Corner‐Sharing Tetrahedrally Coordinated W‐V Dual Active Sites on Cu2V2O7 for Photoelectrochemical Water Oxidation

The sluggish four‐electron oxygen evolving reaction is one of the key limitations of photoelectrochemical water decomposition. Optimizing the binding of active sites to oxygen in water and promoting the conversion of *O to *OOH are the key to enhancing oxygen evolution reaction. In this work, W‐dope...

Full description

Saved in:
Bibliographic Details
Published inSmall (Weinheim an der Bergstrasse, Germany) Vol. 20; no. 8
Main Authors Huang, Zheng‐Yi, Chen, Yi‐Ying, Hao, Le‐Yang, Hua, Ying‐Jie, Lei, Bing‐Xin, Liu, Zhao‐Qing
Format Journal Article
LanguageEnglish
Published Weinheim Wiley Subscription Services, Inc 22.02.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The sluggish four‐electron oxygen evolving reaction is one of the key limitations of photoelectrochemical water decomposition. Optimizing the binding of active sites to oxygen in water and promoting the conversion of *O to *OOH are the key to enhancing oxygen evolution reaction. In this work, W‐doped Cu2V2O7 (CVO) constructs corner‐sharing tetrahedrally coordinated W‐V dual active sites to induce the generation of electron deficiency active centers, promote the adsorption of ─OH, and accelerate the transformation of *O to *OOH for water splitting. The photocurrent obtained by the W‐modified CVO photoanode is 0.97 mA cm−2 at 1.23 V versus RHE, which is much superior to that of the reported CVO. Experimental and theoretical results show that the excellent catalytic performance may be attributed to the formation of synergistic dual active sites between W and V atoms, and the introduction of W ions reduces the charge migration distance and prolongs the lifetime of photogenerated carriers. Meanwhile, the electronic structure in the center of the d‐band is modulated, which leads to the redistribution of the electron density in CVO and lowers the energy barrier for the conversion of the rate‐limiting step *O to *OOH. The constructed corner‐sharing tetrahedrally coordinated W‐V dual active sites in W‐doped Cu2V2O7 produce electron deficiency active centers, which promote the adsorption of –OH and accelerate the transformation of *O to *OOH for water splitting.
AbstractList The sluggish four‐electron oxygen evolving reaction is one of the key limitations of photoelectrochemical water decomposition. Optimizing the binding of active sites to oxygen in water and promoting the conversion of *O to *OOH are the key to enhancing oxygen evolution reaction. In this work, W‐doped Cu2V2O7 (CVO) constructs corner‐sharing tetrahedrally coordinated W‐V dual active sites to induce the generation of electron deficiency active centers, promote the adsorption of ─OH, and accelerate the transformation of *O to *OOH for water splitting. The photocurrent obtained by the W‐modified CVO photoanode is 0.97 mA cm−2 at 1.23 V versus RHE, which is much superior to that of the reported CVO. Experimental and theoretical results show that the excellent catalytic performance may be attributed to the formation of synergistic dual active sites between W and V atoms, and the introduction of W ions reduces the charge migration distance and prolongs the lifetime of photogenerated carriers. Meanwhile, the electronic structure in the center of the d‐band is modulated, which leads to the redistribution of the electron density in CVO and lowers the energy barrier for the conversion of the rate‐limiting step *O to *OOH.
The sluggish four‐electron oxygen evolving reaction is one of the key limitations of photoelectrochemical water decomposition. Optimizing the binding of active sites to oxygen in water and promoting the conversion of *O to *OOH are the key to enhancing oxygen evolution reaction. In this work, W‐doped Cu2V2O7 (CVO) constructs corner‐sharing tetrahedrally coordinated W‐V dual active sites to induce the generation of electron deficiency active centers, promote the adsorption of ─OH, and accelerate the transformation of *O to *OOH for water splitting. The photocurrent obtained by the W‐modified CVO photoanode is 0.97 mA cm−2 at 1.23 V versus RHE, which is much superior to that of the reported CVO. Experimental and theoretical results show that the excellent catalytic performance may be attributed to the formation of synergistic dual active sites between W and V atoms, and the introduction of W ions reduces the charge migration distance and prolongs the lifetime of photogenerated carriers. Meanwhile, the electronic structure in the center of the d‐band is modulated, which leads to the redistribution of the electron density in CVO and lowers the energy barrier for the conversion of the rate‐limiting step *O to *OOH. The constructed corner‐sharing tetrahedrally coordinated W‐V dual active sites in W‐doped Cu2V2O7 produce electron deficiency active centers, which promote the adsorption of –OH and accelerate the transformation of *O to *OOH for water splitting.
Author Hao, Le‐Yang
Liu, Zhao‐Qing
Hua, Ying‐Jie
Chen, Yi‐Ying
Lei, Bing‐Xin
Huang, Zheng‐Yi
Author_xml – sequence: 1
  givenname: Zheng‐Yi
  surname: Huang
  fullname: Huang, Zheng‐Yi
  organization: Guangzhou University
– sequence: 2
  givenname: Yi‐Ying
  surname: Chen
  fullname: Chen, Yi‐Ying
  organization: Guangzhou University
– sequence: 3
  givenname: Le‐Yang
  surname: Hao
  fullname: Hao, Le‐Yang
  organization: Guangzhou University
– sequence: 4
  givenname: Ying‐Jie
  surname: Hua
  fullname: Hua, Ying‐Jie
  organization: Hainan Normal University
– sequence: 5
  givenname: Bing‐Xin
  surname: Lei
  fullname: Lei, Bing‐Xin
  email: leibx@gxmzu.edu.cn
  organization: Guangxi Minzu University
– sequence: 6
  givenname: Zhao‐Qing
  orcidid: 0000-0002-0727-7809
  surname: Liu
  fullname: Liu, Zhao‐Qing
  email: lzqgzu@gzhu.edu.cn
  organization: Guangzhou University
BookMark eNo9kMtOwkAUhicGEwHdup7EdXEu7UxnSeo1qcEEhGUztKd2yNDBaUHZ-Qg-o09iCYbVOSf5_v8k3wD1alcDQteUjCgh7LZZWztihHEio1CeoT4VlAciZqp32im5QIOmWRHCKQtlH-0S52vwv98_00p7U7_jGbReV1B4be0eJ875wtS6hQIvOmqO77ba4nHemh3gqWmhwa7GyZbN2UTi0nn8WrnWgYW89S6vYG3yLrDoGjyefJlCt8bVl-i81LaBq_85RG8P97PkKUgnj8_JOA02jHMZCFmGHFROVC5iKSKho1BIISQpopzLApTWcaiA8jBXEVBVELqMS6oLtpSEh3yIbo69G-8-ttC02cptfd29zJjilMcRE7yj1JH6NBb22cabtfb7jJLsIDY7iM1OYrPpS5qeLv4HJb5ylw
ContentType Journal Article
Copyright 2023 Wiley‐VCH GmbH
2024 Wiley‐VCH GmbH
Copyright_xml – notice: 2023 Wiley‐VCH GmbH
– notice: 2024 Wiley‐VCH GmbH
DBID 7SR
7U5
8BQ
8FD
JG9
L7M
DOI 10.1002/smll.202307547
DatabaseName Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList Materials Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1613-6829
EndPage n/a
ExternalDocumentID SMLL202307547
Genre article
GrantInformation_xml – fundername: Outstanding Youth Project of Guangdong Natural Science Foundation
  funderid: 2020B1515020028
– fundername: University Innovation Team Scientific Research Project of Guangzhou Education Bureau
  funderid: 202235246
– fundername: Natural Science Foundation of China
  funderid: 21875048; 22278094
GroupedDBID ---
05W
0R~
123
1L6
1OC
33P
3SF
3WU
4.4
50Y
52U
53G
5VS
66C
8-0
8-1
8UM
AAESR
AAEVG
AAHQN
AAIHA
AAMMB
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCUV
ABIJN
ABJNI
ABLJU
ABRTZ
ACAHQ
ACCZN
ACFBH
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AEUYR
AFBPY
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGXDD
AGYGG
AHBTC
AIDQK
AIDYY
AITYG
AIURR
AJXKR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZVAB
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BOGZA
BRXPI
CS3
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EMOBN
F5P
G-S
GNP
HBH
HGLYW
HHY
HHZ
HZ~
IX1
KQQ
LATKE
LAW
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
MY~
O66
O9-
OIG
P2P
P2W
QRW
R.K
RIWAO
RNS
ROL
RX1
RYL
SUPJJ
SV3
V2E
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WXSBR
WYISQ
XV2
Y6R
ZZTAW
~S-
7SR
7U5
8BQ
8FD
JG9
L7M
ID FETCH-LOGICAL-p2337-67f43e9c09c687656a54676670d5c37de9aa849e134c95e19d01b8f1ad2b70343
IEDL.DBID DR2
ISSN 1613-6810
IngestDate Fri Jul 25 12:01:36 EDT 2025
Wed Aug 20 07:26:20 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-p2337-67f43e9c09c687656a54676670d5c37de9aa849e134c95e19d01b8f1ad2b70343
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-0727-7809
PQID 2931385263
PQPubID 1046358
PageCount 8
ParticipantIDs proquest_journals_2931385263
wiley_primary_10_1002_smll_202307547_SMLL202307547
PublicationCentury 2000
PublicationDate February 22, 2024
PublicationDateYYYYMMDD 2024-02-22
PublicationDate_xml – month: 02
  year: 2024
  text: February 22, 2024
  day: 22
PublicationDecade 2020
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Small (Weinheim an der Bergstrasse, Germany)
PublicationYear 2024
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2021; 8
2023; 52
2023; 13
2023; 35
2021; 5
2023; 14
2015; 5
2023; 33
2023; 4
2023; 59
2023; 145
2023; 321
2019; 58
2023; 468
2020; 59
2023; 1
2020; 77
2022; 319
2022; 317
2022; 437
2023; 62
2020; 3
2021; 12
2021; 33
2021; 11
2022; 61
2023; 333
2021; 414
2023; 454
2023; 337
2022; 34
2023; 117
2022; 15
2022; 32
2021; 60
2022; 16
References_xml – volume: 60
  start-page: 9546
  year: 2021
  publication-title: Angew. Chem., Int. Ed.
– volume: 15
  start-page: 2425
  year: 2022
  publication-title: Energy Environ. Sci.
– volume: 52
  start-page: 4644
  year: 2023
  publication-title: Chem. Soc. Rev.
– volume: 32
  year: 2022
  publication-title: Adv. Funct. Mater.
– volume: 454
  year: 2023
  publication-title: Chem. Eng. J.
– volume: 145
  year: 2023
  publication-title: J. Am. Chem. Soc.
– volume: 337
  year: 2023
  publication-title: Appl. Catal., B
– volume: 60
  year: 2021
  publication-title: Angew. Chem., Int. Ed.
– volume: 437
  year: 2022
  publication-title: Chem. Eng. J.
– volume: 14
  start-page: 2112
  year: 2023
  publication-title: Nat. Commun.
– volume: 468
  year: 2023
  publication-title: Chem. Eng. J.
– volume: 16
  year: 2022
  publication-title: ACS Nano
– volume: 317
  year: 2022
  publication-title: Appl. Catal., B
– volume: 5
  start-page: 3235
  year: 2021
  publication-title: Joule
– volume: 333
  year: 2023
  publication-title: Appl. Catal., B
– volume: 12
  start-page: 6969
  year: 2021
  publication-title: Nat. Commun.
– volume: 15
  start-page: 2061
  year: 2022
  publication-title: Energy Environ. Sci.
– volume: 35
  year: 2023
  publication-title: Adv. Mater.
– volume: 59
  year: 2020
  publication-title: Angew. Chem., Int. Ed.
– volume: 61
  year: 2022
  publication-title: Angew. Chem., Int. Ed.
– volume: 13
  year: 2023
  publication-title: Adv. Energy Mater.
– volume: 33
  year: 2023
  publication-title: Adv. Funct. Mater.
– volume: 34
  year: 2022
  publication-title: Adv. Mater.
– volume: 4
  year: 2023
  publication-title: Small Struct.
– volume: 77
  year: 2020
  publication-title: Nano Energy
– volume: 14
  start-page: 3498
  year: 2023
  publication-title: Nat. Commun.
– volume: 62
  year: 2023
  publication-title: Angew. Chem., Int. Ed.
– volume: 14
  start-page: 5486
  year: 2023
  publication-title: Nat. Commun.
– volume: 33
  year: 2021
  publication-title: Adv. Mater.
– volume: 414
  year: 2021
  publication-title: Chem. Eng. J.
– volume: 1
  start-page: 36
  year: 2023
  publication-title: EES Catal.
– volume: 58
  year: 2019
  publication-title: Angew. Chem., Int. Ed.
– volume: 5
  year: 2015
  publication-title: Adv. Energy Mater.
– volume: 11
  year: 2021
  publication-title: Adv. Energy Mater.
– volume: 59
  year: 2023
  publication-title: Energy Storage Mater.
– volume: 319
  year: 2022
  publication-title: Appl. Catal., B
– volume: 3
  start-page: 1614
  year: 2020
  publication-title: Matter
– volume: 117
  year: 2023
  publication-title: Nano Energy
– volume: 321
  year: 2023
  publication-title: Appl. Catal., B
– volume: 8
  year: 2021
  publication-title: Adv. Sci.
SSID ssj0031247
Score 2.4728155
Snippet The sluggish four‐electron oxygen evolving reaction is one of the key limitations of photoelectrochemical water decomposition. Optimizing the binding of active...
SourceID proquest
wiley
SourceType Aggregation Database
Publisher
SubjectTerms Cu2V2O7
Decomposition reactions
Electron density
Electronic structure
Oxidation
Oxygen evolution reactions
oxygen evolving reaction
Photoelectric effect
photoelectrochemical
tetrahedrally coordinated
Water splitting
Title Corner‐Sharing Tetrahedrally Coordinated W‐V Dual Active Sites on Cu2V2O7 for Photoelectrochemical Water Oxidation
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsmll.202307547
https://www.proquest.com/docview/2931385263
Volume 20
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LToNAFJ0YV7rwbXxnFm5pYRgGZmmqTWNaNda27si8Go0VDKVGXfkJfqNf4h2gtbrUHRBmgMvMmXPh3nMROiacheB3hI6QkXCoHmpHUqUcV0csCLXLTRFE07lgrR49vw1u57L4S32I2Qc3OzMKvLYTXMhx_Vs0dPw4sr8ObCAzXAtA2AZsWVZ0PdOP8mHxKqqrwJrlWOGtqWqjS-o_m__gl_MstVhmmqtITG-wjC55qE1yWVNvv7Qb__MEa2il4qD4pBw062jBJBtoeU6ZcBM9N9IsMdnn-4dVdIZD-MbkgEtGZ2I0esWNFJzW-wSIqsYDOKuPTye2ywI9cRd47BinCW5MSJ9chhiYMb66S_O0qrqjKpkCPIAeMnz5cl-WdtpCvebZTaPlVCUanCfi2wTDcEh9w5XLFQNcDZgIAHkZC10dKD_UhgsRUW48nyoeGI9r15PR0BOaSMAa6m-jxSRNzA7C3IsAUDQ4zFRRTiQQUyUiI4VyQya12UUH01cUV_NsHANZ8fwoIMzfRaSwdfxUqnTEpR4zia2V45mV426n3Z7t7f2l0T5agm1a5LWTA7SYZxNzCMwkl0fF6PsCrdfeMQ
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwELVYDsCBHbHjA9dA4jhOfEQFVKAFBGW5Rd4qKkqC0hQBJz6Bb-RLGCdpWY5wjBU7seN5fuOM3yC0TTgLwe8IHSEj4VDd1o6kSjmujlgQapebIoimecrqV_T4NhhEE9qzMKU-xHDDzVpGgdfWwO2G9O6XamjvoWv_HdhIZnjYKBq3ab2tfP7-xVBByoflq8ivAquWY6W3BrqNLtn9Wf8Hw_zOU4uF5nAGycErlvEl9zv9XO6o11_qjf_qwyyarmgo3ivnzRwaMck8mvomTriAnmpplpjs4-3dijpDEW6ZHKDJ6Ex0uy-4loLf2kmAq2p8A3dd4_2-bbIAUHwJVLaH0wTX-uSanIUYyDE-v0vztEq8oyqlAnwDLWT47LlTZndaRFeHB61a3amyNDiPxLdnDMM29Q1XLlcMoDVgIgDwZSx0daD8UBsuRES58XyqeGA8rl1PRm1PaCIBbqi_hMaSNDHLCHMvAkzR4DNTRTmRwE2ViIwUyg2Z1GYFrQ--UVyZWi8GvuL5UUCYv4JIMdjxYynUEZeSzCS2oxwPRzm-bDYaw6vVv1TaQhP1VrMRN45OT9bQJJTT4pg7WUdjedY3G0BUcrlZTMVPm0_iTQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwELVYJAQHdsSOD1wDieM48RG1VCxlEfst8laBKEmVpgg48Ql8I1_COElL4QjHWLGTOJ43z8nMG4S2CWch7DtCR8hIOFS3tCOpUo6rIxaE2uWmCKI5OWUH1_ToLrgbyuIv9SEGH9ysZRR4bQ28o1u736Kh3ae2_XVgA5nhWqNonDKX2-IN9YuBgJQP3qsorwJOy7HKW33ZRpfs_uz_g2AO09TCzzRmkOjfYRle8rjTy-WOevsl3vifR5hF0xUJxXvlqplDIyaZR1ND0oQL6LmWZonJPt8_rKQzNOErkwMwGZ2JdvsV11LYtT4kwFQ1voWzbnC9Z4cs4BNfApHt4jTBtR65IWchBmqMz-_TPK3K7qhKpwDfwggZPnt5KGs7LaLrxv5V7cCpajQ4HeLbDMOwRX3DlcsVA2ANmAgAehkLXR0oP9SGCxFRbjyfKh4Yj2vXk1HLE5pIABvqL6GxJE3MMsLciwBRNOyYqaKcSGCmSkRGCuWGTGqzgtb7ryiuDK0bA1vx_CggzF9BpJjruFPKdMSlIDOJ7SzHg1mOL0-azcHR6l86baGJ83ojbh6eHq-hSWimRY47WUdjedYzG8BScrlZLMQvENzg_A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Corner%E2%80%90Sharing+Tetrahedrally+Coordinated+W%E2%80%90V+Dual+Active+Sites+on+Cu2V2O7+for+Photoelectrochemical+Water+Oxidation&rft.jtitle=Small+%28Weinheim+an+der+Bergstrasse%2C+Germany%29&rft.au=Zheng%E2%80%90Yi+Huang&rft.au=Yi%E2%80%90Ying+Chen&rft.au=Le%E2%80%90Yang+Hao&rft.au=Ying%E2%80%90Jie+Hua&rft.date=2024-02-22&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1613-6810&rft.eissn=1613-6829&rft.volume=20&rft.issue=8&rft_id=info:doi/10.1002%2Fsmll.202307547&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1613-6810&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1613-6810&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1613-6810&client=summon