High‐Activity Fe3C as pH‐Universal Electrocatalyst for Boosting Oxygen Reduction Reaction and Zinc‐Air Battery
Transition metal catalysts are regarded as one of promising alternatives to replace traditional Pt‐based catalysts for oxygen reduction reaction (ORR). In this work, an efficient ORR catalyst is synthesized by confining Fe3C nanoparticles into N, S co‐doped porous carbon nanosheets (Fe3C/N,S‐CNS) vi...
Saved in:
Published in | Small (Weinheim an der Bergstrasse, Germany) Vol. 19; no. 27 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
Wiley Subscription Services, Inc
05.07.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Transition metal catalysts are regarded as one of promising alternatives to replace traditional Pt‐based catalysts for oxygen reduction reaction (ORR). In this work, an efficient ORR catalyst is synthesized by confining Fe3C nanoparticles into N, S co‐doped porous carbon nanosheets (Fe3C/N,S‐CNS) via high‐temperature pyrolysis, in which 5‐sulfosalicylic acid (SSA) demonstrates as an ideal complexing agent for iron (ΙΙΙ) acetylacetonate while g‐C3N4 behaves as a nitrogen source. The influence of the pyrolysis temperature on the ORR performance is strictly examined in the controlled experiments. The obtained catalyst exhibits excellent ORR performance (E1/2 = 0.86 V; Eonset = 0.98 V) in alkaline electrolyte, coupled by exhibiting the superior catalytic activity and stability (E1/2 = 0.83 V, Eonset = 0.95 V) to Pt/C in acidic media. In parallel, its ORR mechanism is carefully illustrated by the density functional theory (DFT) calculations, especially the role of the incorporated Fe3C played in the catalytic process. The catalyst‐assembled Zn‐air battery also exhibits a much higher power density (163 mW cm–2) and ultralong cyclic stability in the charge–discharge test for 750 h with a gap increase down to 20 mV. This study provides some constructive insights for preparation of advanced ORR catalysts in green energy conversion units correlated systems.
The Fe3C/N,S‐CNS is prepared via a convenient one‐pot pyrolysis. The effective coating of Fe3C with a graphite carbon layer alleviates the carbon corrosion and metal loss, enabling the catalyst with outstanding activity and cycling stability for the acidic oxygen reduction reaction (ORR) and Zn‐air battery. According to the DFT calculations, Fe3C acts as the main active site in the catalytic process. |
---|---|
AbstractList | Transition metal catalysts are regarded as one of promising alternatives to replace traditional Pt‐based catalysts for oxygen reduction reaction (ORR). In this work, an efficient ORR catalyst is synthesized by confining Fe3C nanoparticles into N, S co‐doped porous carbon nanosheets (Fe3C/N,S‐CNS) via high‐temperature pyrolysis, in which 5‐sulfosalicylic acid (SSA) demonstrates as an ideal complexing agent for iron (ΙΙΙ) acetylacetonate while g‐C3N4 behaves as a nitrogen source. The influence of the pyrolysis temperature on the ORR performance is strictly examined in the controlled experiments. The obtained catalyst exhibits excellent ORR performance (E1/2 = 0.86 V; Eonset = 0.98 V) in alkaline electrolyte, coupled by exhibiting the superior catalytic activity and stability (E1/2 = 0.83 V, Eonset = 0.95 V) to Pt/C in acidic media. In parallel, its ORR mechanism is carefully illustrated by the density functional theory (DFT) calculations, especially the role of the incorporated Fe3C played in the catalytic process. The catalyst‐assembled Zn‐air battery also exhibits a much higher power density (163 mW cm–2) and ultralong cyclic stability in the charge–discharge test for 750 h with a gap increase down to 20 mV. This study provides some constructive insights for preparation of advanced ORR catalysts in green energy conversion units correlated systems.
The Fe3C/N,S‐CNS is prepared via a convenient one‐pot pyrolysis. The effective coating of Fe3C with a graphite carbon layer alleviates the carbon corrosion and metal loss, enabling the catalyst with outstanding activity and cycling stability for the acidic oxygen reduction reaction (ORR) and Zn‐air battery. According to the DFT calculations, Fe3C acts as the main active site in the catalytic process. Transition metal catalysts are regarded as one of promising alternatives to replace traditional Pt‐based catalysts for oxygen reduction reaction (ORR). In this work, an efficient ORR catalyst is synthesized by confining Fe3C nanoparticles into N, S co‐doped porous carbon nanosheets (Fe3C/N,S‐CNS) via high‐temperature pyrolysis, in which 5‐sulfosalicylic acid (SSA) demonstrates as an ideal complexing agent for iron (ΙΙΙ) acetylacetonate while g‐C3N4 behaves as a nitrogen source. The influence of the pyrolysis temperature on the ORR performance is strictly examined in the controlled experiments. The obtained catalyst exhibits excellent ORR performance (E1/2 = 0.86 V; Eonset = 0.98 V) in alkaline electrolyte, coupled by exhibiting the superior catalytic activity and stability (E1/2 = 0.83 V, Eonset = 0.95 V) to Pt/C in acidic media. In parallel, its ORR mechanism is carefully illustrated by the density functional theory (DFT) calculations, especially the role of the incorporated Fe3C played in the catalytic process. The catalyst‐assembled Zn‐air battery also exhibits a much higher power density (163 mW cm–2) and ultralong cyclic stability in the charge–discharge test for 750 h with a gap increase down to 20 mV. This study provides some constructive insights for preparation of advanced ORR catalysts in green energy conversion units correlated systems. |
Author | Wang, Ai‐Jun Feng, Jiu‐Ju Feng, Rui Zhang, Lu Gao, Yi‐Jing Ruan, Qi‐Dong |
Author_xml | – sequence: 1 givenname: Qi‐Dong surname: Ruan fullname: Ruan, Qi‐Dong organization: Zhejiang Normal University – sequence: 2 givenname: Rui surname: Feng fullname: Feng, Rui organization: Zhejiang Normal University – sequence: 3 givenname: Jiu‐Ju surname: Feng fullname: Feng, Jiu‐Ju organization: Zhejiang Normal University – sequence: 4 givenname: Yi‐Jing surname: Gao fullname: Gao, Yi‐Jing email: yijinggao@zjnu.edu.cn organization: Zhejiang Normal University – sequence: 5 givenname: Lu orcidid: 0000-0002-8855-8492 surname: Zhang fullname: Zhang, Lu email: zhanglu@zjnu.edu.cn organization: Zhejiang Normal University – sequence: 6 givenname: Ai‐Jun surname: Wang fullname: Wang, Ai‐Jun email: ajwang@zjnu.cn organization: Zhejiang Normal University |
BookMark | eNo9kM1OwzAQhC1UJNrClbMlzgX_xIlzLFVLkYIqAb1wsRzHKa5SJ9huITcegWfkSUhU1NN-u5qdkWYEBra2GoBrjG4xQuTO76rqliBCEcI0PgNDHGM6iTlJByfG6AKMvN8iRDGJkiEIS7N5__3-mapgDia0cKHpDEoPm2V3XVtz0M7LCs4rrYKrlQyyan2AZe3gfV37YOwGrr7ajbbwWRf7zqbuSR5B2gK-Gav6BNN9yBC0ay_BeSkrr6_-5xisF_PX2XKSrR4eZ9Ns0hBK40laEKlyVCqWElWUZaw4LwoupUq0ShhPIpVwhkvEcqJSEpU50knBeJ4yVlCG6RjcHH0bV3_stQ9iW--d7SIF4ZSklEdR1KnSo-rTVLoVjTM76VqBkehrFX2t4lSreHnKstNG_wD2tnRk |
ContentType | Journal Article |
Copyright | 2023 Wiley‐VCH GmbH |
Copyright_xml | – notice: 2023 Wiley‐VCH GmbH |
DBID | 7SR 7U5 8BQ 8FD JG9 L7M |
DOI | 10.1002/smll.202300136 |
DatabaseName | Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX |
DatabaseTitleList | Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1613-6829 |
EndPage | n/a |
ExternalDocumentID | SMLL202300136 |
Genre | article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 21805245 |
GroupedDBID | --- 05W 0R~ 123 1L6 1OC 33P 3SF 3WU 4.4 50Y 52U 53G 5VS 66C 8-0 8-1 8UM A00 AAESR AAEVG AAHHS AAHQN AAIHA AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCUV ABIJN ABJNI ABLJU ABRTZ ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZVAB BFHJK BHBCM BMNLL BMXJE BNHUX BOGZA BRXPI CS3 DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBD EBS EMOBN F5P G-S GNP HBH HGLYW HHY HHZ HZ~ IX1 KQQ LATKE LAW LEEKS LITHE LOXES LUTES LYRES MEWTI MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM MY~ O66 O9- OIG P2P P2W P4E QRW R.K RIWAO RNS ROL RWI RX1 RYL SUPJJ SV3 V2E W99 WBKPD WFSAM WIH WIK WJL WOHZO WXSBR WYISQ WYJ XV2 Y6R ZZTAW ~S- 7SR 7U5 8BQ 8FD AAMMB AEFGJ AGHNM AGXDD AGYGG AIDQK AIDYY JG9 L7M |
ID | FETCH-LOGICAL-p2336-9d2acb0fc592cdff6c88dd8aac7ec75874c7851f05b2c924fb0e7d58b955d3513 |
IEDL.DBID | DR2 |
ISSN | 1613-6810 |
IngestDate | Fri Jul 25 12:08:10 EDT 2025 Wed Jan 22 16:20:02 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 27 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-p2336-9d2acb0fc592cdff6c88dd8aac7ec75874c7851f05b2c924fb0e7d58b955d3513 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-8855-8492 |
PQID | 2832938444 |
PQPubID | 1046358 |
PageCount | 11 |
ParticipantIDs | proquest_journals_2832938444 wiley_primary_10_1002_smll_202300136_SMLL202300136 |
PublicationCentury | 2000 |
PublicationDate | July 5, 2023 |
PublicationDateYYYYMMDD | 2023-07-05 |
PublicationDate_xml | – month: 07 year: 2023 text: July 5, 2023 day: 05 |
PublicationDecade | 2020 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim |
PublicationTitle | Small (Weinheim an der Bergstrasse, Germany) |
PublicationYear | 2023 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2021; 407 2021; 406 2019; 7 2021; 23 2019; 31 2022 2023; 521 637 2021; 424 2021; 603 2020; 59 2020; 12 2020; 32 2020; 10 2015 2016; 54 6 2020 2022; 19 437 2011; 3 2022; 437 1996; 77 2020; 8 2016; 4 2018; 6 2018; 8 1976; 13 2020; 275 2018; 1 1996 1996; 6 54 2018 2017; 30 56 2010; 132 2022 2021 2018; 614 282 14 2018; 30 2016; 138 2016 2021 2004; 8 84 108 2022; 10 2022; 429 2022; 627 2022; 626 2018; 11 2021; 85 2011 2009; 134 21 1994; 50 2016; 8 2022; 18 |
References_xml | – volume: 275 year: 2020 publication-title: Appl. Catal. B: Environ. – volume: 10 year: 2020 publication-title: Adv. Energy Mater. – volume: 1 start-page: 4982 year: 2018 publication-title: ACS Appl. Energy Mater. – volume: 407 year: 2021 publication-title: Chem. Eng. J. – volume: 7 year: 2019 publication-title: J. Mater. Chem. A – volume: 603 start-page: 559 year: 2021 publication-title: J. Colloid Interface Sci. – volume: 4 year: 2016 publication-title: J. Mater. Chem. A – volume: 18 year: 2022 publication-title: Small – volume: 627 start-page: 630 year: 2022 publication-title: J. Colloid Interface Sci. – volume: 6 54 start-page: 15 year: 1996 1996 publication-title: Comput. Mater. Sci. Phys. Rev. B – volume: 437 year: 2022 publication-title: Chem. Eng. J. – volume: 429 year: 2022 publication-title: Chem. Eng. J. – volume: 138 start-page: 3570 year: 2016 publication-title: J. Am. Chem. Soc. – volume: 10 start-page: 9911 year: 2022 publication-title: J. Mater. Chem. A – volume: 85 year: 2021 publication-title: Nano Energy – volume: 11 start-page: 112 year: 2018 publication-title: Energy Storage Mater. – volume: 12 start-page: 973 year: 2020 publication-title: Nanoscale – volume: 54 6 start-page: 3136 year: 2015 2016 publication-title: Angew. Chem., Int. Ed. ACS Catal. – volume: 406 year: 2021 publication-title: Chem. Eng. J. – volume: 77 start-page: 3865 year: 1996 publication-title: Phys. Rev. Lett. – volume: 8 year: 2016 publication-title: Nanoscale – volume: 59 start-page: 5194 year: 2020 publication-title: Inorg. Chem. – volume: 30 56 year: 2018 2017 publication-title: Adv. Mater. Angew. Chem., Int. Ed. – volume: 50 year: 1994 publication-title: Phys. Rev. B – volume: 31 year: 2019 publication-title: Adv. Mater. – volume: 3 start-page: 1159 year: 2011 publication-title: ChemCatChem – volume: 134 21 year: 2011 2009 publication-title: J. Chem. Phys. J. Phys.: Condens. Matter – volume: 521 637 start-page: 216 year: 2022 2023 publication-title: J. Power Sources J. Colloid Interface Sci. – volume: 8 year: 2018 publication-title: Adv. Energy Mater. – volume: 614 282 14 start-page: 655 year: 2022 2021 2018 publication-title: J. Colloid Interface Sci. Appl. Catal. B: Environ. Small – volume: 30 year: 2018 publication-title: Adv. Mater. – volume: 424 year: 2021 publication-title: Chem. Eng. J. – volume: 13 start-page: 5188 year: 1976 publication-title: Phys. Rev. B – volume: 32 year: 2020 publication-title: Adv. Mater. – volume: 8 84 108 year: 2016 2021 2004 publication-title: ACS Appl. Mater. Interfaces Nano Energy J. Phys. Chem. B – volume: 19 437 start-page: 1215 year: 2020 2022 publication-title: Nat. Mater. Chem. Eng. J. – volume: 23 year: 2021 publication-title: Compos. Commun. – volume: 626 start-page: 653 year: 2022 publication-title: J. Colloid Interface Sci. – volume: 6 start-page: 1443 year: 2018 publication-title: J. Mater. Chem. A – volume: 8 year: 2020 publication-title: J. Mater. Chem. A – volume: 132 year: 2010 publication-title: J. Chem. Phys. |
SSID | ssj0031247 |
Score | 2.5870771 |
Snippet | Transition metal catalysts are regarded as one of promising alternatives to replace traditional Pt‐based catalysts for oxygen reduction reaction (ORR). In this... |
SourceID | proquest wiley |
SourceType | Aggregation Database Publisher |
SubjectTerms | acidic media Carbon nitride Catalysts Catalytic activity Cementite Chemical reduction Chemical synthesis Clean energy Density functional theory Electrocatalysts Energy conversion Iron carbides long‐term cyclic stability Metal air batteries Nanoparticles Nanotechnology Nitrogen oxygen reduction reaction Oxygen reduction reactions Platinum Pyrolysis Stability Transition metals Zinc-oxygen batteries zinc‐air batteries |
Title | High‐Activity Fe3C as pH‐Universal Electrocatalyst for Boosting Oxygen Reduction Reaction and Zinc‐Air Battery |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsmll.202300136 https://www.proquest.com/docview/2832938444 |
Volume | 19 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8JAEN4YTnrwbUTR7MFroXS7fRyRQIgBTVAS4qXZR5sQtRBbEvHkT_A3-kuc2UIFj3rbNpk-dmd2vp2d_YaQq8RtatVUnqWkJy3XdXGTMAgtzROutUAfhgH9wa3XG7k3Yz5eO8Vf8EOUATe0DDNfo4ELmTV-SEOzl2fcOgAIjbRjMAljwhaiomHJH8XAeZnqKuCzLCTeWrE22k5jU3wDX66jVONmuntErD6wyC55qs9zWVfvv7gb__MH-2R3iUFpq1CaA7IVp4dkZ42Z8IjkmP_x9fHZUkV1CdqNWZuKjM56cHeZzQHP6BRVdEwQaJHlFCAwvZ5OM0ympndvC1BPOkR2WBx_aBXHKKhINX2cpArfMAEJQ_K5OCajbueh3bOWBRqsmcOYZ4XaEUraieKho3SSeCoItA6EUH6sYCHiu8oHRJfYXDoKFnqJtGNf80CGnGvGm-yEVNJpGp8SqmEZFduSAxrFGoFBoGIdMoCvCiCl4-oqqa0GKFpaWRZhmaWQBaBhVeKYno5mBUdHVLAxOxH2cVT2cXQ_6PfLq7O_CJ2TbWybjF1eI5X8dR5fAC7J5aXRvW_hlt8R |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NTttAEB5ROLQcCi1FUCjdAxxNnLXXsQ8c-IuSkoAUghRxcb0_lhDgRNiodU99BF6FV-EReJLO2E4gHCtx4GZb2rW9M7Pz7ezsNwCbsVvXqq48S0lPWq7r0iahH1haxELriHwYBfS7x17rzP0xEIMZuB-fhSn5ISYBN7KMYr4mA6eAdO2JNTS9vqK9A8TQxDtW5VUemfwXrtrSnfYBiniL8-Zhf79lVYUFrBF3HM8KNI-UtGMlAq50HHvK97X2o0g1jEIA3XAV1ayPbSG5wgVKLG3T0MKXgRDaEXUH-30Hc1RGnOj6D3oTxioH3WVRzwW9pEVUX2OeSJvXpr93CtE-x8WFY2suwMN4SMp8lsvt20xuqz8v2CLf1JgtwscKZrPd0i4-wYxJPsP8M_LFJcgoxeXx792uKgtosKZx9lmUslELn1YJK9jHYVkoqIhz5WnGEOWzveEwpXxxdvI7RwtkPSLAJRXHq_KkCIsSzc4vEkVvuMAWBY9p_gXOXuW3l2E2GSZmBZjGlaKxpUDATWUQfV8ZHTiI0BWiZu7qVVgfa0RYTSRpSJWkAsdHI1oFXog2HJU0JGFJOM1Dkmk4kWl42u10Jndf_6fRd3jf6nc7Yad9fLQGH-h5kaAs1mE2u7k13xCGZXKjUHwGP19ba_4ByOU_Bg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NTttAEB6FIFX0wE-hKhToHuBocNZexz5wAEKUQICKEiniYrw_llDBibAjSE99hD5KX6WvwJMwYzspcETiwM22tGt7Z2b3293Z7wPYiN2aVjXlWUp60nJdlzYJ_cDSIhZaRzSG0YL-8YnX6rqHPdGrwN_xWZiCH2Ky4EaRkffXFOADHW__Jw1Nb65p6wAhNNGOlWmVR2Z0h5O2dKfdQAtvct48ON9vWaWugDXgjuNZgeaRknasRMCVjmNP-b7WfhSpulGIn-uuIsn62BaSK5yfxNI2dS18GQihHVFzsN4pmHY9OyCxiMbZhLDKwdEyl3PBQdIipq8xTaTNt59_7zNA-xQW5-Nacw7-jVukSGf5uTXM5Jb69YIs8j012TzMliCb7RZRsQAVk3yCj0-oFxchowSXh99_dlUhn8GaxtlnUcoGLXxapqtgHQeFTFC-yjVKM4YYn-31-ylli7PT-xHGHzsj-ltycLwqzomwKNHs4ipR9IYrLJGzmI6WoPsmv_0Zqkk_MV-AaZwnGlsKhNskguj7yujAQXyuEDNzVy_D6tghwrIbSUPSkQocH0NoGXhu2XBQkJCEBd00D8mm4cSm4Y_jTmdyt_KaQt_gw_dGM-y0T46-wgw9zrOTxSpUs9uhWUMMlsn13O0ZXL610zwCub49tQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=High%E2%80%90Activity+Fe3C+as+pH%E2%80%90Universal+Electrocatalyst+for+Boosting+Oxygen+Reduction+Reaction+and+Zinc%E2%80%90Air+Battery&rft.jtitle=Small+%28Weinheim+an+der+Bergstrasse%2C+Germany%29&rft.au=Ruan%2C+Qi%E2%80%90Dong&rft.au=Feng%2C+Rui&rft.au=Feng%2C+Jiu%E2%80%90Ju&rft.au=Gao%2C+Yi%E2%80%90Jing&rft.date=2023-07-05&rft.issn=1613-6810&rft.eissn=1613-6829&rft.volume=19&rft.issue=27&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fsmll.202300136&rft.externalDBID=10.1002%252Fsmll.202300136&rft.externalDocID=SMLL202300136 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1613-6810&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1613-6810&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1613-6810&client=summon |