Corner‐Sharing Tetrahedrally Coordinated W‐V Dual Active Sites on Cu2V2O7 for Photoelectrochemical Water Oxidation
The sluggish four‐electron oxygen evolving reaction is one of the key limitations of photoelectrochemical water decomposition. Optimizing the binding of active sites to oxygen in water and promoting the conversion of *O to *OOH are the key to enhancing oxygen evolution reaction. In this work, W‐dope...
Saved in:
Published in | Small (Weinheim an der Bergstrasse, Germany) Vol. 20; no. 8 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
Wiley Subscription Services, Inc
22.02.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The sluggish four‐electron oxygen evolving reaction is one of the key limitations of photoelectrochemical water decomposition. Optimizing the binding of active sites to oxygen in water and promoting the conversion of *O to *OOH are the key to enhancing oxygen evolution reaction. In this work, W‐doped Cu2V2O7 (CVO) constructs corner‐sharing tetrahedrally coordinated W‐V dual active sites to induce the generation of electron deficiency active centers, promote the adsorption of ─OH, and accelerate the transformation of *O to *OOH for water splitting. The photocurrent obtained by the W‐modified CVO photoanode is 0.97 mA cm−2 at 1.23 V versus RHE, which is much superior to that of the reported CVO. Experimental and theoretical results show that the excellent catalytic performance may be attributed to the formation of synergistic dual active sites between W and V atoms, and the introduction of W ions reduces the charge migration distance and prolongs the lifetime of photogenerated carriers. Meanwhile, the electronic structure in the center of the d‐band is modulated, which leads to the redistribution of the electron density in CVO and lowers the energy barrier for the conversion of the rate‐limiting step *O to *OOH.
The constructed corner‐sharing tetrahedrally coordinated W‐V dual active sites in W‐doped Cu2V2O7 produce electron deficiency active centers, which promote the adsorption of –OH and accelerate the transformation of *O to *OOH for water splitting. |
---|---|
AbstractList | The sluggish four‐electron oxygen evolving reaction is one of the key limitations of photoelectrochemical water decomposition. Optimizing the binding of active sites to oxygen in water and promoting the conversion of *O to *OOH are the key to enhancing oxygen evolution reaction. In this work, W‐doped Cu2V2O7 (CVO) constructs corner‐sharing tetrahedrally coordinated W‐V dual active sites to induce the generation of electron deficiency active centers, promote the adsorption of ─OH, and accelerate the transformation of *O to *OOH for water splitting. The photocurrent obtained by the W‐modified CVO photoanode is 0.97 mA cm−2 at 1.23 V versus RHE, which is much superior to that of the reported CVO. Experimental and theoretical results show that the excellent catalytic performance may be attributed to the formation of synergistic dual active sites between W and V atoms, and the introduction of W ions reduces the charge migration distance and prolongs the lifetime of photogenerated carriers. Meanwhile, the electronic structure in the center of the d‐band is modulated, which leads to the redistribution of the electron density in CVO and lowers the energy barrier for the conversion of the rate‐limiting step *O to *OOH. The sluggish four‐electron oxygen evolving reaction is one of the key limitations of photoelectrochemical water decomposition. Optimizing the binding of active sites to oxygen in water and promoting the conversion of *O to *OOH are the key to enhancing oxygen evolution reaction. In this work, W‐doped Cu2V2O7 (CVO) constructs corner‐sharing tetrahedrally coordinated W‐V dual active sites to induce the generation of electron deficiency active centers, promote the adsorption of ─OH, and accelerate the transformation of *O to *OOH for water splitting. The photocurrent obtained by the W‐modified CVO photoanode is 0.97 mA cm−2 at 1.23 V versus RHE, which is much superior to that of the reported CVO. Experimental and theoretical results show that the excellent catalytic performance may be attributed to the formation of synergistic dual active sites between W and V atoms, and the introduction of W ions reduces the charge migration distance and prolongs the lifetime of photogenerated carriers. Meanwhile, the electronic structure in the center of the d‐band is modulated, which leads to the redistribution of the electron density in CVO and lowers the energy barrier for the conversion of the rate‐limiting step *O to *OOH. The constructed corner‐sharing tetrahedrally coordinated W‐V dual active sites in W‐doped Cu2V2O7 produce electron deficiency active centers, which promote the adsorption of –OH and accelerate the transformation of *O to *OOH for water splitting. |
Author | Hao, Le‐Yang Liu, Zhao‐Qing Hua, Ying‐Jie Chen, Yi‐Ying Lei, Bing‐Xin Huang, Zheng‐Yi |
Author_xml | – sequence: 1 givenname: Zheng‐Yi surname: Huang fullname: Huang, Zheng‐Yi organization: Guangzhou University – sequence: 2 givenname: Yi‐Ying surname: Chen fullname: Chen, Yi‐Ying organization: Guangzhou University – sequence: 3 givenname: Le‐Yang surname: Hao fullname: Hao, Le‐Yang organization: Guangzhou University – sequence: 4 givenname: Ying‐Jie surname: Hua fullname: Hua, Ying‐Jie organization: Hainan Normal University – sequence: 5 givenname: Bing‐Xin surname: Lei fullname: Lei, Bing‐Xin email: leibx@gxmzu.edu.cn organization: Guangxi Minzu University – sequence: 6 givenname: Zhao‐Qing orcidid: 0000-0002-0727-7809 surname: Liu fullname: Liu, Zhao‐Qing email: lzqgzu@gzhu.edu.cn organization: Guangzhou University |
BookMark | eNo9kMtOwkAUhicGEwHdup7EdXEu7UxnSeo1qcEEhGUztKd2yNDBaUHZ-Qg-o09iCYbVOSf5_v8k3wD1alcDQteUjCgh7LZZWztihHEio1CeoT4VlAciZqp32im5QIOmWRHCKQtlH-0S52vwv98_00p7U7_jGbReV1B4be0eJ875wtS6hQIvOmqO77ba4nHemh3gqWmhwa7GyZbN2UTi0nn8WrnWgYW89S6vYG3yLrDoGjyefJlCt8bVl-i81LaBq_85RG8P97PkKUgnj8_JOA02jHMZCFmGHFROVC5iKSKho1BIISQpopzLApTWcaiA8jBXEVBVELqMS6oLtpSEh3yIbo69G-8-ttC02cptfd29zJjilMcRE7yj1JH6NBb22cabtfb7jJLsIDY7iM1OYrPpS5qeLv4HJb5ylw |
ContentType | Journal Article |
Copyright | 2023 Wiley‐VCH GmbH 2024 Wiley‐VCH GmbH |
Copyright_xml | – notice: 2023 Wiley‐VCH GmbH – notice: 2024 Wiley‐VCH GmbH |
DBID | 7SR 7U5 8BQ 8FD JG9 L7M |
DOI | 10.1002/smll.202307547 |
DatabaseName | Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX |
DatabaseTitleList | Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1613-6829 |
EndPage | n/a |
ExternalDocumentID | SMLL202307547 |
Genre | article |
GrantInformation_xml | – fundername: Outstanding Youth Project of Guangdong Natural Science Foundation funderid: 2020B1515020028 – fundername: University Innovation Team Scientific Research Project of Guangzhou Education Bureau funderid: 202235246 – fundername: Natural Science Foundation of China funderid: 21875048; 22278094 |
GroupedDBID | --- 05W 0R~ 123 1L6 1OC 33P 3SF 3WU 4.4 50Y 52U 53G 5VS 66C 8-0 8-1 8UM AAESR AAEVG AAHQN AAIHA AAMMB AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCUV ABIJN ABJNI ABLJU ABRTZ ACAHQ ACCZN ACFBH ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEFGJ AEIGN AEIMD AENEX AEUYR AFBPY AFFPM AFGKR AFWVQ AFZJQ AGHNM AGXDD AGYGG AHBTC AIDQK AIDYY AITYG AIURR AJXKR ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZVAB BFHJK BHBCM BMNLL BMXJE BNHUX BOGZA BRXPI CS3 DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBD EBS EMOBN F5P G-S GNP HBH HGLYW HHY HHZ HZ~ IX1 KQQ LATKE LAW LEEKS LITHE LOXES LUTES LYRES MEWTI MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM MY~ O66 O9- OIG P2P P2W QRW R.K RIWAO RNS ROL RX1 RYL SUPJJ SV3 V2E W99 WBKPD WFSAM WIH WIK WJL WOHZO WXSBR WYISQ XV2 Y6R ZZTAW ~S- 7SR 7U5 8BQ 8FD JG9 L7M |
ID | FETCH-LOGICAL-p2337-67f43e9c09c687656a54676670d5c37de9aa849e134c95e19d01b8f1ad2b70343 |
IEDL.DBID | DR2 |
ISSN | 1613-6810 |
IngestDate | Fri Jul 25 12:01:36 EDT 2025 Wed Aug 20 07:26:20 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-p2337-67f43e9c09c687656a54676670d5c37de9aa849e134c95e19d01b8f1ad2b70343 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-0727-7809 |
PQID | 2931385263 |
PQPubID | 1046358 |
PageCount | 8 |
ParticipantIDs | proquest_journals_2931385263 wiley_primary_10_1002_smll_202307547_SMLL202307547 |
PublicationCentury | 2000 |
PublicationDate | February 22, 2024 |
PublicationDateYYYYMMDD | 2024-02-22 |
PublicationDate_xml | – month: 02 year: 2024 text: February 22, 2024 day: 22 |
PublicationDecade | 2020 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim |
PublicationTitle | Small (Weinheim an der Bergstrasse, Germany) |
PublicationYear | 2024 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2021; 8 2023; 52 2023; 13 2023; 35 2021; 5 2023; 14 2015; 5 2023; 33 2023; 4 2023; 59 2023; 145 2023; 321 2019; 58 2023; 468 2020; 59 2023; 1 2020; 77 2022; 319 2022; 317 2022; 437 2023; 62 2020; 3 2021; 12 2021; 33 2021; 11 2022; 61 2023; 333 2021; 414 2023; 454 2023; 337 2022; 34 2023; 117 2022; 15 2022; 32 2021; 60 2022; 16 |
References_xml | – volume: 60 start-page: 9546 year: 2021 publication-title: Angew. Chem., Int. Ed. – volume: 15 start-page: 2425 year: 2022 publication-title: Energy Environ. Sci. – volume: 52 start-page: 4644 year: 2023 publication-title: Chem. Soc. Rev. – volume: 32 year: 2022 publication-title: Adv. Funct. Mater. – volume: 454 year: 2023 publication-title: Chem. Eng. J. – volume: 145 year: 2023 publication-title: J. Am. Chem. Soc. – volume: 337 year: 2023 publication-title: Appl. Catal., B – volume: 60 year: 2021 publication-title: Angew. Chem., Int. Ed. – volume: 437 year: 2022 publication-title: Chem. Eng. J. – volume: 14 start-page: 2112 year: 2023 publication-title: Nat. Commun. – volume: 468 year: 2023 publication-title: Chem. Eng. J. – volume: 16 year: 2022 publication-title: ACS Nano – volume: 317 year: 2022 publication-title: Appl. Catal., B – volume: 5 start-page: 3235 year: 2021 publication-title: Joule – volume: 333 year: 2023 publication-title: Appl. Catal., B – volume: 12 start-page: 6969 year: 2021 publication-title: Nat. Commun. – volume: 15 start-page: 2061 year: 2022 publication-title: Energy Environ. Sci. – volume: 35 year: 2023 publication-title: Adv. Mater. – volume: 59 year: 2020 publication-title: Angew. Chem., Int. Ed. – volume: 61 year: 2022 publication-title: Angew. Chem., Int. Ed. – volume: 13 year: 2023 publication-title: Adv. Energy Mater. – volume: 33 year: 2023 publication-title: Adv. Funct. Mater. – volume: 34 year: 2022 publication-title: Adv. Mater. – volume: 4 year: 2023 publication-title: Small Struct. – volume: 77 year: 2020 publication-title: Nano Energy – volume: 14 start-page: 3498 year: 2023 publication-title: Nat. Commun. – volume: 62 year: 2023 publication-title: Angew. Chem., Int. Ed. – volume: 14 start-page: 5486 year: 2023 publication-title: Nat. Commun. – volume: 33 year: 2021 publication-title: Adv. Mater. – volume: 414 year: 2021 publication-title: Chem. Eng. J. – volume: 1 start-page: 36 year: 2023 publication-title: EES Catal. – volume: 58 year: 2019 publication-title: Angew. Chem., Int. Ed. – volume: 5 year: 2015 publication-title: Adv. Energy Mater. – volume: 11 year: 2021 publication-title: Adv. Energy Mater. – volume: 59 year: 2023 publication-title: Energy Storage Mater. – volume: 319 year: 2022 publication-title: Appl. Catal., B – volume: 3 start-page: 1614 year: 2020 publication-title: Matter – volume: 117 year: 2023 publication-title: Nano Energy – volume: 321 year: 2023 publication-title: Appl. Catal., B – volume: 8 year: 2021 publication-title: Adv. Sci. |
SSID | ssj0031247 |
Score | 2.4728155 |
Snippet | The sluggish four‐electron oxygen evolving reaction is one of the key limitations of photoelectrochemical water decomposition. Optimizing the binding of active... |
SourceID | proquest wiley |
SourceType | Aggregation Database Publisher |
SubjectTerms | Cu2V2O7 Decomposition reactions Electron density Electronic structure Oxidation Oxygen evolution reactions oxygen evolving reaction Photoelectric effect photoelectrochemical tetrahedrally coordinated Water splitting |
Title | Corner‐Sharing Tetrahedrally Coordinated W‐V Dual Active Sites on Cu2V2O7 for Photoelectrochemical Water Oxidation |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsmll.202307547 https://www.proquest.com/docview/2931385263 |
Volume | 20 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LToNAFJ0YV7rwbXxnFm5pYRgGZmmqTWNaNda27si8Go0VDKVGXfkJfqNf4h2gtbrUHRBmgMvMmXPh3nMROiacheB3hI6QkXCoHmpHUqUcV0csCLXLTRFE07lgrR49vw1u57L4S32I2Qc3OzMKvLYTXMhx_Vs0dPw4sr8ObCAzXAtA2AZsWVZ0PdOP8mHxKqqrwJrlWOGtqWqjS-o_m__gl_MstVhmmqtITG-wjC55qE1yWVNvv7Qb__MEa2il4qD4pBw062jBJBtoeU6ZcBM9N9IsMdnn-4dVdIZD-MbkgEtGZ2I0esWNFJzW-wSIqsYDOKuPTye2ywI9cRd47BinCW5MSJ9chhiYMb66S_O0qrqjKpkCPIAeMnz5cl-WdtpCvebZTaPlVCUanCfi2wTDcEh9w5XLFQNcDZgIAHkZC10dKD_UhgsRUW48nyoeGI9r15PR0BOaSMAa6m-jxSRNzA7C3IsAUDQ4zFRRTiQQUyUiI4VyQya12UUH01cUV_NsHANZ8fwoIMzfRaSwdfxUqnTEpR4zia2V45mV426n3Z7t7f2l0T5agm1a5LWTA7SYZxNzCMwkl0fF6PsCrdfeMQ |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwELVYDsCBHbHjA9dA4jhOfEQFVKAFBGW5Rd4qKkqC0hQBJz6Bb-RLGCdpWY5wjBU7seN5fuOM3yC0TTgLwe8IHSEj4VDd1o6kSjmujlgQapebIoimecrqV_T4NhhEE9qzMKU-xHDDzVpGgdfWwO2G9O6XamjvoWv_HdhIZnjYKBq3ab2tfP7-xVBByoflq8ivAquWY6W3BrqNLtn9Wf8Hw_zOU4uF5nAGycErlvEl9zv9XO6o11_qjf_qwyyarmgo3ivnzRwaMck8mvomTriAnmpplpjs4-3dijpDEW6ZHKDJ6Ex0uy-4loLf2kmAq2p8A3dd4_2-bbIAUHwJVLaH0wTX-uSanIUYyDE-v0vztEq8oyqlAnwDLWT47LlTZndaRFeHB61a3amyNDiPxLdnDMM29Q1XLlcMoDVgIgDwZSx0daD8UBsuRES58XyqeGA8rl1PRm1PaCIBbqi_hMaSNDHLCHMvAkzR4DNTRTmRwE2ViIwUyg2Z1GYFrQ--UVyZWi8GvuL5UUCYv4JIMdjxYynUEZeSzCS2oxwPRzm-bDYaw6vVv1TaQhP1VrMRN45OT9bQJJTT4pg7WUdjedY3G0BUcrlZTMVPm0_iTQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwELVYJAQHdsSOD1wDieM48RG1VCxlEfst8laBKEmVpgg48Ql8I1_COElL4QjHWLGTOJ43z8nMG4S2CWch7DtCR8hIOFS3tCOpUo6rIxaE2uWmCKI5OWUH1_ToLrgbyuIv9SEGH9ysZRR4bQ28o1u736Kh3ae2_XVgA5nhWqNonDKX2-IN9YuBgJQP3qsorwJOy7HKW33ZRpfs_uz_g2AO09TCzzRmkOjfYRle8rjTy-WOevsl3vifR5hF0xUJxXvlqplDIyaZR1ND0oQL6LmWZonJPt8_rKQzNOErkwMwGZ2JdvsV11LYtT4kwFQ1voWzbnC9Z4cs4BNfApHt4jTBtR65IWchBmqMz-_TPK3K7qhKpwDfwggZPnt5KGs7LaLrxv5V7cCpajQ4HeLbDMOwRX3DlcsVA2ANmAgAehkLXR0oP9SGCxFRbjyfKh4Yj2vXk1HLE5pIABvqL6GxJE3MMsLciwBRNOyYqaKcSGCmSkRGCuWGTGqzgtb7ryiuDK0bA1vx_CggzF9BpJjruFPKdMSlIDOJ7SzHg1mOL0-azcHR6l86baGJ83ojbh6eHq-hSWimRY47WUdjedYzG8BScrlZLMQvENzg_A |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Corner%E2%80%90Sharing+Tetrahedrally+Coordinated+W%E2%80%90V+Dual+Active+Sites+on+Cu2V2O7+for+Photoelectrochemical+Water+Oxidation&rft.jtitle=Small+%28Weinheim+an+der+Bergstrasse%2C+Germany%29&rft.au=Zheng%E2%80%90Yi+Huang&rft.au=Yi%E2%80%90Ying+Chen&rft.au=Le%E2%80%90Yang+Hao&rft.au=Ying%E2%80%90Jie+Hua&rft.date=2024-02-22&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1613-6810&rft.eissn=1613-6829&rft.volume=20&rft.issue=8&rft_id=info:doi/10.1002%2Fsmll.202307547&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1613-6810&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1613-6810&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1613-6810&client=summon |