cathodes with high specific capacity hold great potential for next‐generation lithium‐ion batteries (LIBs). However, their practical application is restricted by the high interfacial reactivity under continuous air erosion and electrolyte assault. Herein, a stable high‐nickel cathode is rationally designed via in situ induction of a dense amorphous Li2CO3 on the particle surface by a preemptive atmosphere control. Among the residual lithium compounds, Li2CO3 is the most thermodynamically stable one, so a dense Li2CO3 coating layer can serve as a physical protection layer to isolate the cathode from contact with moist air. Furthermore, amorphous Li2CO3 can be transformed into a robust F‐rich cathode electrolyte interphase (CEI) during cycling, which reinforces the cathode's interfacial stability and improves the electrochemical performance. The assembled coin cell with this modified cathode delivers a high discharge capacity of 232.4 mAh g–1 with a superior initial Coulombic efficiency (CE) of 95.1%, and considerable capacity retention of 90.4% after 100 cycles. Furthermore, no slurry gelation occurs during the large‐scale electrode fabrication process. This work opens a valuable perspective on the evolution of amorphous Li2CO3 in LIBs and provides guidance on protecting unstable high‐capacity cathodes for energy‐storage devices. A high‐nickel cathode (Ni ≥ 90%) is developed through controlling the surface residual lithium composition with a formed amorphous Li2CO3 protective layer. This cathode can resist corrosion by air, and will be converted into a stable cathode electrolyte interphase during the electrochemical process, resulting in enhanced storage performance and extended cycle life for high‐nickel cathodes.
AbstractList High‐nickel (Ni ≥ 90%) cathodes with high specific capacity hold great potential for next‐generation lithium‐ion batteries (LIBs). However, their practical application is restricted by the high interfacial reactivity under continuous air erosion and electrolyte assault. Herein, a stable high‐nickel cathode is rationally designed via in situ induction of a dense amorphous Li2CO3 on the particle surface by a preemptive atmosphere control. Among the residual lithium compounds, Li2CO3 is the most thermodynamically stable one, so a dense Li2CO3 coating layer can serve as a physical protection layer to isolate the cathode from contact with moist air. Furthermore, amorphous Li2CO3 can be transformed into a robust F‐rich cathode electrolyte interphase (CEI) during cycling, which reinforces the cathode's interfacial stability and improves the electrochemical performance. The assembled coin cell with this modified cathode delivers a high discharge capacity of 232.4 mAh g–1 with a superior initial Coulombic efficiency (CE) of 95.1%, and considerable capacity retention of 90.4% after 100 cycles. Furthermore, no slurry gelation occurs during the large‐scale electrode fabrication process. This work opens a valuable perspective on the evolution of amorphous Li2CO3 in LIBs and provides guidance on protecting unstable high‐capacity cathodes for energy‐storage devices. A high‐nickel cathode (Ni ≥ 90%) is developed through controlling the surface residual lithium composition with a formed amorphous Li2CO3 protective layer. This cathode can resist corrosion by air, and will be converted into a stable cathode electrolyte interphase during the electrochemical process, resulting in enhanced storage performance and extended cycle life for high‐nickel cathodes.
High‐nickel (Ni ≥ 90%) cathodes with high specific capacity hold great potential for next‐generation lithium‐ion batteries (LIBs). However, their practical application is restricted by the high interfacial reactivity under continuous air erosion and electrolyte assault. Herein, a stable high‐nickel cathode is rationally designed via in situ induction of a dense amorphous Li2CO3 on the particle surface by a preemptive atmosphere control. Among the residual lithium compounds, Li2CO3 is the most thermodynamically stable one, so a dense Li2CO3 coating layer can serve as a physical protection layer to isolate the cathode from contact with moist air. Furthermore, amorphous Li2CO3 can be transformed into a robust F‐rich cathode electrolyte interphase (CEI) during cycling, which reinforces the cathode's interfacial stability and improves the electrochemical performance. The assembled coin cell with this modified cathode delivers a high discharge capacity of 232.4 mAh g–1 with a superior initial Coulombic efficiency (CE) of 95.1%, and considerable capacity retention of 90.4% after 100 cycles. Furthermore, no slurry gelation occurs during the large‐scale electrode fabrication process. This work opens a valuable perspective on the evolution of amorphous Li2CO3 in LIBs and provides guidance on protecting unstable high‐capacity cathodes for energy‐storage devices.
Author Xiao, Dong‐Dong
Meng, Xin‐Hai
Fan, Min
Sheng, Hang
Wang, Fuyi
Tang, Jilin
Zou, Yu‐Gang
Guo, Yu‐Guo
Wan, Jing
Shi, Ji‐Lei
Chen, Wan‐Ping
Wen, Rui
Author_xml – sequence: 1
  givenname: Hang
  surname: Sheng
  fullname: Sheng, Hang
  organization: University of Chinese Academy of Sciences
– sequence: 2
  givenname: Xin‐Hai
  surname: Meng
  fullname: Meng, Xin‐Hai
  organization: University of Chinese Academy of Sciences
– sequence: 3
  givenname: Dong‐Dong
  surname: Xiao
  fullname: Xiao, Dong‐Dong
  organization: Chinese Academy of Sciences
– sequence: 4
  givenname: Min
  surname: Fan
  fullname: Fan, Min
  organization: University of Chinese Academy of Sciences
– sequence: 5
  givenname: Wan‐Ping
  surname: Chen
  fullname: Chen, Wan‐Ping
  organization: University of Chinese Academy of Sciences
– sequence: 6
  givenname: Jing
  surname: Wan
  fullname: Wan, Jing
  organization: University of Chinese Academy of Sciences
– sequence: 7
  givenname: Jilin
  surname: Tang
  fullname: Tang, Jilin
  organization: Chinese Academy of Sciences
– sequence: 8
  givenname: Yu‐Gang
  surname: Zou
  fullname: Zou, Yu‐Gang
  organization: University of Chinese Academy of Sciences
– sequence: 9
  givenname: Fuyi
  surname: Wang
  fullname: Wang, Fuyi
  organization: Chinese Academy of Sciences
– sequence: 10
  givenname: Rui
  surname: Wen
  fullname: Wen, Rui
  organization: University of Chinese Academy of Sciences
– sequence: 11
  givenname: Ji‐Lei
  surname: Shi
  fullname: Shi, Ji‐Lei
  email: jileishi@iccas.ac.cn
  organization: University of Chinese Academy of Sciences
– sequence: 12
  givenname: Yu‐Guo
  orcidid: 0000-0003-0322-8476
  surname: Guo
  fullname: Guo, Yu‐Guo
  email: ygguo@iccas.ac.cn
  organization: University of Chinese Academy of Sciences
BookMark eNo9kEtPwzAQhC1UJNrClbMlzil-Ja2PUSgUqTzE4xy59oYYErs4KVVvnDjzG_klJCritBrt7ozmG6GB8w4QOqVkQglh58rUasIIo2QmxfQADWnMaCSIjAdoSCSPI5mI2REaNc0rIUQmJBmir9Th1Iafz-_HVq0qwAv7Unbq1uo3qHCm2tIbwFvblvgBrCt80GDwvALdBq9LqK1WFb6H0G1q5TTgueuNDF7tcObdB4TW9sZp7cO69JsGLy3L7ji-8cYW3XdrvTtGh4WqGjj5m2P0fDl_yhbR8u7qOkuX0ZpxPo20UHzGDCFKJRwIKxgtuOArY-JYQ9dOJ8CJTiQDGU-ViRVIKlY6mQkw1Ag-Rmd733Xw7xto2vzVb4LrInOWCEY7Sl3QGMn91dZWsMvXwdYq7HJK8h503oPO_0Hn6cVN-q_4L_T_eQI
ContentType Journal Article
Copyright 2022 Wiley‐VCH GmbH
Copyright_xml – notice: 2022 Wiley‐VCH GmbH
DBID 7SR
8BQ
8FD
JG9
DOI 10.1002/adma.202108947
DatabaseName Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
DatabaseTitle Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
DatabaseTitleList
Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1521-4095
EndPage n/a
ExternalDocumentID ADMA202108947
Genre article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 51902314; 22179133
– fundername: Transformational Technologies for Clean Energy and Demonstration
– fundername: Strategic Priority Research Program of the Chinese Academy of Sciences
  funderid: XDA21070300
– fundername: Basic Science Center Project of National Natural Science Foundation
  funderid: 51788104
– fundername: Youth Innovation Promotion Association CAS
  funderid: 2019033
GroupedDBID ---
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RWM
RX1
RYL
SUPJJ
TN5
UB1
UPT
V2E
W8V
W99
WBKPD
WFSAM
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
YR2
ZZTAW
~02
~IA
~WT
7SR
8BQ
8FD
AAMMB
ADMLS
AEFGJ
AEYWJ
AGHNM
AGXDD
AGYGG
AIDQK
AIDYY
JG9
ID FETCH-LOGICAL-p2337-c4a382d00aa63e02f21f343bdd55ce648c6e30c692e957ad5ae914bc684ed1d43
IEDL.DBID DR2
ISSN 0935-9648
IngestDate Fri Jul 25 02:58:26 EDT 2025
Wed Jan 22 16:25:44 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-p2337-c4a382d00aa63e02f21f343bdd55ce648c6e30c692e957ad5ae914bc684ed1d43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-0322-8476
PQID 2642193523
PQPubID 2045203
PageCount 9
ParticipantIDs proquest_journals_2642193523
wiley_primary_10_1002_adma_202108947_ADMA202108947
PublicationCentury 2000
PublicationDate 2022-03-01
PublicationDateYYYYMMDD 2022-03-01
PublicationDate_xml – month: 03
  year: 2022
  text: 2022-03-01
  day: 01
PublicationDecade 2020
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Advanced materials (Weinheim)
PublicationYear 2022
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2021; 9
2019; 7
2011; 334
2021; 6
2021; 87
2004; 104
2019; 31
2008; 18
2004; 7
2020; 59
2009; 156
2000; 2
2020; 167
2020; 12
2020; 11
2020; 10
2020; 32
2011; 4
2015; 8
1970; 2
2006; 311
2016; 4
2021; 35
2010; 22
2016; 6
2020; 5
2016; 7
1987; 134
2021; 33
2021; 11
2007; 173
2013; 233
2002; 107
2018; 30
2020; 24
2017; 164
2008; 20
2011; 184
2008; 451
1998; 76
2018; 57
References_xml – volume: 107
  start-page: 1
  year: 2002
  publication-title: J. Power Sources
– volume: 10
  year: 2020
  publication-title: Adv. Energy Mater.
– volume: 156
  year: 2009
  publication-title: J. Electrochem. Soc.
– volume: 11
  start-page: 3204
  year: 2020
  publication-title: Nat. Commun.
– volume: 57
  start-page: 6480
  year: 2018
  publication-title: Angew. Chem., Int. Ed.
– volume: 9
  start-page: 3995
  year: 2021
  publication-title: J. Mater. Chem. A
– volume: 233
  start-page: 121
  year: 2013
  publication-title: J. Power Sources
– volume: 184
  start-page: 304
  year: 2011
  publication-title: J. Solid State Chem.
– volume: 11
  start-page: 1550
  year: 2020
  publication-title: Nat. Commun.
– volume: 76
  start-page: 159
  year: 1998
  publication-title: J. Power Sources
– volume: 87
  year: 2021
  publication-title: Nano Energy
– volume: 134
  start-page: 1611
  year: 1987
  publication-title: J. Electrochem. Soc.
– volume: 164
  year: 2017
  publication-title: J. Electrochem. Soc.
– volume: 7
  year: 2016
  publication-title: Nat. Commun.
– volume: 30
  start-page: 8852
  year: 2018
  publication-title: Chem. Mater.
– volume: 12
  year: 2020
  publication-title: ACS Appl. Mat. Interfaces
– volume: 32
  start-page: 9479
  year: 2020
  publication-title: Chem. Mater.
– volume: 59
  year: 2020
  publication-title: Angew. Chem., Int. Ed.
– volume: 2
  start-page: 1319
  year: 2000
  publication-title: Phys. Chem. Chem. Phys.
– volume: 22
  start-page: 587
  year: 2010
  publication-title: Chem. Mater.
– volume: 8
  start-page: 1464
  year: 2015
  publication-title: Nano Res.
– volume: 24
  start-page: 247
  year: 2020
  publication-title: Energy Storage Mater.
– volume: 2
  start-page: 70
  year: 1970
  publication-title: Phys. Scr.
– volume: 104
  start-page: 4271
  year: 2004
  publication-title: Chem. Rev.
– volume: 7
  start-page: 2694
  year: 2019
  publication-title: J. Mater. Chem. A
– volume: 31
  start-page: 7574
  year: 2019
  publication-title: Chem. Mater.
– volume: 167
  year: 2020
  publication-title: J. Electrochem. Soc.
– volume: 4
  start-page: 5839
  year: 2016
  publication-title: J. Mater. Chem. A
– volume: 33
  year: 2021
  publication-title: Adv. Mater.
– volume: 30
  year: 2018
  publication-title: Adv. Mater.
– volume: 6
  year: 2016
  publication-title: Adv. Energy Mater.
– volume: 311
  start-page: 977
  year: 2006
  publication-title: Science
– volume: 11
  year: 2021
  publication-title: Adv. Energy Mater.
– volume: 7
  start-page: A190
  year: 2004
  publication-title: Electrochem. Solid‐State Lett.
– volume: 334
  start-page: 928
  year: 2011
  publication-title: Science
– volume: 20
  start-page: 2878
  year: 2008
  publication-title: Adv. Mater.
– volume: 5
  start-page: 26
  year: 2020
  publication-title: Nat. Energy
– volume: 18
  start-page: 57
  year: 2008
  publication-title: J. Met. Mater. Miner.
– volume: 6
  start-page: 362
  year: 2021
  publication-title: Nat. Energy
– volume: 4
  start-page: 3243
  year: 2011
  publication-title: Energy Environ. Sci.
– volume: 173
  start-page: 556
  year: 2007
  publication-title: J. Power Sources
– volume: 451
  start-page: 652
  year: 2008
  publication-title: Nature
– volume: 4
  start-page: 2223
  year: 2011
  publication-title: Energy Environ. Sci.
– volume: 35
  year: 2021
  publication-title: Energy Fuels
SSID ssj0009606
Score 2.6663795
Snippet High‐nickel (Ni ≥ 90%) cathodes with high specific capacity hold great potential for next‐generation lithium‐ion batteries (LIBs). However, their practical...
SourceID proquest
wiley
SourceType Aggregation Database
Publisher
SubjectTerms air stability
amorphous Li 2CO 3
cathode electrolyte interphase
Cathodes
Cathodic protection
Electrochemical analysis
Electrolytes
Energy storage
high‐nickel cathodes
Interface stability
Lithium compounds
Lithium-ion batteries
Materials science
Nickel
Preempting
Title An Air‐Stable High‐Nickel Cathode with Reinforced Electrochemical Performance Enabled by Convertible Amorphous Li2CO3 Modification
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.202108947
https://www.proquest.com/docview/2642193523
Volume 34
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELYQEwy8EY-CPLCmJLbz8BiVVhWigCqQ2CI_rhICmqqPASYmZn4jvwSf0xeMMFqK7cR3F39n3feZkDOwUewSNhuYVMlA6FgFGeuZQCZMScANzIv6dK6T9r24fIgfllj8lT7E_MANI8P_rzHAlR6dL0RDlfW6QS5lyaRAOjkWbCEq6i70oxCee7E9HrvZRTZTbQzZ-c_uP_DlMkr120xrk6jZC1bVJU_1yVjXzdsv7cb_fMEW2ZhiUJpXTrNNVqC_Q9aXlAl3yUfep_nj8Ov906FR_QwU60FcyznOEzxT5A2WFiie4tIuePVVA5Y2q0t1zFSFgN4uaAm06VlalupX2sBSdzc7Dpy_lM7U5WRErx5Z44bTTmmxfMl7zB65bzXvGu1gemVDMGCcp4ERimfMhqFSCYeQ9VjU44Jra-PYgLOASYCHJpEMZJwqGyuQkdAmyYTzGiv4Plntl304IDSKgKtUSttzOR-oRCV4BSJom0YqdM8ektrMZMU07kYFQ96uszbjh4T5tS8GlWpHUekzswJXvZivepFfdPJ56-gvnY7JGkNOhC9Mq5HV8XACJw6pjPWp98ZvOuDkXQ
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1Z3NbtQwEIBHpRygB_4rCgV8gGPaxHac-MAh2t1qS3cLqlqpt-DYs1LVsqm6u6rKiRNnXoVX4RF4EjxOdrfliNQDR0uJE3tm7Blr5jPAW3RJ6gM2F9nM6EhWqYlyPrKRVtxopA0sQH2G-6p_JD8cp8cr8HNeC9PwIRYHbmQZYb0mA6cD6e0lNdS4AA7yMUuuZdbmVe7h1aWP2ibvd7texO843-kddvpRe7FAdM6FyCIrjci5i2NjlMCYj3gyElJUzqWpRSVzq1DEVmmOOs2MSw3qRFZW5dKPzUnh-70Dd-kaccL1dw-WxCoKCALeT6R-vDKfcyJjvn3zf294tNf94rCx7TyEX_MpafJZTrdm02rLfv2LFvlfzdkjeNC62axo7OIxrOD4Caxdgy8-he_FmBUnF7-__fAOd3WGjFJefMvbximeMSqNrB0yOqhmBxgAsxYd6zX3BtkWtMA-LSsvWC8UojlWXbEOZfP7r1PHxZfaa3M9m7DBCe98FGxYO8rQCkbxDI5uZSLWYXVcj_E5sCRBYTKt3ciHtWiUUXTLI1YuS0zsn92AzbmOlO3SMik5lSZ79eJiA3gQdnnegEnKBkHNS5JyuZByWXSHxaL14l9eegP3-ofDQTnY3d97Cfc5lYCEPLxNWJ1ezPCVd8ym1etgCgw-37Ye_QGaz0LG
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT9wwEB5RkKpy6BtBoa0P9BhIbMeJDxyifYjXAkJF4pY69kRCwGbF7grRU0-c-Sn8Ff5Cf0ltJ7sLPVbi0KOlxInnYc9Y33wDsI4mim3CZgKdKBnwIlZBSksdSEGVRHeAeVKf3oHYPuG7p_HpHNxPamFqfojphZvzDL9fOwcfmHJzRhqqjOcNsilLKnnSwCr38ObaJm3DrZ221fA3Srud763toOkrEAwoY0mguWIpNWGolGAY0pJGJeOsMCaONQqeaoEs1EJSlHGiTKxQRrzQIuV2aYYzO-8LWOAilK5ZRPt4Rljl8gHP7sdiu1yeTmgiQ7r59H-fBLSPw2J_rnXfwMNEIjWc5XxjPCo29M-_yCL_J5G9hddNkE2y2ivewRz238PiI-rFD3Cb9Ul2dvX7150Nt4sLJA7wYkfWM87xgrjCyMogcdfU5Bg9vaxGQzp11yDd0CyQo1ndBen4MjRDihvSclh--3U3cXZZWVuuxkOyf0Zbh4z0KuPwWd4lPsLJswhiCeb7VR-XgUQRMpVIaUqb1KISSrgej1iYJFKhfXYF1iYmkjcbyzCnrjDZWhdlK0C9rvNBTUuS1wTUNHdazqdazrN2L5uOPv3LS1_h5VG7m-_vHOytwivq6j88CG8N5kdXY_xso7JR8cU7AoEfz21GfwB2XUF1
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Air%E2%80%90Stable+High%E2%80%90Nickel+Cathode+with+Reinforced+Electrochemical+Performance+Enabled+by+Convertible+Amorphous+Li2CO3+Modification&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Sheng%2C+Hang&rft.au=Xin%E2%80%90Hai+Meng&rft.au=Dong%E2%80%90Dong+Xiao&rft.au=Fan%2C+Min&rft.date=2022-03-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0935-9648&rft.eissn=1521-4095&rft.volume=34&rft.issue=12&rft_id=info:doi/10.1002%2Fadma.202108947&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon