Mechanism for Generating H2O2 at Water‐Solid Interface by Contact‐Electrification
The recent intensification of the study of contact‐electrification at water‐solid interfaces and its role in physicochemical processes lead to the realization that electron transfers during water‐solid contact‐electrification can drive chemical reactions. This mechanism, named contact‐electro‐cataly...
Saved in:
Published in | Advanced materials (Weinheim) Vol. 35; no. 46 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
Wiley Subscription Services, Inc
16.11.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The recent intensification of the study of contact‐electrification at water‐solid interfaces and its role in physicochemical processes lead to the realization that electron transfers during water‐solid contact‐electrification can drive chemical reactions. This mechanism, named contact‐electro‐catalysis (CEC), allows chemically inert fluorinated polymers to act like single electrode electrochemical systems. This study shows hydrogen peroxide (H2O2) is generated from air and deionized water, by ultrasound driven CEC, using fluorinated ethylene propylene (FEP) as the catalyst. For a mass ratio of catalyst to solution of 1:10000, at 20 °C, the kinetic rate of H2O2 evolution reaches 58.87 mmol L−1 gcat−1 h−1. Electron paramagnetic resonance (EPR) shows electrons are emitted in the solution by the charged FEP, during ultrasonication. EPR and isotope labelling experiments show H2O2 is formed from hydroxyl radicals (HO•) or two superoxide radicals (O2•−) generated by CEC. Finally, it is traditionally believed such radicals migrate in the solution by Brownian diffusion prior to reactions. However, ab‐initio molecular dynamic calculations reveal the radicals can react by exchanging protons and electrons through the hydrogen bonds network of water, i.e., owing to the Grotthuss mechanism. This mechanism can be relevant to other systems, artificial or natural, generating H2O2 from air and water.
The present work shows that H2O2 can be produced from water and air through oxidoreduction processes triggered by ultrasound‐driven contact‐electrification at the interface of water and fluorinated ethylene propylene. The performance of the method greatly surpasses present piezocatalysis. This work proposes a clear demonstration of the mechanism and the contribution of the hydrogen bound network to the formation of H2O2. |
---|---|
AbstractList | The recent intensification of the study of contact‐electrification at water‐solid interfaces and its role in physicochemical processes lead to the realization that electron transfers during water‐solid contact‐electrification can drive chemical reactions. This mechanism, named contact‐electro‐catalysis (CEC), allows chemically inert fluorinated polymers to act like single electrode electrochemical systems. This study shows hydrogen peroxide (H2O2) is generated from air and deionized water, by ultrasound driven CEC, using fluorinated ethylene propylene (FEP) as the catalyst. For a mass ratio of catalyst to solution of 1:10000, at 20 °C, the kinetic rate of H2O2 evolution reaches 58.87 mmol L−1 gcat−1 h−1. Electron paramagnetic resonance (EPR) shows electrons are emitted in the solution by the charged FEP, during ultrasonication. EPR and isotope labelling experiments show H2O2 is formed from hydroxyl radicals (HO•) or two superoxide radicals (O2•−) generated by CEC. Finally, it is traditionally believed such radicals migrate in the solution by Brownian diffusion prior to reactions. However, ab‐initio molecular dynamic calculations reveal the radicals can react by exchanging protons and electrons through the hydrogen bonds network of water, i.e., owing to the Grotthuss mechanism. This mechanism can be relevant to other systems, artificial or natural, generating H2O2 from air and water.
The present work shows that H2O2 can be produced from water and air through oxidoreduction processes triggered by ultrasound‐driven contact‐electrification at the interface of water and fluorinated ethylene propylene. The performance of the method greatly surpasses present piezocatalysis. This work proposes a clear demonstration of the mechanism and the contribution of the hydrogen bound network to the formation of H2O2. The recent intensification of the study of contact‐electrification at water‐solid interfaces and its role in physicochemical processes lead to the realization that electron transfers during water‐solid contact‐electrification can drive chemical reactions. This mechanism, named contact‐electro‐catalysis (CEC), allows chemically inert fluorinated polymers to act like single electrode electrochemical systems. This study shows hydrogen peroxide (H2O2) is generated from air and deionized water, by ultrasound driven CEC, using fluorinated ethylene propylene (FEP) as the catalyst. For a mass ratio of catalyst to solution of 1:10000, at 20 °C, the kinetic rate of H2O2 evolution reaches 58.87 mmol L−1 gcat−1 h−1. Electron paramagnetic resonance (EPR) shows electrons are emitted in the solution by the charged FEP, during ultrasonication. EPR and isotope labelling experiments show H2O2 is formed from hydroxyl radicals (HO•) or two superoxide radicals (O2•−) generated by CEC. Finally, it is traditionally believed such radicals migrate in the solution by Brownian diffusion prior to reactions. However, ab‐initio molecular dynamic calculations reveal the radicals can react by exchanging protons and electrons through the hydrogen bonds network of water, i.e., owing to the Grotthuss mechanism. This mechanism can be relevant to other systems, artificial or natural, generating H2O2 from air and water. |
Author | Zhu, Laipan Berbille, Andy Zhao, Xin Su, Yusen Li, Shunning Li, Xiao‐Fen Wang, Zhong Lin |
Author_xml | – sequence: 1 givenname: Andy surname: Berbille fullname: Berbille, Andy organization: University of Chinese Academy of Sciences – sequence: 2 givenname: Xiao‐Fen surname: Li fullname: Li, Xiao‐Fen organization: Tsinghua University – sequence: 3 givenname: Yusen surname: Su fullname: Su, Yusen organization: University of Chinese Academy of Sciences – sequence: 4 givenname: Shunning surname: Li fullname: Li, Shunning organization: Peking University – sequence: 5 givenname: Xin surname: Zhao fullname: Zhao, Xin organization: Chinese Academy of Sciences – sequence: 6 givenname: Laipan surname: Zhu fullname: Zhu, Laipan email: zhulaipan@binn.cas.cn organization: University of Chinese Academy of Sciences – sequence: 7 givenname: Zhong Lin orcidid: 0000-0002-5530-0380 surname: Wang fullname: Wang, Zhong Lin email: zlwang@gatech.edu organization: Yonsei University |
BookMark | eNo9kE9PwjAYxhuDiYBePTfxPHzbbt16JIhAAuGgxGPzrut0ZLTYjRhufgQ_o5_EEQynN0_e50_yG5Ce884Scs9gxAD4IxY7HHHgAmKRpVekzxLOohhU0iN9UCKJlIyzGzJomi0AKAmyTzYraz7QVc2Olj7QmXU2YFu5dzrna06xpW_Y2vD7_fPi66qgC9epEo2l-ZFOvGvRtN1zWlvThqqsTBf27pZcl1g39u7_Dsnmefo6mUfL9WwxGS-jPRcijXhuRMlsbGWRcqbyIjbW8iLLrQEUIsEMVa4KniYxZwyVAClSw0qEAnMZSzEkD-feffCfB9u0eusPwXWTmmeqQ5FJpTqXOru-qtoe9T5UOwxHzUCfuOkTN33hpsdPq_FFiT_XXmcv |
ContentType | Journal Article |
Copyright | 2023 Wiley‐VCH GmbH |
Copyright_xml | – notice: 2023 Wiley‐VCH GmbH |
DBID | 7SR 8BQ 8FD JG9 |
DOI | 10.1002/adma.202304387 |
DatabaseName | Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database |
DatabaseTitle | Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX |
DatabaseTitleList | Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1521-4095 |
EndPage | n/a |
ExternalDocumentID | ADMA202304387 |
Genre | article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 52192613 – fundername: CAS‐TWAS President’s Fellowship |
GroupedDBID | --- .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHQN AAMMB AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABIJN ABJNI ABLJU ABPVW ACAHQ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADMLS ADOZA ADXAS ADZMN AEFGJ AEIGN AEIMD AENEX AEUYR AEYWJ AFBPY AFFPM AFGKR AFWVQ AFZJQ AGHNM AGXDD AGYGG AHBTC AIDQK AIDYY AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RX1 RYL SUPJJ TN5 UB1 UPT V2E W8V W99 WBKPD WFSAM WIB WIH WIK WJL WOHZO WQJ WXSBR WYISQ XG1 XPP XV2 YR2 ZZTAW ~02 ~IA ~WT 7SR 8BQ 8FD JG9 |
ID | FETCH-LOGICAL-p2337-2bc3f1e4e6d7219bd4cee2d8bec0a335a8a9b9d2754211a930637c1fa0dab6463 |
IEDL.DBID | DR2 |
ISSN | 0935-9648 |
IngestDate | Fri Jul 25 07:07:33 EDT 2025 Sun Jul 06 04:45:37 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 46 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-p2337-2bc3f1e4e6d7219bd4cee2d8bec0a335a8a9b9d2754211a930637c1fa0dab6463 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-5530-0380 |
PQID | 2890238699 |
PQPubID | 2045203 |
PageCount | 10 |
ParticipantIDs | proquest_journals_2890238699 wiley_primary_10_1002_adma_202304387_ADMA202304387 |
PublicationCentury | 2000 |
PublicationDate | November 16, 2023 |
PublicationDateYYYYMMDD | 2023-11-16 |
PublicationDate_xml | – month: 11 year: 2023 text: November 16, 2023 day: 16 |
PublicationDecade | 2020 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim |
PublicationTitle | Advanced materials (Weinheim) |
PublicationYear | 2023 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2022; 430 2022 2010; 82 148 2018 2021 2020 2023; 11 86 279 937 2018 2020 2018; 1 3 1 2019; 30 2011 2021; 2011 35 2008 2020; 14 2022; 119 1996; 54 2019 2022 2019 2021; 123 18 4 60 2021 2022; 333 119 2020; 2 2021 2022; 33 122 2022; 2022 2023 2018; 359 2020; 30 2022 2023; 99 15 2021 2023; 15 11 1982 2010; 16 16 2020 2022; 11 34 2021; 270 2022; 13 2020 2020; 32 32 2022; 98 2006 2019; 45 3 2022; 226 2014; 77 2022 2018; 61 23 |
References_xml | – volume: 16 16 start-page: 676 1372 year: 1982 2010 publication-title: Environ. Sci. Technol. Chemistry – volume: 45 3 start-page: 6962 442 year: 2006 2019 publication-title: Angew. Chem. Int. Ed. Engl. Nat. Rev. Chem. – volume: 13 start-page: 130 year: 2022 publication-title: Nat. Commun. – volume: 99 15 start-page: 6243 year: 2022 2023 publication-title: Nano Energy Nanoscale – volume: 77 start-page: 64 year: 2014 publication-title: Free Radic. Biol. Med. – volume: 1 3 1 start-page: 156 125 282 year: 2018 2020 2018 publication-title: Nat. Catal. Nat. Catal. Nat. Catal. – volume: 119 year: 2022 publication-title: Proc. Natl. Acad. Sci. USA – volume: 359 start-page: 388 year: 2018 publication-title: J. Hazard. Mater. – volume: 123 18 4 60 start-page: 5536 3781 123 4169 year: 2019 2022 2019 2021 publication-title: J. Phys. Chem. B J. Chem. Theory Comput. Nat. Energy Angew. Chem., Int. Ed. – volume: 33 122 start-page: 5209 year: 2021 2022 publication-title: Adv. Mater. Chem. Rev. – volume: 14 year: 2020 publication-title: ACS Nano – volume: 30 start-page: 34 year: 2019 publication-title: Mater. Today – volume: 333 119 year: 2021 2022 publication-title: J. Magn. Reson. Proc. Natl. Acad. Sci. USA – volume: 30 year: 2020 publication-title: Adv. Funct. Mater. – volume: 11 86 279 937 start-page: 527 year: 2018 2021 2020 2023 publication-title: ChemSusChem Nano Energy Appl. Catal., B J. Alloys Compd. – volume: 2 start-page: 942 year: 2020 publication-title: Trends Chem. – volume: 15 11 start-page: 5696 year: 2021 2023 publication-title: ACS Nano J. Mater. Chem. A – volume: 54 year: 1996 publication-title: Phys. Rev. B – volume: 32 32 year: 2020 2020 publication-title: Adv. Mater. Adv. Mater. – volume: 11 34 start-page: 6323 year: 2020 2022 publication-title: Nat. Commun. Curr. Opin. Electrochem. – year: 2008 – volume: 226 year: 2022 publication-title: Water Res. – volume: 430 year: 2022 publication-title: Chem. Eng. J. – volume: 2022 year: 2022 publication-title: Research – year: 2023 – volume: 82 148 start-page: 204 year: 2022 2010 publication-title: Ultrason. Sonochem. J. Control. Release – volume: 2011 35 start-page: 4113 year: 2011 2021 publication-title: Eur. J. Org. Chem. Energy Fuels – volume: 270 year: 2021 publication-title: Chemosphere – volume: 61 23 start-page: 244 year: 2022 2018 publication-title: Angew. Chem., Int. Ed. Molecules – volume: 98 year: 2022 publication-title: Nano Energy |
SSID | ssj0009606 |
Score | 2.6214774 |
Snippet | The recent intensification of the study of contact‐electrification at water‐solid interfaces and its role in physicochemical processes lead to the realization... |
SourceID | proquest wiley |
SourceType | Aggregation Database Publisher |
SubjectTerms | Catalysis Catalysts Chemical reactions contact‐electrification Deionization Electrification Electron paramagnetic resonance Electrons Fluorinated ethylene propylenes Fluoropolymers heterogeneous catalysis Hydrogen bonds Hydrogen peroxide Hydroxyl radicals Materials science Molecular dynamics polymers triboelectrification |
Title | Mechanism for Generating H2O2 at Water‐Solid Interface by Contact‐Electrification |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.202304387 https://www.proquest.com/docview/2890238699 |
Volume | 35 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ07T8MwEMct1AkG3ohCQR5Y0yZ24tpjBa0qpIIEVHSL_IpUAW3VpgNMfAQ-I58En9P0wQhLpCiylNh38d_23e8QuooksVYpHnBJ48BZCA9Uwo3zeEZ0ArQUBQnOvTvW7ce3g2SwlsVf8CGWG27gGf5_DQ4u1ayxgoZK47lBsKlJOaSTQ8AWqKKHFT8K5LmH7dEkECzmJbUxJI3N5hv6cl2l-mmms4dk-YJFdMlLfZ6ruv74xW78zxfso92FBsWtwmgO0JYdHaKdNTLhEer3LKQED2dv2KlaXMCpIUIad8k9wTLHz06kTr8_vx7Hr0OD_cZiJrXF6h0D8Urq3D1s-yI7EI3kDeAY9Tvtp-tusKjAEEwIpc2AKE2zyMaWGbdSFMrEbk4lhruBDyWlieRSKGEIlNGNIinc-oM2dZTJ0EjFYkZPUGU0HtlThONMZU69UAYHn5YxwTSNMususpkkKqyiWjkC6cKNZqk_BaWcCVFFxHdlOikgHGmBWyYpdGK67MS0ddNrLe_O_tLoHG2XMMeI1VAln87thRMeubr0xvUD8uvRmA |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV29TsMwELagDMDAP6JQwANr2sZOHGesoFWApkjQCrbIThypAtqqTQeYeASekSfB5zRtYYQlUmJZSs538Xfnu-8QurAFUUpKbnFBHUtrCLekyxNt8YzELrClSChwDjss6Dk3T26RTQi1MDk_xDzgBpZh_tdg4BCQri1YQ0ViiIMgqkm5t4rWoK238aruFwxSANAN3R51LZ85vOBtrJPaz_k_EOYyTjUbTWsbyeIV8_yS5-o0k9X4_Rd747--YQdtzWAobuR6s4tW1GAPbS6RE-6jXqigKrg_ecUa2OKcnxqSpHFA7ggWGX7UOHX89fH5MHzpJ9jEFlMRKyzfMJBeiTjTg03TZwcSkowOHKBeq9m9DKxZEwZrRCj1LCJjmtrKUSzRzqIvE0dvqyTheu3rglJXcOFLPyHQSde2ha9dEOrFdirqiZDMYfQQlQbDgTpC2EllqgEMZXD2qRjzWUztVOmL8FxX1suoUixBNLOkSWQOQilnvl9GxMgyGuU8HFHOuEwiEGI0F2LUuAob87vjv0w6R-tBN2xH7evO7QnagOdQfmizCipl46k61Tgkk2dG074BHjTVsw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1NT8IwGMcbxcTowXcjitqD18HWdqU9EoHgC2hUIrelXbuEqEBgHPTkR_Az-klsO1496mXJ1jTZnj7P-u_L8ysAF4FAWkvJPCYw8YyHME-GTJmIpygOLS1F2gTnZos22uS6E3YWsvgzPsRsws1Ghvtf2wAfqKQ0h4YK5bhBdlITs_IqWCPUZ9avqw9zgJTV5462h0OPU8Km2EYflZbrLwnMRZnq-pn6NhDTN8y2l7wUx6ksxh-_4I3_-YQdsDURobCSec0uWNG9PbC5gCbcB-2mtjnB3dEbNLIWZnRqu0UaNtAdgiKFz0alDr8_vx77r10F3cxiImIN5Tu0yCsRp6aw5k7ZsduRnAccgHa99nTZ8CZHMHgDhHHZQzLGSaCJpsoMFblUxHSqSDHT8r7AOBRMcMkVsufoBoHgZgCCy3GQCF8JSQnFhyDX6_f0EYAkkYmRL5jalU9NKacxDhJtLqIchtLPg8K0BaJJHI0itwyKGeU8D5AzZTTIKBxRxltGkTViNDNiVKk2K7O7479UOgfr99V6dHvVujkBG_axzT0MaAHk0uFYnxoRksoz52c_1nbUaw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mechanism+for+Generating+H2O2+at+Water%E2%80%90Solid+Interface+by+Contact%E2%80%90Electrification&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Berbille%2C+Andy&rft.au=Xiao%E2%80%90Fen+Li&rft.au=Su%2C+Yusen&rft.au=Li%2C+Shunning&rft.date=2023-11-16&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0935-9648&rft.eissn=1521-4095&rft.volume=35&rft.issue=46&rft_id=info:doi/10.1002%2Fadma.202304387&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon |