Mechanism for Generating H2O2 at Water‐Solid Interface by Contact‐Electrification

The recent intensification of the study of contact‐electrification at water‐solid interfaces and its role in physicochemical processes lead to the realization that electron transfers during water‐solid contact‐electrification can drive chemical reactions. This mechanism, named contact‐electro‐cataly...

Full description

Saved in:
Bibliographic Details
Published inAdvanced materials (Weinheim) Vol. 35; no. 46
Main Authors Berbille, Andy, Li, Xiao‐Fen, Su, Yusen, Li, Shunning, Zhao, Xin, Zhu, Laipan, Wang, Zhong Lin
Format Journal Article
LanguageEnglish
Published Weinheim Wiley Subscription Services, Inc 16.11.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The recent intensification of the study of contact‐electrification at water‐solid interfaces and its role in physicochemical processes lead to the realization that electron transfers during water‐solid contact‐electrification can drive chemical reactions. This mechanism, named contact‐electro‐catalysis (CEC), allows chemically inert fluorinated polymers to act like single electrode electrochemical systems. This study shows hydrogen peroxide (H2O2) is generated from air and deionized water, by ultrasound driven CEC, using fluorinated ethylene propylene (FEP) as the catalyst. For a mass ratio of catalyst to solution of 1:10000, at 20 °C, the kinetic rate of H2O2 evolution reaches 58.87 mmol L−1 gcat−1 h−1. Electron paramagnetic resonance (EPR) shows electrons are emitted in the solution by the charged FEP, during ultrasonication. EPR and isotope labelling experiments show H2O2 is formed from hydroxyl radicals (HO•) or two superoxide radicals (O2•−) generated by CEC. Finally, it is traditionally believed such radicals migrate in the solution by Brownian diffusion prior to reactions. However, ab‐initio molecular dynamic calculations reveal the radicals can react by exchanging protons and electrons through the hydrogen bonds network of water, i.e., owing to the Grotthuss mechanism. This mechanism can be relevant to other systems, artificial or natural, generating H2O2 from air and water. The present work shows that H2O2 can be produced from water and air through oxidoreduction processes triggered by ultrasound‐driven contact‐electrification at the interface of water and fluorinated ethylene propylene. The performance of the method greatly surpasses present piezocatalysis. This work proposes a clear demonstration of the mechanism and the contribution of the hydrogen bound network to the formation of H2O2.
AbstractList The recent intensification of the study of contact‐electrification at water‐solid interfaces and its role in physicochemical processes lead to the realization that electron transfers during water‐solid contact‐electrification can drive chemical reactions. This mechanism, named contact‐electro‐catalysis (CEC), allows chemically inert fluorinated polymers to act like single electrode electrochemical systems. This study shows hydrogen peroxide (H2O2) is generated from air and deionized water, by ultrasound driven CEC, using fluorinated ethylene propylene (FEP) as the catalyst. For a mass ratio of catalyst to solution of 1:10000, at 20 °C, the kinetic rate of H2O2 evolution reaches 58.87 mmol L−1 gcat−1 h−1. Electron paramagnetic resonance (EPR) shows electrons are emitted in the solution by the charged FEP, during ultrasonication. EPR and isotope labelling experiments show H2O2 is formed from hydroxyl radicals (HO•) or two superoxide radicals (O2•−) generated by CEC. Finally, it is traditionally believed such radicals migrate in the solution by Brownian diffusion prior to reactions. However, ab‐initio molecular dynamic calculations reveal the radicals can react by exchanging protons and electrons through the hydrogen bonds network of water, i.e., owing to the Grotthuss mechanism. This mechanism can be relevant to other systems, artificial or natural, generating H2O2 from air and water. The present work shows that H2O2 can be produced from water and air through oxidoreduction processes triggered by ultrasound‐driven contact‐electrification at the interface of water and fluorinated ethylene propylene. The performance of the method greatly surpasses present piezocatalysis. This work proposes a clear demonstration of the mechanism and the contribution of the hydrogen bound network to the formation of H2O2.
The recent intensification of the study of contact‐electrification at water‐solid interfaces and its role in physicochemical processes lead to the realization that electron transfers during water‐solid contact‐electrification can drive chemical reactions. This mechanism, named contact‐electro‐catalysis (CEC), allows chemically inert fluorinated polymers to act like single electrode electrochemical systems. This study shows hydrogen peroxide (H2O2) is generated from air and deionized water, by ultrasound driven CEC, using fluorinated ethylene propylene (FEP) as the catalyst. For a mass ratio of catalyst to solution of 1:10000, at 20 °C, the kinetic rate of H2O2 evolution reaches 58.87 mmol L−1 gcat−1 h−1. Electron paramagnetic resonance (EPR) shows electrons are emitted in the solution by the charged FEP, during ultrasonication. EPR and isotope labelling experiments show H2O2 is formed from hydroxyl radicals (HO•) or two superoxide radicals (O2•−) generated by CEC. Finally, it is traditionally believed such radicals migrate in the solution by Brownian diffusion prior to reactions. However, ab‐initio molecular dynamic calculations reveal the radicals can react by exchanging protons and electrons through the hydrogen bonds network of water, i.e., owing to the Grotthuss mechanism. This mechanism can be relevant to other systems, artificial or natural, generating H2O2 from air and water.
Author Zhu, Laipan
Berbille, Andy
Zhao, Xin
Su, Yusen
Li, Shunning
Li, Xiao‐Fen
Wang, Zhong Lin
Author_xml – sequence: 1
  givenname: Andy
  surname: Berbille
  fullname: Berbille, Andy
  organization: University of Chinese Academy of Sciences
– sequence: 2
  givenname: Xiao‐Fen
  surname: Li
  fullname: Li, Xiao‐Fen
  organization: Tsinghua University
– sequence: 3
  givenname: Yusen
  surname: Su
  fullname: Su, Yusen
  organization: University of Chinese Academy of Sciences
– sequence: 4
  givenname: Shunning
  surname: Li
  fullname: Li, Shunning
  organization: Peking University
– sequence: 5
  givenname: Xin
  surname: Zhao
  fullname: Zhao, Xin
  organization: Chinese Academy of Sciences
– sequence: 6
  givenname: Laipan
  surname: Zhu
  fullname: Zhu, Laipan
  email: zhulaipan@binn.cas.cn
  organization: University of Chinese Academy of Sciences
– sequence: 7
  givenname: Zhong Lin
  orcidid: 0000-0002-5530-0380
  surname: Wang
  fullname: Wang, Zhong Lin
  email: zlwang@gatech.edu
  organization: Yonsei University
BookMark eNo9kE9PwjAYxhuDiYBePTfxPHzbbt16JIhAAuGgxGPzrut0ZLTYjRhufgQ_o5_EEQynN0_e50_yG5Ce884Scs9gxAD4IxY7HHHgAmKRpVekzxLOohhU0iN9UCKJlIyzGzJomi0AKAmyTzYraz7QVc2Olj7QmXU2YFu5dzrna06xpW_Y2vD7_fPi66qgC9epEo2l-ZFOvGvRtN1zWlvThqqsTBf27pZcl1g39u7_Dsnmefo6mUfL9WwxGS-jPRcijXhuRMlsbGWRcqbyIjbW8iLLrQEUIsEMVa4KniYxZwyVAClSw0qEAnMZSzEkD-feffCfB9u0eusPwXWTmmeqQ5FJpTqXOru-qtoe9T5UOwxHzUCfuOkTN33hpsdPq_FFiT_XXmcv
ContentType Journal Article
Copyright 2023 Wiley‐VCH GmbH
Copyright_xml – notice: 2023 Wiley‐VCH GmbH
DBID 7SR
8BQ
8FD
JG9
DOI 10.1002/adma.202304387
DatabaseName Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
DatabaseTitle Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
DatabaseTitleList
Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1521-4095
EndPage n/a
ExternalDocumentID ADMA202304387
Genre article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 52192613
– fundername: CAS‐TWAS President’s Fellowship
GroupedDBID ---
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHQN
AAMMB
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADMLS
ADOZA
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGXDD
AGYGG
AHBTC
AIDQK
AIDYY
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RX1
RYL
SUPJJ
TN5
UB1
UPT
V2E
W8V
W99
WBKPD
WFSAM
WIB
WIH
WIK
WJL
WOHZO
WQJ
WXSBR
WYISQ
XG1
XPP
XV2
YR2
ZZTAW
~02
~IA
~WT
7SR
8BQ
8FD
JG9
ID FETCH-LOGICAL-p2337-2bc3f1e4e6d7219bd4cee2d8bec0a335a8a9b9d2754211a930637c1fa0dab6463
IEDL.DBID DR2
ISSN 0935-9648
IngestDate Fri Jul 25 07:07:33 EDT 2025
Sun Jul 06 04:45:37 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 46
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-p2337-2bc3f1e4e6d7219bd4cee2d8bec0a335a8a9b9d2754211a930637c1fa0dab6463
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-5530-0380
PQID 2890238699
PQPubID 2045203
PageCount 10
ParticipantIDs proquest_journals_2890238699
wiley_primary_10_1002_adma_202304387_ADMA202304387
PublicationCentury 2000
PublicationDate November 16, 2023
PublicationDateYYYYMMDD 2023-11-16
PublicationDate_xml – month: 11
  year: 2023
  text: November 16, 2023
  day: 16
PublicationDecade 2020
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Advanced materials (Weinheim)
PublicationYear 2023
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2022; 430
2022 2010; 82 148
2018 2021 2020 2023; 11 86 279 937
2018 2020 2018; 1 3 1
2019; 30
2011 2021; 2011 35
2008
2020; 14
2022; 119
1996; 54
2019 2022 2019 2021; 123 18 4 60
2021 2022; 333 119
2020; 2
2021 2022; 33 122
2022; 2022
2023
2018; 359
2020; 30
2022 2023; 99 15
2021 2023; 15 11
1982 2010; 16 16
2020 2022; 11 34
2021; 270
2022; 13
2020 2020; 32 32
2022; 98
2006 2019; 45 3
2022; 226
2014; 77
2022 2018; 61 23
References_xml – volume: 16 16
  start-page: 676 1372
  year: 1982 2010
  publication-title: Environ. Sci. Technol. Chemistry
– volume: 45 3
  start-page: 6962 442
  year: 2006 2019
  publication-title: Angew. Chem. Int. Ed. Engl. Nat. Rev. Chem.
– volume: 13
  start-page: 130
  year: 2022
  publication-title: Nat. Commun.
– volume: 99 15
  start-page: 6243
  year: 2022 2023
  publication-title: Nano Energy Nanoscale
– volume: 77
  start-page: 64
  year: 2014
  publication-title: Free Radic. Biol. Med.
– volume: 1 3 1
  start-page: 156 125 282
  year: 2018 2020 2018
  publication-title: Nat. Catal. Nat. Catal. Nat. Catal.
– volume: 119
  year: 2022
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 359
  start-page: 388
  year: 2018
  publication-title: J. Hazard. Mater.
– volume: 123 18 4 60
  start-page: 5536 3781 123 4169
  year: 2019 2022 2019 2021
  publication-title: J. Phys. Chem. B J. Chem. Theory Comput. Nat. Energy Angew. Chem., Int. Ed.
– volume: 33 122
  start-page: 5209
  year: 2021 2022
  publication-title: Adv. Mater. Chem. Rev.
– volume: 14
  year: 2020
  publication-title: ACS Nano
– volume: 30
  start-page: 34
  year: 2019
  publication-title: Mater. Today
– volume: 333 119
  year: 2021 2022
  publication-title: J. Magn. Reson. Proc. Natl. Acad. Sci. USA
– volume: 30
  year: 2020
  publication-title: Adv. Funct. Mater.
– volume: 11 86 279 937
  start-page: 527
  year: 2018 2021 2020 2023
  publication-title: ChemSusChem Nano Energy Appl. Catal., B J. Alloys Compd.
– volume: 2
  start-page: 942
  year: 2020
  publication-title: Trends Chem.
– volume: 15 11
  start-page: 5696
  year: 2021 2023
  publication-title: ACS Nano J. Mater. Chem. A
– volume: 54
  year: 1996
  publication-title: Phys. Rev. B
– volume: 32 32
  year: 2020 2020
  publication-title: Adv. Mater. Adv. Mater.
– volume: 11 34
  start-page: 6323
  year: 2020 2022
  publication-title: Nat. Commun. Curr. Opin. Electrochem.
– year: 2008
– volume: 226
  year: 2022
  publication-title: Water Res.
– volume: 430
  year: 2022
  publication-title: Chem. Eng. J.
– volume: 2022
  year: 2022
  publication-title: Research
– year: 2023
– volume: 82 148
  start-page: 204
  year: 2022 2010
  publication-title: Ultrason. Sonochem. J. Control. Release
– volume: 2011 35
  start-page: 4113
  year: 2011 2021
  publication-title: Eur. J. Org. Chem. Energy Fuels
– volume: 270
  year: 2021
  publication-title: Chemosphere
– volume: 61 23
  start-page: 244
  year: 2022 2018
  publication-title: Angew. Chem., Int. Ed. Molecules
– volume: 98
  year: 2022
  publication-title: Nano Energy
SSID ssj0009606
Score 2.6214774
Snippet The recent intensification of the study of contact‐electrification at water‐solid interfaces and its role in physicochemical processes lead to the realization...
SourceID proquest
wiley
SourceType Aggregation Database
Publisher
SubjectTerms Catalysis
Catalysts
Chemical reactions
contact‐electrification
Deionization
Electrification
Electron paramagnetic resonance
Electrons
Fluorinated ethylene propylenes
Fluoropolymers
heterogeneous catalysis
Hydrogen bonds
Hydrogen peroxide
Hydroxyl radicals
Materials science
Molecular dynamics
polymers
triboelectrification
Title Mechanism for Generating H2O2 at Water‐Solid Interface by Contact‐Electrification
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.202304387
https://www.proquest.com/docview/2890238699
Volume 35
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ07T8MwEMct1AkG3ohCQR5Y0yZ24tpjBa0qpIIEVHSL_IpUAW3VpgNMfAQ-I58En9P0wQhLpCiylNh38d_23e8QuooksVYpHnBJ48BZCA9Uwo3zeEZ0ArQUBQnOvTvW7ce3g2SwlsVf8CGWG27gGf5_DQ4u1ayxgoZK47lBsKlJOaSTQ8AWqKKHFT8K5LmH7dEkECzmJbUxJI3N5hv6cl2l-mmms4dk-YJFdMlLfZ6ruv74xW78zxfso92FBsWtwmgO0JYdHaKdNTLhEer3LKQED2dv2KlaXMCpIUIad8k9wTLHz06kTr8_vx7Hr0OD_cZiJrXF6h0D8Urq3D1s-yI7EI3kDeAY9Tvtp-tusKjAEEwIpc2AKE2zyMaWGbdSFMrEbk4lhruBDyWlieRSKGEIlNGNIinc-oM2dZTJ0EjFYkZPUGU0HtlThONMZU69UAYHn5YxwTSNMususpkkKqyiWjkC6cKNZqk_BaWcCVFFxHdlOikgHGmBWyYpdGK67MS0ddNrLe_O_tLoHG2XMMeI1VAln87thRMeubr0xvUD8uvRmA
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV29TsMwELagDMDAP6JQwANr2sZOHGesoFWApkjQCrbIThypAtqqTQeYeASekSfB5zRtYYQlUmJZSs538Xfnu-8QurAFUUpKbnFBHUtrCLekyxNt8YzELrClSChwDjss6Dk3T26RTQi1MDk_xDzgBpZh_tdg4BCQri1YQ0ViiIMgqkm5t4rWoK238aruFwxSANAN3R51LZ85vOBtrJPaz_k_EOYyTjUbTWsbyeIV8_yS5-o0k9X4_Rd747--YQdtzWAobuR6s4tW1GAPbS6RE-6jXqigKrg_ecUa2OKcnxqSpHFA7ggWGX7UOHX89fH5MHzpJ9jEFlMRKyzfMJBeiTjTg03TZwcSkowOHKBeq9m9DKxZEwZrRCj1LCJjmtrKUSzRzqIvE0dvqyTheu3rglJXcOFLPyHQSde2ha9dEOrFdirqiZDMYfQQlQbDgTpC2EllqgEMZXD2qRjzWUztVOmL8FxX1suoUixBNLOkSWQOQilnvl9GxMgyGuU8HFHOuEwiEGI0F2LUuAob87vjv0w6R-tBN2xH7evO7QnagOdQfmizCipl46k61Tgkk2dG074BHjTVsw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1NT8IwGMcbxcTowXcjitqD18HWdqU9EoHgC2hUIrelXbuEqEBgHPTkR_Az-klsO1496mXJ1jTZnj7P-u_L8ysAF4FAWkvJPCYw8YyHME-GTJmIpygOLS1F2gTnZos22uS6E3YWsvgzPsRsws1Ghvtf2wAfqKQ0h4YK5bhBdlITs_IqWCPUZ9avqw9zgJTV5462h0OPU8Km2EYflZbrLwnMRZnq-pn6NhDTN8y2l7wUx6ksxh-_4I3_-YQdsDURobCSec0uWNG9PbC5gCbcB-2mtjnB3dEbNLIWZnRqu0UaNtAdgiKFz0alDr8_vx77r10F3cxiImIN5Tu0yCsRp6aw5k7ZsduRnAccgHa99nTZ8CZHMHgDhHHZQzLGSaCJpsoMFblUxHSqSDHT8r7AOBRMcMkVsufoBoHgZgCCy3GQCF8JSQnFhyDX6_f0EYAkkYmRL5jalU9NKacxDhJtLqIchtLPg8K0BaJJHI0itwyKGeU8D5AzZTTIKBxRxltGkTViNDNiVKk2K7O7479UOgfr99V6dHvVujkBG_axzT0MaAHk0uFYnxoRksoz52c_1nbUaw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mechanism+for+Generating+H2O2+at+Water%E2%80%90Solid+Interface+by+Contact%E2%80%90Electrification&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Berbille%2C+Andy&rft.au=Xiao%E2%80%90Fen+Li&rft.au=Su%2C+Yusen&rft.au=Li%2C+Shunning&rft.date=2023-11-16&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0935-9648&rft.eissn=1521-4095&rft.volume=35&rft.issue=46&rft_id=info:doi/10.1002%2Fadma.202304387&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon