V2O3–Li3PO4 Composite: A New Type of Cathodic Active Material for Li‐Ion Batteries

A new type of cathodic active material for lithium‐ion batteries based on a composite of Li3PO4 and V2O3 is proposed in this work. Although the V2O3 component is almost inactive in the voltage range of 2–4.5 V versus Li+/Li, the mixture of the two components can deliver a larger reversible specific...

Full description

Saved in:
Bibliographic Details
Published inAdvanced materials interfaces Vol. 9; no. 13
Main Authors Tang, Anping, Liang, Ziqin, Chen, Hezhang, Xu, Guorong, Song, Haishen
Format Journal Article
LanguageEnglish
Published Weinheim John Wiley & Sons, Inc 01.05.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract A new type of cathodic active material for lithium‐ion batteries based on a composite of Li3PO4 and V2O3 is proposed in this work. Although the V2O3 component is almost inactive in the voltage range of 2–4.5 V versus Li+/Li, the mixture of the two components can deliver a larger reversible specific capacity of ≈190 mA h g−1 in the voltage range of 2–4.5 V at a current density of 15 mA g−1. X‐ray photoelectron spectroscopy data and cyclic voltammetry data suggest that the vanadium ions are probably oxidized and reduced repetitively upon cycling and that the V3+ ions are partially oxidized to V4+ and even V5+ ions during charging to 4.5 V. This distinctive lithium‐ion uptake and release phenomenon, in which Li3PO4 functions as a lithium source of surface conversion reaction, will introduce a new path for designing unique cathodic active materials for lithium‐ion batteries. V2O3–Li3PO4 composite, based on surface conversion reaction, has been used for the first time as a cathodic active material for Li‐ion batteries, introducing a new path for designing unique cathodic materials. The V3+ ions are partially oxidized to V4+ and even V5+ ions during charging to 4.5 V. The vanadium ions are probably oxidized and reduced repetitively upon cycling.
AbstractList A new type of cathodic active material for lithium‐ion batteries based on a composite of Li3PO4 and V2O3 is proposed in this work. Although the V2O3 component is almost inactive in the voltage range of 2–4.5 V versus Li+/Li, the mixture of the two components can deliver a larger reversible specific capacity of ≈190 mA h g−1 in the voltage range of 2–4.5 V at a current density of 15 mA g−1. X‐ray photoelectron spectroscopy data and cyclic voltammetry data suggest that the vanadium ions are probably oxidized and reduced repetitively upon cycling and that the V3+ ions are partially oxidized to V4+ and even V5+ ions during charging to 4.5 V. This distinctive lithium‐ion uptake and release phenomenon, in which Li3PO4 functions as a lithium source of surface conversion reaction, will introduce a new path for designing unique cathodic active materials for lithium‐ion batteries.
A new type of cathodic active material for lithium‐ion batteries based on a composite of Li3PO4 and V2O3 is proposed in this work. Although the V2O3 component is almost inactive in the voltage range of 2–4.5 V versus Li+/Li, the mixture of the two components can deliver a larger reversible specific capacity of ≈190 mA h g−1 in the voltage range of 2–4.5 V at a current density of 15 mA g−1. X‐ray photoelectron spectroscopy data and cyclic voltammetry data suggest that the vanadium ions are probably oxidized and reduced repetitively upon cycling and that the V3+ ions are partially oxidized to V4+ and even V5+ ions during charging to 4.5 V. This distinctive lithium‐ion uptake and release phenomenon, in which Li3PO4 functions as a lithium source of surface conversion reaction, will introduce a new path for designing unique cathodic active materials for lithium‐ion batteries. V2O3–Li3PO4 composite, based on surface conversion reaction, has been used for the first time as a cathodic active material for Li‐ion batteries, introducing a new path for designing unique cathodic materials. The V3+ ions are partially oxidized to V4+ and even V5+ ions during charging to 4.5 V. The vanadium ions are probably oxidized and reduced repetitively upon cycling.
Author Tang, Anping
Chen, Hezhang
Song, Haishen
Liang, Ziqin
Xu, Guorong
Author_xml – sequence: 1
  givenname: Anping
  orcidid: 0000-0001-7358-0200
  surname: Tang
  fullname: Tang, Anping
  email: 1060068@hnust.edu.cn, t-ap@163.com
  organization: Hunan University of Science and Technology
– sequence: 2
  givenname: Ziqin
  surname: Liang
  fullname: Liang, Ziqin
  organization: Hunan University of Science and Technology
– sequence: 3
  givenname: Hezhang
  surname: Chen
  fullname: Chen, Hezhang
  organization: Hunan University of Science and Technology
– sequence: 4
  givenname: Guorong
  surname: Xu
  fullname: Xu, Guorong
  organization: Hunan University of Science and Technology
– sequence: 5
  givenname: Haishen
  surname: Song
  fullname: Song, Haishen
  organization: Hunan University of Science and Technology
BookMark eNpNkE1PwkAQhjcGExG5et7Ec3F2tt2y3ip-kRTxgFw3S7sbl0C3tkXCjZ9g4j_klwjBEE_vvJMnM8lzSVqFLwwh1wx6DABvdb50PQRkwGQUnZE2MimCmEfQ-jdfkG5dzwGAMWTY520yneKY77Y_qeNv45AO_LL0tWvMHU3oq1nTyaY01Fs60M2Hz11Gk6xxX4aOdGMqpxfU-oqmbrf9HvqC3uvmsDb1FTm3elGb7l92yPvT42TwEqTj5-EgSYMSOY8CzeMcuJEMBIpsFvUxlzEzucmFFGjiWZiFNhO55ZGwMaJFzcQsBimyEMEC75Cb492y8p8rUzdq7ldVsX-pUEQSGOdM7il5pNZuYTaqrNxSVxvFQB3cqYM7dXKnkofR8NT4L-IDZXo
ContentType Journal Article
Copyright 2022 Wiley‐VCH GmbH
Copyright_xml – notice: 2022 Wiley‐VCH GmbH
DBID 7SR
7U5
8BQ
8FD
JG9
L7M
DOI 10.1002/admi.202101955
DatabaseName Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList Materials Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2196-7350
EndPage n/a
ExternalDocumentID ADMI202101955
Genre article
GroupedDBID 0R~
1OC
24P
33P
AAESR
AAHHS
AAIHA
AAXRX
AAZKR
ABCUV
ACAHQ
ACCFJ
ACCZN
ACGFS
ACPOU
ACXBN
ACXQS
ADBBV
ADKYN
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AENEX
AEQDE
AFBPY
AIACR
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMYDB
ARCSS
AVUZU
AZVAB
BFHJK
BMXJE
BRXPI
DCZOG
DPXWK
EBS
G-S
GODZA
LATKE
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MY~
M~E
O9-
P2W
R.K
ROL
SUPJJ
WBKPD
WOHZO
WXSBR
WYJ
ZZTAW
7SR
7U5
8BQ
8FD
JG9
L7M
ID FETCH-LOGICAL-p2335-a37d03e910626cb582d971eded6962e7b4c4fc6df356f722f2a16b7096c420f03
ISSN 2196-7350
IngestDate Sat Jul 27 16:31:30 EDT 2024
Sat Aug 24 00:54:58 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 13
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-p2335-a37d03e910626cb582d971eded6962e7b4c4fc6df356f722f2a16b7096c420f03
ORCID 0000-0001-7358-0200
PQID 2659013319
PQPubID 2034582
PageCount 8
ParticipantIDs proquest_journals_2659013319
wiley_primary_10_1002_admi_202101955_ADMI202101955
PublicationCentury 2000
PublicationDate 2022-05-01
PublicationDateYYYYMMDD 2022-05-01
PublicationDate_xml – month: 05
  year: 2022
  text: 2022-05-01
  day: 01
PublicationDecade 2020
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Advanced materials interfaces
PublicationYear 2022
Publisher John Wiley & Sons, Inc
Publisher_xml – name: John Wiley & Sons, Inc
References 2019; 7
2015; 15
2017; 7
2021; 27
2019; 9
2015; 6
2013; 3
1995; 71
2017; 2
2015; 5
2013; 1
2005; 152
2019; 6
2016; 329
2016; 109
2019; 2
2019; 12
2019; 105
2009; 156
2017; 196
2003; 19
2017; 354
2016; 180
2017; 9
2001; 21
2016; 4
2018; 6
2018; 3
2021; 31
2015; 27
2004; 135
2020; 50
2013; 12
2020
2017; 10
2004; 151
2014; 58
2020; 26
2011; 21
2007; 7
2014; 161
2012; 7
2014; 245
References_xml – volume: 3
  start-page: 7310
  year: 2018
  publication-title: ACS Omega
– volume: 7
  start-page: 168
  year: 2012
  publication-title: Nano Today
– volume: 26
  start-page: 1629
  year: 2020
  publication-title: Ionics
– volume: 6
  start-page: 267
  year: 2019
  publication-title: Evergreen
– volume: 1
  year: 2013
  publication-title: J. Mater. Chem. A
– volume: 4
  year: 2016
  publication-title: J. Mater. Chem. A
– volume: 6
  start-page: 493
  year: 2018
  publication-title: ChemElectroChem
– volume: 354
  start-page: 34
  year: 2017
  publication-title: J. Power Sources
– volume: 21
  year: 2001
  publication-title: Mater. Today Energy
– volume: 50
  start-page: 917
  year: 2020
  publication-title: J. Appl. Electrochem.
– volume: 3
  start-page: 113
  year: 2013
  publication-title: Adv. Energy Mater.
– volume: 6
  start-page: 6668
  year: 2015
  publication-title: Nat. Commun.
– volume: 21
  start-page: 6365
  year: 2011
  publication-title: J. Mater. Chem.
– volume: 329
  start-page: 406
  year: 2016
  publication-title: J. Power Sources
– volume: 109
  year: 2016
  publication-title: Appl. Phys. Lett.
– volume: 2
  year: 2017
  publication-title: Nat. Energy
– volume: 161
  start-page: A10
  year: 2014
  publication-title: J. Electroch. Soc.
– volume: 58
  start-page: 87
  year: 2014
  publication-title: ECS Trans.
– volume: 9
  year: 2019
  publication-title: Adv. Energy Mater.
– volume: 19
  start-page: 770
  year: 2003
  publication-title: Acta Phys.‐Chim. Sin.
– volume: 12
  start-page: 2433
  year: 2019
  publication-title: Energy Environ. Sci.
– volume: 151
  start-page: A796
  year: 2004
  publication-title: J. Electrochem. Soc.
– volume: 9
  year: 2017
  publication-title: ACS Appl. Mater. Interfaces
– volume: 15
  start-page: 7650
  year: 2015
  publication-title: Nano Lett..
– volume: 105
  year: 2019
  publication-title: Electrochem. Commun.
– volume: 7
  year: 2017
  publication-title: Adv. Energy Mater.
– volume: 135
  start-page: 167
  year: 2004
  publication-title: J. Electron Spectrosc. Relat. Phenom.
– volume: 196
  start-page: 117
  year: 2017
  publication-title: J. Fluorine Chem.
– volume: 5
  year: 2015
  publication-title: Adv. Energy Mater.
– volume: 2
  start-page: 1016
  year: 2019
  publication-title: Batteries Supercaps
– volume: 27
  start-page: 8211
  year: 2015
  publication-title: Chem. Mater.
– volume: 156
  start-page: A407
  year: 2009
  publication-title: J. Electrochem. Soc.
– volume: 31
  year: 2021
  publication-title: Adv. Funct. Mater.
– year: 2020
– volume: 27
  start-page: 2937
  year: 2021
  publication-title: Ionics
– volume: 7
  start-page: 490
  year: 2007
  publication-title: Nano Lett.
– volume: 10
  start-page: 4232
  year: 2017
  publication-title: Nano Res.
– volume: 71
  start-page: 249
  year: 1995
  publication-title: J. Electron Spectrosc. Relat. Phenom.
– volume: 12
  start-page: 518
  year: 2013
  publication-title: Nat. Mater.
– volume: 152
  year: 2005
  publication-title: J. Electrochem. Soc.
– volume: 7
  year: 2019
  publication-title: ACS Sustainable Chem. Eng.
– volume: 180
  start-page: 243
  year: 2016
  publication-title: Mater. Lett.
– volume: 245
  start-page: 967
  year: 2014
  publication-title: J. Power Sources
SSID ssj0001121283
Score 2.2862985
Snippet A new type of cathodic active material for lithium‐ion batteries based on a composite of Li3PO4 and V2O3 is proposed in this work. Although the V2O3 component...
SourceID proquest
wiley
SourceType Aggregation Database
Publisher
SubjectTerms cathodes
Electric potential
Lithium
Lithium-ion batteries
Li‐ion batteries
Photoelectrons
surface conversion reaction
V 2O 3–Li 3PO 4 composite
Vanadium oxides
Voltage
Title V2O3–Li3PO4 Composite: A New Type of Cathodic Active Material for Li‐Ion Batteries
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadmi.202101955
https://www.proquest.com/docview/2659013319/abstract/
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV27btswFCXcBAW6FH2iaZOCQ7dArUSKpNVNyANOYTcdYsPIIkikGGiI48b2kilfUBToH-ZLekmKtIwGRZtFMGg9bN7De3mpcw8R-kCZgDw5o1EJs9copYJF5nVOJCjTrOpXsZKmdnj0lQ_G6Zcpm_Z6PzqspdWy-ihv7q0reYhVoQ3saqpk_8Oy4abQAJ_BvnAEC8Pxn2w8IafUsxXosKHfTlM7wA0Rq605N_xFk2u6OiyzW3Qj93Pr5PZH5dL-Sks1HDaB93ACiHC6m55h6GVqPWHgsr1yYeUmrrXhda3XAJz7yGdzHxYN4adpm8-b700A5EFbGzKob8zCtW-eruxy_cqoK1x01yUgpQ0sQOe-wBVyY3L31qW-p631v1kXZrQTiUOc-sPNO9nYUl02kOFD0ppkTut3U087nMn-fq6T_z0cnYTvH6FtIjIGyfx2Phmfj9erdgmEeqvtGv6KVwKNyafNh2zkLN3Mx05dzp6hp23OgXMHoOeoV89eoMeW-ysXL9HEwOju9pcDEA4A-oxzDPDBBj74SmMPH-zggz18MMAHD5u7258AHByA8wqNj4_ODgZRu91GNCeUsqikQsW0hvkjJLmyYn2iMpHUqlY846QWVSpTLbnSlHEtCNGkTHgFQ53LlMQ6pq_R1uxqVr9BWEHoEpSLKpFlqnSZVbIP9y7N9gU6VWQH7fquKdrxtCgIN3XQFGLCDiK2u4q5U1wpnLY2KUwHF6GDiw2bvX3IRe_QkzV2d9HW8npV78Esc1m9b03_G632cQI
link.rule.ids 315,786,790,27957,27958,50849,50958
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV09T8MwELWgFYIF8SkKBTywRk3s2G7YIqBqoWkZmgqxWIkdSxloK1r2_gQk_mF_CeekH3RlzBArOvvu3rvcPSN0R5kAnhxQJwH06vhUMMf-znEEZYalzdTVys4ORz3ejv3nN7bqJrSzMKU-xLrgZj2jiNfWwW1BurFRDU30Rw4EDziLFzC2i6qQ-1izgqrhMH6PN4UWD6JzIccJzsntR7gr8UaXNLYX2YKZf8FqkW1aR-hwCRNxWO7rMdrJRidor2jXVNNTNBySPl3Mf7o5fe372Dq1bb7K7nGIIWxhyy7x2GA73zfWucJhEdZwlMyKE4cBquJuvph_d8YjXGpsAmU-Q3HrafDQdpY3JDgTQilzEiq0SzNI-cBLVMqaRAfCy3SmecBJJlJf-UZxbSjjRhBiSOLxFHaHK5-4xqXnqDIaj7ILhDVEG0G5SD2V-NokQaqasHZiFeeNr0kN1VemkctjPpWE29FVCm5cQ6Qwl5yUIhmylEMm0hpYrg0sw8eos366_M9Lt2i_PYi6stvpvVyhA2LHEYoGxDqqzD6_smsACbP0ZnkMfgGaILJH
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELagFYgF8RSFAh5YoyZ-NmwRpWqhr4FWFUuU2LHUgaaiZe9PQOIf9pdwTtIHK6OHWNH57vx99t1nhB4ol8CTfepEgF4dRiV37HWOIyk3PK7Hrla2d7jbE60hexnz8U4Xf64PsTlws5GR5Wsb4DNtalvR0Eh_TIDfAWXxfM73URmgBgO_Lgej4ftwe87iQXLO1DghNoX9B3et3eiS2t9J_qDMXayabTbNE3RcoEQc5Mt6ivaS6Rk6yKo11fwcjUakT1fLn86EDvoM25i2tVfJIw4wZC1sySVODbbtfameKBxkWQ13o0XmcBiQKu5MVsvvdjrFucQmMOYLNGw-vz21nOKBBGdGKOVORKV2aQI7PtASFfM60b70Ep1o4QuSyJgpZpTQhnJhJCGGRJ6IYXGEYsQ1Lr1EpWk6Ta4Q1pBsJBUy9lTEtIn8WNVh7sgKzhumSQVV16YJCy-fh0TYzlUKUVxBJDNXOMs1MsJcDZmE1sDhxsBh0Oi2N6Pr_3x0jw4HjWbYafdeb9ARsc0IWflhFZUWn1_JLUCERXxXeMEvunyxcA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=V2O3%E2%80%93Li3PO4+Composite%3A+A+New+Type+of+Cathodic+Active+Material+for+Li%E2%80%90Ion+Batteries&rft.jtitle=Advanced+materials+interfaces&rft.au=Tang%2C+Anping&rft.au=Liang%2C+Ziqin&rft.au=Chen%2C+Hezhang&rft.au=Xu%2C+Guorong&rft.date=2022-05-01&rft.issn=2196-7350&rft.eissn=2196-7350&rft.volume=9&rft.issue=13&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadmi.202101955&rft.externalDBID=10.1002%252Fadmi.202101955&rft.externalDocID=ADMI202101955
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2196-7350&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2196-7350&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2196-7350&client=summon