High‐Activity Fe3C as pH‐Universal Electrocatalyst for Boosting Oxygen Reduction Reaction and Zinc‐Air Battery

Transition metal catalysts are regarded as one of promising alternatives to replace traditional Pt‐based catalysts for oxygen reduction reaction (ORR). In this work, an efficient ORR catalyst is synthesized by confining Fe3C nanoparticles into N, S co‐doped porous carbon nanosheets (Fe3C/N,S‐CNS) vi...

Full description

Saved in:
Bibliographic Details
Published inSmall (Weinheim an der Bergstrasse, Germany) Vol. 19; no. 27
Main Authors Ruan, Qi‐Dong, Feng, Rui, Feng, Jiu‐Ju, Gao, Yi‐Jing, Zhang, Lu, Wang, Ai‐Jun
Format Journal Article
LanguageEnglish
Published Weinheim Wiley Subscription Services, Inc 05.07.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Transition metal catalysts are regarded as one of promising alternatives to replace traditional Pt‐based catalysts for oxygen reduction reaction (ORR). In this work, an efficient ORR catalyst is synthesized by confining Fe3C nanoparticles into N, S co‐doped porous carbon nanosheets (Fe3C/N,S‐CNS) via high‐temperature pyrolysis, in which 5‐sulfosalicylic acid (SSA) demonstrates as an ideal complexing agent for iron (ΙΙΙ) acetylacetonate while g‐C3N4 behaves as a nitrogen source. The influence of the pyrolysis temperature on the ORR performance is strictly examined in the controlled experiments. The obtained catalyst exhibits excellent ORR performance (E1/2 = 0.86 V; Eonset = 0.98 V) in alkaline electrolyte, coupled by exhibiting the superior catalytic activity and stability (E1/2 = 0.83 V, Eonset = 0.95 V) to Pt/C in acidic media. In parallel, its ORR mechanism is carefully illustrated by the density functional theory (DFT) calculations, especially the role of the incorporated Fe3C played in the catalytic process. The catalyst‐assembled Zn‐air battery also exhibits a much higher power density (163 mW cm–2) and ultralong cyclic stability in the charge–discharge test for 750 h with a gap increase down to 20 mV. This study provides some constructive insights for preparation of advanced ORR catalysts in green energy conversion units correlated systems. The Fe3C/N,S‐CNS is prepared via a convenient one‐pot pyrolysis. The effective coating of Fe3C with a graphite carbon layer alleviates the carbon corrosion and metal loss, enabling the catalyst with outstanding activity and cycling stability for the acidic oxygen reduction reaction (ORR) and Zn‐air battery. According to the DFT calculations, Fe3C acts as the main active site in the catalytic process.
AbstractList Transition metal catalysts are regarded as one of promising alternatives to replace traditional Pt‐based catalysts for oxygen reduction reaction (ORR). In this work, an efficient ORR catalyst is synthesized by confining Fe3C nanoparticles into N, S co‐doped porous carbon nanosheets (Fe3C/N,S‐CNS) via high‐temperature pyrolysis, in which 5‐sulfosalicylic acid (SSA) demonstrates as an ideal complexing agent for iron (ΙΙΙ) acetylacetonate while g‐C3N4 behaves as a nitrogen source. The influence of the pyrolysis temperature on the ORR performance is strictly examined in the controlled experiments. The obtained catalyst exhibits excellent ORR performance (E1/2 = 0.86 V; Eonset = 0.98 V) in alkaline electrolyte, coupled by exhibiting the superior catalytic activity and stability (E1/2 = 0.83 V, Eonset = 0.95 V) to Pt/C in acidic media. In parallel, its ORR mechanism is carefully illustrated by the density functional theory (DFT) calculations, especially the role of the incorporated Fe3C played in the catalytic process. The catalyst‐assembled Zn‐air battery also exhibits a much higher power density (163 mW cm–2) and ultralong cyclic stability in the charge–discharge test for 750 h with a gap increase down to 20 mV. This study provides some constructive insights for preparation of advanced ORR catalysts in green energy conversion units correlated systems. The Fe3C/N,S‐CNS is prepared via a convenient one‐pot pyrolysis. The effective coating of Fe3C with a graphite carbon layer alleviates the carbon corrosion and metal loss, enabling the catalyst with outstanding activity and cycling stability for the acidic oxygen reduction reaction (ORR) and Zn‐air battery. According to the DFT calculations, Fe3C acts as the main active site in the catalytic process.
Transition metal catalysts are regarded as one of promising alternatives to replace traditional Pt‐based catalysts for oxygen reduction reaction (ORR). In this work, an efficient ORR catalyst is synthesized by confining Fe3C nanoparticles into N, S co‐doped porous carbon nanosheets (Fe3C/N,S‐CNS) via high‐temperature pyrolysis, in which 5‐sulfosalicylic acid (SSA) demonstrates as an ideal complexing agent for iron (ΙΙΙ) acetylacetonate while g‐C3N4 behaves as a nitrogen source. The influence of the pyrolysis temperature on the ORR performance is strictly examined in the controlled experiments. The obtained catalyst exhibits excellent ORR performance (E1/2 = 0.86 V; Eonset = 0.98 V) in alkaline electrolyte, coupled by exhibiting the superior catalytic activity and stability (E1/2 = 0.83 V, Eonset = 0.95 V) to Pt/C in acidic media. In parallel, its ORR mechanism is carefully illustrated by the density functional theory (DFT) calculations, especially the role of the incorporated Fe3C played in the catalytic process. The catalyst‐assembled Zn‐air battery also exhibits a much higher power density (163 mW cm–2) and ultralong cyclic stability in the charge–discharge test for 750 h with a gap increase down to 20 mV. This study provides some constructive insights for preparation of advanced ORR catalysts in green energy conversion units correlated systems.
Author Wang, Ai‐Jun
Feng, Jiu‐Ju
Feng, Rui
Zhang, Lu
Gao, Yi‐Jing
Ruan, Qi‐Dong
Author_xml – sequence: 1
  givenname: Qi‐Dong
  surname: Ruan
  fullname: Ruan, Qi‐Dong
  organization: Zhejiang Normal University
– sequence: 2
  givenname: Rui
  surname: Feng
  fullname: Feng, Rui
  organization: Zhejiang Normal University
– sequence: 3
  givenname: Jiu‐Ju
  surname: Feng
  fullname: Feng, Jiu‐Ju
  organization: Zhejiang Normal University
– sequence: 4
  givenname: Yi‐Jing
  surname: Gao
  fullname: Gao, Yi‐Jing
  email: yijinggao@zjnu.edu.cn
  organization: Zhejiang Normal University
– sequence: 5
  givenname: Lu
  orcidid: 0000-0002-8855-8492
  surname: Zhang
  fullname: Zhang, Lu
  email: zhanglu@zjnu.edu.cn
  organization: Zhejiang Normal University
– sequence: 6
  givenname: Ai‐Jun
  surname: Wang
  fullname: Wang, Ai‐Jun
  email: ajwang@zjnu.cn
  organization: Zhejiang Normal University
BookMark eNo9kM1OwzAQhC1UJNrClbMlzgX_xIlzLFVLkYIqAb1wsRzHKa5SJ9huITcegWfkSUhU1NN-u5qdkWYEBra2GoBrjG4xQuTO76rqliBCEcI0PgNDHGM6iTlJByfG6AKMvN8iRDGJkiEIS7N5__3-mapgDia0cKHpDEoPm2V3XVtz0M7LCs4rrYKrlQyyan2AZe3gfV37YOwGrr7ajbbwWRf7zqbuSR5B2gK-Gav6BNN9yBC0ay_BeSkrr6_-5xisF_PX2XKSrR4eZ9Ns0hBK40laEKlyVCqWElWUZaw4LwoupUq0ShhPIpVwhkvEcqJSEpU50knBeJ4yVlCG6RjcHH0bV3_stQ9iW--d7SIF4ZSklEdR1KnSo-rTVLoVjTM76VqBkehrFX2t4lSreHnKstNG_wD2tnRk
ContentType Journal Article
Copyright 2023 Wiley‐VCH GmbH
Copyright_xml – notice: 2023 Wiley‐VCH GmbH
DBID 7SR
7U5
8BQ
8FD
JG9
L7M
DOI 10.1002/smll.202300136
DatabaseName Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList
Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1613-6829
EndPage n/a
ExternalDocumentID SMLL202300136
Genre article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 21805245
GroupedDBID ---
05W
0R~
123
1L6
1OC
33P
3SF
3WU
4.4
50Y
52U
53G
5VS
66C
8-0
8-1
8UM
A00
AAESR
AAEVG
AAHHS
AAHQN
AAIHA
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCUV
ABIJN
ABJNI
ABLJU
ABRTZ
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZVAB
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BOGZA
BRXPI
CS3
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EMOBN
F5P
G-S
GNP
HBH
HGLYW
HHY
HHZ
HZ~
IX1
KQQ
LATKE
LAW
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
MY~
O66
O9-
OIG
P2P
P2W
P4E
QRW
R.K
RIWAO
RNS
ROL
RWI
RX1
RYL
SUPJJ
SV3
V2E
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WXSBR
WYISQ
WYJ
XV2
Y6R
ZZTAW
~S-
7SR
7U5
8BQ
8FD
AAMMB
AEFGJ
AGHNM
AGXDD
AGYGG
AIDQK
AIDYY
JG9
L7M
ID FETCH-LOGICAL-p2336-9d2acb0fc592cdff6c88dd8aac7ec75874c7851f05b2c924fb0e7d58b955d3513
IEDL.DBID DR2
ISSN 1613-6810
IngestDate Fri Jul 25 12:08:10 EDT 2025
Wed Jan 22 16:20:02 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 27
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-p2336-9d2acb0fc592cdff6c88dd8aac7ec75874c7851f05b2c924fb0e7d58b955d3513
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-8855-8492
PQID 2832938444
PQPubID 1046358
PageCount 11
ParticipantIDs proquest_journals_2832938444
wiley_primary_10_1002_smll_202300136_SMLL202300136
PublicationCentury 2000
PublicationDate July 5, 2023
PublicationDateYYYYMMDD 2023-07-05
PublicationDate_xml – month: 07
  year: 2023
  text: July 5, 2023
  day: 05
PublicationDecade 2020
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Small (Weinheim an der Bergstrasse, Germany)
PublicationYear 2023
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2021; 407
2021; 406
2019; 7
2021; 23
2019; 31
2022 2023; 521 637
2021; 424
2021; 603
2020; 59
2020; 12
2020; 32
2020; 10
2015 2016; 54 6
2020 2022; 19 437
2011; 3
2022; 437
1996; 77
2020; 8
2016; 4
2018; 6
2018; 8
1976; 13
2020; 275
2018; 1
1996 1996; 6 54
2018 2017; 30 56
2010; 132
2022 2021 2018; 614 282 14
2018; 30
2016; 138
2016 2021 2004; 8 84 108
2022; 10
2022; 429
2022; 627
2022; 626
2018; 11
2021; 85
2011 2009; 134 21
1994; 50
2016; 8
2022; 18
References_xml – volume: 275
  year: 2020
  publication-title: Appl. Catal. B: Environ.
– volume: 10
  year: 2020
  publication-title: Adv. Energy Mater.
– volume: 1
  start-page: 4982
  year: 2018
  publication-title: ACS Appl. Energy Mater.
– volume: 407
  year: 2021
  publication-title: Chem. Eng. J.
– volume: 7
  year: 2019
  publication-title: J. Mater. Chem. A
– volume: 603
  start-page: 559
  year: 2021
  publication-title: J. Colloid Interface Sci.
– volume: 4
  year: 2016
  publication-title: J. Mater. Chem. A
– volume: 18
  year: 2022
  publication-title: Small
– volume: 627
  start-page: 630
  year: 2022
  publication-title: J. Colloid Interface Sci.
– volume: 6 54
  start-page: 15
  year: 1996 1996
  publication-title: Comput. Mater. Sci. Phys. Rev. B
– volume: 437
  year: 2022
  publication-title: Chem. Eng. J.
– volume: 429
  year: 2022
  publication-title: Chem. Eng. J.
– volume: 138
  start-page: 3570
  year: 2016
  publication-title: J. Am. Chem. Soc.
– volume: 10
  start-page: 9911
  year: 2022
  publication-title: J. Mater. Chem. A
– volume: 85
  year: 2021
  publication-title: Nano Energy
– volume: 11
  start-page: 112
  year: 2018
  publication-title: Energy Storage Mater.
– volume: 12
  start-page: 973
  year: 2020
  publication-title: Nanoscale
– volume: 54 6
  start-page: 3136
  year: 2015 2016
  publication-title: Angew. Chem., Int. Ed. ACS Catal.
– volume: 406
  year: 2021
  publication-title: Chem. Eng. J.
– volume: 77
  start-page: 3865
  year: 1996
  publication-title: Phys. Rev. Lett.
– volume: 8
  year: 2016
  publication-title: Nanoscale
– volume: 59
  start-page: 5194
  year: 2020
  publication-title: Inorg. Chem.
– volume: 30 56
  year: 2018 2017
  publication-title: Adv. Mater. Angew. Chem., Int. Ed.
– volume: 50
  year: 1994
  publication-title: Phys. Rev. B
– volume: 31
  year: 2019
  publication-title: Adv. Mater.
– volume: 3
  start-page: 1159
  year: 2011
  publication-title: ChemCatChem
– volume: 134 21
  year: 2011 2009
  publication-title: J. Chem. Phys. J. Phys.: Condens. Matter
– volume: 521 637
  start-page: 216
  year: 2022 2023
  publication-title: J. Power Sources J. Colloid Interface Sci.
– volume: 8
  year: 2018
  publication-title: Adv. Energy Mater.
– volume: 614 282 14
  start-page: 655
  year: 2022 2021 2018
  publication-title: J. Colloid Interface Sci. Appl. Catal. B: Environ. Small
– volume: 30
  year: 2018
  publication-title: Adv. Mater.
– volume: 424
  year: 2021
  publication-title: Chem. Eng. J.
– volume: 13
  start-page: 5188
  year: 1976
  publication-title: Phys. Rev. B
– volume: 32
  year: 2020
  publication-title: Adv. Mater.
– volume: 8 84 108
  year: 2016 2021 2004
  publication-title: ACS Appl. Mater. Interfaces Nano Energy J. Phys. Chem. B
– volume: 19 437
  start-page: 1215
  year: 2020 2022
  publication-title: Nat. Mater. Chem. Eng. J.
– volume: 23
  year: 2021
  publication-title: Compos. Commun.
– volume: 626
  start-page: 653
  year: 2022
  publication-title: J. Colloid Interface Sci.
– volume: 6
  start-page: 1443
  year: 2018
  publication-title: J. Mater. Chem. A
– volume: 8
  year: 2020
  publication-title: J. Mater. Chem. A
– volume: 132
  year: 2010
  publication-title: J. Chem. Phys.
SSID ssj0031247
Score 2.5870771
Snippet Transition metal catalysts are regarded as one of promising alternatives to replace traditional Pt‐based catalysts for oxygen reduction reaction (ORR). In this...
SourceID proquest
wiley
SourceType Aggregation Database
Publisher
SubjectTerms acidic media
Carbon nitride
Catalysts
Catalytic activity
Cementite
Chemical reduction
Chemical synthesis
Clean energy
Density functional theory
Electrocatalysts
Energy conversion
Iron carbides
long‐term cyclic stability
Metal air batteries
Nanoparticles
Nanotechnology
Nitrogen
oxygen reduction reaction
Oxygen reduction reactions
Platinum
Pyrolysis
Stability
Transition metals
Zinc-oxygen batteries
zinc‐air batteries
Title High‐Activity Fe3C as pH‐Universal Electrocatalyst for Boosting Oxygen Reduction Reaction and Zinc‐Air Battery
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsmll.202300136
https://www.proquest.com/docview/2832938444
Volume 19
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8JAEN4YTnrwbUTR7MFroXS7fRyRQIgBTVAS4qXZR5sQtRBbEvHkT_A3-kuc2UIFj3rbNpk-dmd2vp2d_YaQq8RtatVUnqWkJy3XdXGTMAgtzROutUAfhgH9wa3XG7k3Yz5eO8Vf8EOUATe0DDNfo4ELmTV-SEOzl2fcOgAIjbRjMAljwhaiomHJH8XAeZnqKuCzLCTeWrE22k5jU3wDX66jVONmuntErD6wyC55qs9zWVfvv7gb__MH-2R3iUFpq1CaA7IVp4dkZ42Z8IjkmP_x9fHZUkV1CdqNWZuKjM56cHeZzQHP6BRVdEwQaJHlFCAwvZ5OM0ympndvC1BPOkR2WBx_aBXHKKhINX2cpArfMAEJQ_K5OCajbueh3bOWBRqsmcOYZ4XaEUraieKho3SSeCoItA6EUH6sYCHiu8oHRJfYXDoKFnqJtGNf80CGnGvGm-yEVNJpGp8SqmEZFduSAxrFGoFBoGIdMoCvCiCl4-oqqa0GKFpaWRZhmaWQBaBhVeKYno5mBUdHVLAxOxH2cVT2cXQ_6PfLq7O_CJ2TbWybjF1eI5X8dR5fAC7J5aXRvW_hlt8R
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NTttAEB5ROLQcCi1FUCjdAxxNnLXXsQ8c-IuSkoAUghRxcb0_lhDgRNiodU99BF6FV-EReJLO2E4gHCtx4GZb2rW9M7Pz7ezsNwCbsVvXqq48S0lPWq7r0iahH1haxELriHwYBfS7x17rzP0xEIMZuB-fhSn5ISYBN7KMYr4mA6eAdO2JNTS9vqK9A8TQxDtW5VUemfwXrtrSnfYBiniL8-Zhf79lVYUFrBF3HM8KNI-UtGMlAq50HHvK97X2o0g1jEIA3XAV1ayPbSG5wgVKLG3T0MKXgRDaEXUH-30Hc1RGnOj6D3oTxioH3WVRzwW9pEVUX2OeSJvXpr93CtE-x8WFY2suwMN4SMp8lsvt20xuqz8v2CLf1JgtwscKZrPd0i4-wYxJPsP8M_LFJcgoxeXx792uKgtosKZx9lmUslELn1YJK9jHYVkoqIhz5WnGEOWzveEwpXxxdvI7RwtkPSLAJRXHq_KkCIsSzc4vEkVvuMAWBY9p_gXOXuW3l2E2GSZmBZjGlaKxpUDATWUQfV8ZHTiI0BWiZu7qVVgfa0RYTSRpSJWkAsdHI1oFXog2HJU0JGFJOM1Dkmk4kWl42u10Jndf_6fRd3jf6nc7Yad9fLQGH-h5kaAs1mE2u7k13xCGZXKjUHwGP19ba_4ByOU_Bg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NTttAEB6FIFX0wE-hKhToHuBocNZexz5wAEKUQICKEiniYrw_llDBibAjSE99hD5KX6WvwJMwYzspcETiwM22tGt7Z2b3293Z7wPYiN2aVjXlWUp60nJdlzYJ_cDSIhZaRzSG0YL-8YnX6rqHPdGrwN_xWZiCH2Ky4EaRkffXFOADHW__Jw1Nb65p6wAhNNGOlWmVR2Z0h5O2dKfdQAtvct48ON9vWaWugDXgjuNZgeaRknasRMCVjmNP-b7WfhSpulGIn-uuIsn62BaSK5yfxNI2dS18GQihHVFzsN4pmHY9OyCxiMbZhLDKwdEyl3PBQdIipq8xTaTNt59_7zNA-xQW5-Nacw7-jVukSGf5uTXM5Jb69YIs8j012TzMliCb7RZRsQAVk3yCj0-oFxchowSXh99_dlUhn8GaxtlnUcoGLXxapqtgHQeFTFC-yjVKM4YYn-31-ylli7PT-xHGHzsj-ltycLwqzomwKNHs4ipR9IYrLJGzmI6WoPsmv_0Zqkk_MV-AaZwnGlsKhNskguj7yujAQXyuEDNzVy_D6tghwrIbSUPSkQocH0NoGXhu2XBQkJCEBd00D8mm4cSm4Y_jTmdyt_KaQt_gw_dGM-y0T46-wgw9zrOTxSpUs9uhWUMMlsn13O0ZXL610zwCub49tQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=High%E2%80%90Activity+Fe3C+as+pH%E2%80%90Universal+Electrocatalyst+for+Boosting+Oxygen+Reduction+Reaction+and+Zinc%E2%80%90Air+Battery&rft.jtitle=Small+%28Weinheim+an+der+Bergstrasse%2C+Germany%29&rft.au=Ruan%2C+Qi%E2%80%90Dong&rft.au=Feng%2C+Rui&rft.au=Feng%2C+Jiu%E2%80%90Ju&rft.au=Gao%2C+Yi%E2%80%90Jing&rft.date=2023-07-05&rft.issn=1613-6810&rft.eissn=1613-6829&rft.volume=19&rft.issue=27&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fsmll.202300136&rft.externalDBID=10.1002%252Fsmll.202300136&rft.externalDocID=SMLL202300136
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1613-6810&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1613-6810&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1613-6810&client=summon