Crystalline Magnetic Anisotropy in High Entropy (Fe, Co, Ni, Cr, Mn)3O4 Oxide Driven by Single‐Element Orbital Anisotropy

The design of multicomponent materials has captured considerable attention due to its extraordinary ability to tailor functional properties. However, how a single element affects the behavior of the overall material has yet to be explored in depth. In this study, the heteroepitaxy of high entropy (F...

Full description

Saved in:
Bibliographic Details
Published inAdvanced functional materials Vol. 34; no. 14
Main Authors Ke, Wei‐En, Chen, Jia‐Wei, Liu, Cheng‐En, Ku, Yu‐Chieh, Chang, Chun‐Fu, Shafer, Padraic, Lin, Shi‐Jie, Chu, Ming‐Wen, Chen, Yi‐Cheng, Yeh, Jien‐Wei, Kuo, Chang‐Yang, Chu, Ying‐Hao
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc 03.04.2024
Subjects
Online AccessGet full text
ISSN1616-301X
1616-3028
DOI10.1002/adfm.202312856

Cover

Loading…
Abstract The design of multicomponent materials has captured considerable attention due to its extraordinary ability to tailor functional properties. However, how a single element affects the behavior of the overall material has yet to be explored in depth. In this study, the heteroepitaxy of high entropy (Fe, Co, Ni, Cr, Mn)3O4 films with varying strain states are investigated in magnetic performance. It is discovered that the high entropy oxide thin film with compressive strain exhibits an effect of crystalline magnetic anisotropy. Diverse analyses provide a detailed understanding of high entropy magnetic oxide systems, including X‐ray diffraction, reciprocal space mapping, macroscopic magnetic characterization, X‐ray absorption spectroscopy (XAS), etc. Notably, the element‐specific XAS technique proves effective in uncovering the origin of the crystalline magnetic anisotropy. Due to the substrate‐induced epitaxial strain, the eg orbitals of Mn3+ form different energy levels, leading to different preferred electron occupancy. The exploration of magnetic properties in epitaxial high entropy oxide film is then raveled. By navigating the complexities introduced by the random atom distribution and intricate magnetic interactions, this study pioneers novel methodologies for probing the core physics of high entropy oxides. In a strain‐driven local environment, the magnetic properties of high entropy oxide (Fe, Co, Ni, Cr, Mn)3O4 induced by individual elements are discovered. By utilizing atomic‐spatial‐resolution scanning transmission electron microscopy and element‐specific X‐ray absorption techniques, a thorough understanding of the high entropy oxide can be achieved, establishing a novel methodology for investigating the magnetic origin of high entropy oxides.
AbstractList The design of multicomponent materials has captured considerable attention due to its extraordinary ability to tailor functional properties. However, how a single element affects the behavior of the overall material has yet to be explored in depth. In this study, the heteroepitaxy of high entropy (Fe, Co, Ni, Cr, Mn)3O4 films with varying strain states are investigated in magnetic performance. It is discovered that the high entropy oxide thin film with compressive strain exhibits an effect of crystalline magnetic anisotropy. Diverse analyses provide a detailed understanding of high entropy magnetic oxide systems, including X‐ray diffraction, reciprocal space mapping, macroscopic magnetic characterization, X‐ray absorption spectroscopy (XAS), etc. Notably, the element‐specific XAS technique proves effective in uncovering the origin of the crystalline magnetic anisotropy. Due to the substrate‐induced epitaxial strain, the eg orbitals of Mn3+ form different energy levels, leading to different preferred electron occupancy. The exploration of magnetic properties in epitaxial high entropy oxide film is then raveled. By navigating the complexities introduced by the random atom distribution and intricate magnetic interactions, this study pioneers novel methodologies for probing the core physics of high entropy oxides. In a strain‐driven local environment, the magnetic properties of high entropy oxide (Fe, Co, Ni, Cr, Mn)3O4 induced by individual elements are discovered. By utilizing atomic‐spatial‐resolution scanning transmission electron microscopy and element‐specific X‐ray absorption techniques, a thorough understanding of the high entropy oxide can be achieved, establishing a novel methodology for investigating the magnetic origin of high entropy oxides.
The design of multicomponent materials has captured considerable attention due to its extraordinary ability to tailor functional properties. However, how a single element affects the behavior of the overall material has yet to be explored in depth. In this study, the heteroepitaxy of high entropy (Fe, Co, Ni, Cr, Mn)3O4 films with varying strain states are investigated in magnetic performance. It is discovered that the high entropy oxide thin film with compressive strain exhibits an effect of crystalline magnetic anisotropy. Diverse analyses provide a detailed understanding of high entropy magnetic oxide systems, including X‐ray diffraction, reciprocal space mapping, macroscopic magnetic characterization, X‐ray absorption spectroscopy (XAS), etc. Notably, the element‐specific XAS technique proves effective in uncovering the origin of the crystalline magnetic anisotropy. Due to the substrate‐induced epitaxial strain, the eg orbitals of Mn3+ form different energy levels, leading to different preferred electron occupancy. The exploration of magnetic properties in epitaxial high entropy oxide film is then raveled. By navigating the complexities introduced by the random atom distribution and intricate magnetic interactions, this study pioneers novel methodologies for probing the core physics of high entropy oxides.
Author Ke, Wei‐En
Shafer, Padraic
Kuo, Chang‐Yang
Ku, Yu‐Chieh
Chen, Yi‐Cheng
Chen, Jia‐Wei
Liu, Cheng‐En
Chu, Ying‐Hao
Yeh, Jien‐Wei
Chang, Chun‐Fu
Lin, Shi‐Jie
Chu, Ming‐Wen
Author_xml – sequence: 1
  givenname: Wei‐En
  surname: Ke
  fullname: Ke, Wei‐En
  organization: National Yang Ming Chiao Tung University
– sequence: 2
  givenname: Jia‐Wei
  surname: Chen
  fullname: Chen, Jia‐Wei
  organization: National Yang Ming Chiao Tung University
– sequence: 3
  givenname: Cheng‐En
  surname: Liu
  fullname: Liu, Cheng‐En
  organization: National Yang Ming Chiao Tung University
– sequence: 4
  givenname: Yu‐Chieh
  surname: Ku
  fullname: Ku, Yu‐Chieh
  organization: National Yang Ming Chiao Tung University
– sequence: 5
  givenname: Chun‐Fu
  surname: Chang
  fullname: Chang, Chun‐Fu
  organization: Max Planck Institute for Chemical Physics of Solids
– sequence: 6
  givenname: Padraic
  surname: Shafer
  fullname: Shafer, Padraic
  organization: Advanced Light Source
– sequence: 7
  givenname: Shi‐Jie
  surname: Lin
  fullname: Lin, Shi‐Jie
  organization: National Taiwan University
– sequence: 8
  givenname: Ming‐Wen
  surname: Chu
  fullname: Chu, Ming‐Wen
  organization: National Taiwan University
– sequence: 9
  givenname: Yi‐Cheng
  surname: Chen
  fullname: Chen, Yi‐Cheng
  email: yicheng.chen@mx.nthu.edu.tw
  organization: National Tsing Hua University
– sequence: 10
  givenname: Jien‐Wei
  surname: Yeh
  fullname: Yeh, Jien‐Wei
  organization: National Tsing Hua University
– sequence: 11
  givenname: Chang‐Yang
  orcidid: 0000-0003-1968-8020
  surname: Kuo
  fullname: Kuo, Chang‐Yang
  email: changyangkuo@nycu.edu.tw
  organization: National Synchrotron Radiation Research Center
– sequence: 12
  givenname: Ying‐Hao
  orcidid: 0000-0002-3435-9084
  surname: Chu
  fullname: Chu, Ying‐Hao
  email: yhchu@mx.nthu.edu.tw
  organization: National Tsing Hua University
BookMark eNpNkM1Kw0AcxBdRsK1ePS94UWjqfiWbHEs_rNCagwrewm76T92SbuImVYMXH8Fn9ElMqRRPMwPDDPy66NgWFhC6oGRACWE3apltBowwTlnoB0eoQwMaeJyw8Pjg6fMp6lbVmhAqJRcd9DlyTVWrPDcW8EKtLNQmxUNrqqJ2RdlgY_HMrF7wxO7z1RT6eFT08b1p1fXxwl7zWOD4wywBj515A4t1gx-MXeXw8_U9yWEDtsax06Y9-rd9hk4ylVdw_qc99DSdPI5m3jy-vRsN517JOA88piTXPAoApJAijERKfFAqTaVUQRRpIVKtM0HTMOOMLZkGwogvfJ4Cz3xNeA9d7ndLV7xuoaqTdbF1tr1MOOEkkr4IgrYV7VvvJocmKZ3ZKNcklCQ7usmObnKgmwzH08Uh8V-viHIC
ContentType Journal Article
Copyright 2023 Wiley‐VCH GmbH
2024 Wiley‐VCH GmbH
Copyright_xml – notice: 2023 Wiley‐VCH GmbH
– notice: 2024 Wiley‐VCH GmbH
DBID 7SP
7SR
7U5
8BQ
8FD
JG9
L7M
DOI 10.1002/adfm.202312856
DatabaseName Electronics & Communications Abstracts
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList
Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1616-3028
EndPage n/a
ExternalDocumentID ADFM202312856
Genre article
GrantInformation_xml – fundername: Ministry of Science and Technology, Taiwan
  funderid: MOST 110‐2634‐F‐009‐026
GroupedDBID -~X
.3N
.GA
05W
0R~
10A
1L6
1OC
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
UB1
V2E
W8V
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
~IA
~WT
7SP
7SR
7U5
8BQ
8FD
AAMMB
ADMLS
AEFGJ
AEYWJ
AGHNM
AGXDD
AGYGG
AIDQK
AIDYY
JG9
L7M
ID FETCH-LOGICAL-p2336-2a73b396ee7474894c05eaacc77a699b44cbbf41c8f322d2be0205453ce3f5b03
IEDL.DBID DR2
ISSN 1616-301X
IngestDate Sat Jul 26 03:21:03 EDT 2025
Wed Jan 22 17:18:18 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 14
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-p2336-2a73b396ee7474894c05eaacc77a699b44cbbf41c8f322d2be0205453ce3f5b03
Notes Correction added on January 2, 2024, after first online publication: one affiliation of C.‐Y. Kuo has been updated in this version.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-1968-8020
0000-0002-3435-9084
PQID 3030975466
PQPubID 2045204
PageCount 9
ParticipantIDs proquest_journals_3030975466
wiley_primary_10_1002_adfm_202312856_ADFM202312856
PublicationCentury 2000
PublicationDate April 3, 2024
PublicationDateYYYYMMDD 2024-04-03
PublicationDate_xml – month: 04
  year: 2024
  text: April 3, 2024
  day: 03
PublicationDecade 2020
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
PublicationTitle Advanced functional materials
PublicationYear 2024
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2023; 10
2011; 158
2010; 97
2015; 6
2023; 35
2021; 5
2019; 3
2023; 33
2013; 65
2023; 59
2017; 46
2023; 242
2007; 90
2004; 6
2019; 168
2020; 502
2011; 59
2014; 113
2016; 4
2004; 375
2020; 4
2012; 3
2014; 2
2018; 216
2018; 30
1988; 64
2010; 52
2014; 146
References_xml – volume: 502
  year: 2020
  publication-title: J. Magn. Magn. Mater.
– volume: 158
  year: 2011
  publication-title: J. Electrochem. Soc.
– volume: 113
  year: 2014
  publication-title: Phys. Rev. Lett.
– volume: 90
  year: 2007
  publication-title: Appl. Phys. Lett.
– volume: 59
  start-page: 6308
  year: 2011
  publication-title: Acta Mater.
– volume: 64
  start-page: R29
  year: 1988
  publication-title: J. Appl. Phys.
– volume: 2
  start-page: 107
  year: 2014
  publication-title: Mater. Res. Lett.
– volume: 10
  year: 2023
  publication-title: Adv. Sci.
– volume: 4
  year: 2020
  publication-title: Phys. Rev. Mater.
– volume: 46
  year: 2017
  publication-title: Dalton Trans.
– volume: 35
  year: 2023
  publication-title: Adv. Mater.
– volume: 52
  start-page: 3481
  year: 2010
  publication-title: Corros. Sci.
– volume: 65
  start-page: 1759
  year: 2013
  publication-title: Jom
– volume: 59
  start-page: 267
  year: 2023
  publication-title: Acta Metall. Sin.
– volume: 146
  start-page: 503
  year: 2014
  publication-title: Electrochim. Acta
– volume: 375
  start-page: 213
  year: 2004
  publication-title: Mater. Sci. Eng. A
– volume: 33
  year: 2023
  publication-title: Adv. Funct. Mater.
– volume: 5
  start-page: 33
  year: 2021
  publication-title: npj Flex. Electron.
– volume: 30
  start-page: 6156
  year: 2018
  publication-title: Chem. Mat.
– volume: 168
  year: 2019
  publication-title: Vacuum
– volume: 30
  year: 2018
  publication-title: Adv. Mater.
– volume: 3
  year: 2019
  publication-title: Phys. Rev. Mater.
– volume: 97
  year: 2010
  publication-title: Appl. Phys. Lett.
– volume: 4
  start-page: 9536
  year: 2016
  publication-title: J. Mater. Chem. A
– volume: 6
  start-page: 299
  year: 2004
  publication-title: Adv. Eng. Mater.
– volume: 6
  start-page: 8485
  year: 2015
  publication-title: Nat. Commun.
– volume: 216
  start-page: 32
  year: 2018
  publication-title: Mater. Lett.
– volume: 3
  start-page: 1189
  year: 2012
  publication-title: Nat. Commun.
– volume: 242
  year: 2023
  publication-title: Acta Mater.
SSID ssj0017734
Score 2.4994092
Snippet The design of multicomponent materials has captured considerable attention due to its extraordinary ability to tailor functional properties. However, how a...
SourceID proquest
wiley
SourceType Aggregation Database
Publisher
SubjectTerms Absorption spectroscopy
Anisotropy
Chromium
Cobalt
Compressive properties
Energy levels
Entropy
high entropy oxide
Iron
Magnetic anisotropy
Magnetic properties
Manganese
Nickel
Oxide coatings
Substrates
Thin films
X‐ray absorption spectroscopy
Title Crystalline Magnetic Anisotropy in High Entropy (Fe, Co, Ni, Cr, Mn)3O4 Oxide Driven by Single‐Element Orbital Anisotropy
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.202312856
https://www.proquest.com/docview/3030975466
Volume 34
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NT8IwGG4MJz34bfxA04MHTRiwtmu7I-EjxARIVBJuS9t1hmgGGZCIXvwJ_kZ_ie0KCB71sq2HNtvbvt3Tvs_7FIDrhDAtCWIe5bFZoFCkPKFiai5SCk1FEOYR006XtvvkbhAM1rL4nT7EasPNekY-X1sHF3JS-RENFXFiM8kNPkE8sJrblrBlUdH9Sj_KZ8yFlalvCV7-YKnaWEWVzeob-HIdpea_mdYeEMsXdOyS5_JsKsvq7Zd243--YB_sLjAorLlBcwC2dHoIdtaUCY_Aez2bG9xoBbs17Iin1OY6wlo6nIym2Wg8h8MUWooIbKaufNPSJVgflWB3aO5ZCXbSW9wjsPc6jDVsZHZShXIOH0zzL_rr47PpeOuwl0l7bsla28eg32o-1tve4pwGb4wwph4SDEscUq3N2oTwkKhqoIVQijFBw1ASYjo-Ib7iiZk-YiS1wagGuWGlcRLIKj4BhXSU6lMAfR4LEWPEBReEGeiGeEI5VgJpHRo0cgaKy36KFs42ibANE7GAUHoGUG7waOykOiInyowia-poZeqo1mh1VqXzv1S6ANvm2XF4cBEUptlMXxp4MpVX-RD8BqZw3X4
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwELVYDsCBHbHjAweQGmhsx3aOVReVJa3EInGLbMdBFSitQpEoXPgEvpEvwY7bUjjCJZEj2UrGnsmzZ-YNAIcpYVoSxDzKE7NBoUh5QiXUXKQUmoogLDymUYs2b8n5XTCKJrS5MI4fYnzgZjWjsNdWwe2B9Ok3a6hIUptKbgAK4gGdBrO2rLctYlC7GjNI-Yw5xzL1bYiXfzfibSyj05_9fyDMSZxa_GgaS0COXtHFlzycPPfliXr9xd74r29YBotDGAorbt2sgCmdrYKFCXLCNfBWzQcGOlrObg0jcZ_ZdEdYyTpP3X7e7Q1gJ4M2SgTWM9c-augSrHZLsNUx97wEo-wYtwlsv3QSDWu5tatQDuC1Gf5Rf75_1F3oOmzn0pYumRh7Hdw26jfVpjcs1eD1EMbUQ4JhiUOqtdmeEB4SVQ60EEoxJmgYSkLM3KfEVzw1FiRBUhuYasAbVhqngSzjDTCTdTO9CaDPEyESjLjggjCD3hBPKcdKIK1DA0i2wO5oouKhvj3F2HqKWEAo3QKokHjcc2wdseNlRrEVdTwWdVypNaJxa_svnQ7AXPMmuowvz1oXO2DePHchPXgXzPTzZ71n0Epf7hfr8QuNnuGY
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Bb9MwFLagSBM7wDaYVjaGDzsMqdka27GdY9U2GtvaToNKvUW240zRUFqlqUThsp_Ab-SXYMdtaDnCJZYj2Uqe_Z4_-733GYCzlDAtCWIe5YnZoFCkPKESah5SCk1FEFYe08GQXo3J9SSYbGTxO36I-sDNakZlr62Cz5L08g9pqEhSm0lu8AniAX0OXhBqNMbCovuaQMpnzPmVqW8jvPzJmraxjS63228BzE2YWq0z0Wsg1l_owkseLxalvFDf_yJv_J9f2AOvViAUdtys2QfPdH4AdjeoCd-AH91iaYCjZezWcCAecpvsCDt5Np-WxXS2hFkObYwI7Oeufh7pFuxOW3CYmbJowUH-EY8IHH3LEg17hbWqUC7hZ9P9V_3r6WffBa7DUSHtxSUbfb8F46j_pXvlrS5q8GYIY-ohwbDEIdXabE4ID4lqB1oIpRgTNAwlIWbkU-Irnhr7kSCpDUg10A0rjdNAtvEhaOTTXB8B6PNEiAQjLrggzGA3xFPKsRJI69DAkSY4WY9TvNK2eYytn4gFhNImQJXA45nj6ogdKzOKrajjWtRxpxcN6tq7f2n0Aezc9aL49tPw5hi8NK9dPA8-AY2yWOj3BqqU8rSajb8BFWPgUA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Crystalline+Magnetic+Anisotropy+in+High+Entropy+%28Fe%2C+Co%2C+Ni%2C+Cr%2C+Mn%293O4+Oxide+Driven+by+Single%E2%80%90Element+Orbital+Anisotropy&rft.jtitle=Advanced+functional+materials&rft.au=Ke%2C+Wei%E2%80%90En&rft.au=Chen%2C+Jia%E2%80%90Wei&rft.au=Liu%2C+Cheng%E2%80%90En&rft.au=Ku%2C+Yu%E2%80%90Chieh&rft.date=2024-04-03&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=34&rft.issue=14&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadfm.202312856&rft.externalDBID=10.1002%252Fadfm.202312856&rft.externalDocID=ADFM202312856
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon