Lithium Storage Performance Boosted via Delocalizing Charge in ZnxCo1−xPS3/CoS2 of 2D/3D Heterostructure

A promising anode material consisting of bimetallic thiophosphate ZnxCo1−xPS3 and CoS2 with 2D/3D heterostructure is designed and prepared by an effective chemical transformation. Density functional theory calculations illustrate that the Zn2+ can effectively modulate the electrical ordering of ZnxC...

Full description

Saved in:
Bibliographic Details
Published inSmall (Weinheim an der Bergstrasse, Germany) Vol. 18; no. 2
Main Authors Zhong, Hou‐Yang, Lu, Xian, Zhong, Yu, Zhao, Yi, Liu, Xin‐Ming, Cheng, Dan‐Hong, Huang, Xiao‐Ying, Du, Ke‐Zhao, Wu, Xiao‐Hui
Format Journal Article
LanguageEnglish
Published Weinheim Wiley Subscription Services, Inc 01.01.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract A promising anode material consisting of bimetallic thiophosphate ZnxCo1−xPS3 and CoS2 with 2D/3D heterostructure is designed and prepared by an effective chemical transformation. Density functional theory calculations illustrate that the Zn2+ can effectively modulate the electrical ordering of ZnxCo1−xPS3 on the nanoscale: the reduced charge distribution emerging around the Zn ions can enhance the local built‐in electric field, which will accelerate the ions migration rate by Coulomb forces and provide tempting opportunities for manipulating Li+ storage behavior. Moreover, the merits of the large planar size enable ZnxCo1–xPS3 to provide abundant anchoring sites for metallic CoS2 nanocubes, generating a 2D/3D heterostructure with a strong electric field. The resultant ZnxCo1−xPS3/CoS2 can offer the combined advantages of bimetallic alloying and heterostructure in lithium storage applications, leading to outstanding performance as an anode material for lithium‐ion batteries. Consequently, a high capacity of 794 mA h g−1 can be retained after 100 cycles at 0.2 A g−1. Even at 3.0 A g−1, a satisfactory capacity of 465 mA h g−1 can be delivered. The appealing alloying‐heterostructure and electrochemical performance of this bimetallic thiophosphate demonstrate its great promise for applications in practical rechargeable batteries. A promising anode material consisting of bimetallic thiophosphate ZnxCo1−xPS3 and CoS2 with 2D/3D heterostructure is prepared. The hetero‐Zn alloying can produce an enhanced asymmetric E‐field to accelerate electron transfer and adjust the interlayer distance to create small volume changed MPS3 electrodes. Additionally, metallic CoS2 deposited on semiconductor ZnxCo1−xPS3 can form a strong E‐field, favoring the transportation of electrons.
AbstractList A promising anode material consisting of bimetallic thiophosphate ZnxCo1−xPS3 and CoS2 with 2D/3D heterostructure is designed and prepared by an effective chemical transformation. Density functional theory calculations illustrate that the Zn2+ can effectively modulate the electrical ordering of ZnxCo1−xPS3 on the nanoscale: the reduced charge distribution emerging around the Zn ions can enhance the local built‐in electric field, which will accelerate the ions migration rate by Coulomb forces and provide tempting opportunities for manipulating Li+ storage behavior. Moreover, the merits of the large planar size enable ZnxCo1–xPS3 to provide abundant anchoring sites for metallic CoS2 nanocubes, generating a 2D/3D heterostructure with a strong electric field. The resultant ZnxCo1−xPS3/CoS2 can offer the combined advantages of bimetallic alloying and heterostructure in lithium storage applications, leading to outstanding performance as an anode material for lithium‐ion batteries. Consequently, a high capacity of 794 mA h g−1 can be retained after 100 cycles at 0.2 A g−1. Even at 3.0 A g−1, a satisfactory capacity of 465 mA h g−1 can be delivered. The appealing alloying‐heterostructure and electrochemical performance of this bimetallic thiophosphate demonstrate its great promise for applications in practical rechargeable batteries.
A promising anode material consisting of bimetallic thiophosphate ZnxCo1−xPS3 and CoS2 with 2D/3D heterostructure is designed and prepared by an effective chemical transformation. Density functional theory calculations illustrate that the Zn2+ can effectively modulate the electrical ordering of ZnxCo1−xPS3 on the nanoscale: the reduced charge distribution emerging around the Zn ions can enhance the local built‐in electric field, which will accelerate the ions migration rate by Coulomb forces and provide tempting opportunities for manipulating Li+ storage behavior. Moreover, the merits of the large planar size enable ZnxCo1–xPS3 to provide abundant anchoring sites for metallic CoS2 nanocubes, generating a 2D/3D heterostructure with a strong electric field. The resultant ZnxCo1−xPS3/CoS2 can offer the combined advantages of bimetallic alloying and heterostructure in lithium storage applications, leading to outstanding performance as an anode material for lithium‐ion batteries. Consequently, a high capacity of 794 mA h g−1 can be retained after 100 cycles at 0.2 A g−1. Even at 3.0 A g−1, a satisfactory capacity of 465 mA h g−1 can be delivered. The appealing alloying‐heterostructure and electrochemical performance of this bimetallic thiophosphate demonstrate its great promise for applications in practical rechargeable batteries. A promising anode material consisting of bimetallic thiophosphate ZnxCo1−xPS3 and CoS2 with 2D/3D heterostructure is prepared. The hetero‐Zn alloying can produce an enhanced asymmetric E‐field to accelerate electron transfer and adjust the interlayer distance to create small volume changed MPS3 electrodes. Additionally, metallic CoS2 deposited on semiconductor ZnxCo1−xPS3 can form a strong E‐field, favoring the transportation of electrons.
Author Liu, Xin‐Ming
Wu, Xiao‐Hui
Huang, Xiao‐Ying
Zhao, Yi
Cheng, Dan‐Hong
Zhong, Yu
Du, Ke‐Zhao
Zhong, Hou‐Yang
Lu, Xian
Author_xml – sequence: 1
  givenname: Hou‐Yang
  surname: Zhong
  fullname: Zhong, Hou‐Yang
  organization: Fujian Normal University
– sequence: 2
  givenname: Xian
  surname: Lu
  fullname: Lu, Xian
  organization: Fujian Normal University
– sequence: 3
  givenname: Yu
  surname: Zhong
  fullname: Zhong, Yu
  organization: Fujian Normal University
– sequence: 4
  givenname: Yi
  surname: Zhao
  fullname: Zhao, Yi
  organization: Fujian Normal University
– sequence: 5
  givenname: Xin‐Ming
  surname: Liu
  fullname: Liu, Xin‐Ming
  organization: Fujian Normal University
– sequence: 6
  givenname: Dan‐Hong
  surname: Cheng
  fullname: Cheng, Dan‐Hong
  organization: Fujian Normal University
– sequence: 7
  givenname: Xiao‐Ying
  orcidid: 0000-0002-2801-9163
  surname: Huang
  fullname: Huang, Xiao‐Ying
  organization: Chinese Academy of Sciences
– sequence: 8
  givenname: Ke‐Zhao
  surname: Du
  fullname: Du, Ke‐Zhao
  email: duke@fjnu.edu.cn
  organization: Fujian Normal University
– sequence: 9
  givenname: Xiao‐Hui
  surname: Wu
  fullname: Wu, Xiao‐Hui
  email: sherrywu@fjnu.edu.cn
  organization: Fujian Normal University
BookMark eNo9kE9LwzAYxoNMcJtePQc8d8ufpm2O2qkTKg6qFy8hTdMto21m2s7NT-DZj-gnsWOy0_u88ON54DcCg9rWGoBrjCYYITJtqrKcEEQw8glnZ2CIA0y9ICJ8cMoYXYBR06wRopj44RCsE9OuTFfBtLVOLjVcaFdYV8laaXhnbdPqHG6NhDNdWiVL82XqJYxX0vWsqeF7vYst_v3-2S1SOo1tSqAtIJlN6QzOdatd3-A61XZOX4LzQpaNvvq_Y_D2cP8az73k5fEpvk28DaGUeVxFKuQqk3ngh1pnKlMIZ6jAWUBogVlY-DlloWS54kzRiBLuK40LFEnmE-bTMbg59m6c_eh004q17VzdTwoSYI54GHLWU_xIfZpS78XGmUq6vcBIHGSKg0xxkinS5yQ5ffQPltZtQw
ContentType Journal Article
Copyright 2021 Wiley‐VCH GmbH
2022 Wiley‐VCH GmbH
Copyright_xml – notice: 2021 Wiley‐VCH GmbH
– notice: 2022 Wiley‐VCH GmbH
DBID 7SR
7U5
8BQ
8FD
JG9
L7M
DOI 10.1002/smll.202104295
DatabaseName Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList Materials Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1613-6829
EndPage n/a
ExternalDocumentID SMLL202104295
Genre article
GrantInformation_xml – fundername: National Science Foundation of China
  funderid: 22101049; 51802039; 21871048
– fundername: NSF
– fundername: Fujian Normal University
– fundername: Fujian Provincial Key Laboratory of Polymer Materials
– fundername: College of Chemistry and Materials Science
GroupedDBID ---
05W
0R~
123
1L6
1OC
33P
3SF
3WU
4.4
50Y
52U
53G
5VS
66C
8-0
8-1
8UM
A00
AAESR
AAEVG
AAHHS
AAHQN
AAIHA
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCUV
ABIJN
ABJNI
ABLJU
ABRTZ
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZVAB
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BOGZA
BRXPI
CS3
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EMOBN
F5P
G-S
GNP
HBH
HGLYW
HHY
HHZ
HZ~
IX1
KQQ
LATKE
LAW
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
MY~
O66
O9-
OIG
P2P
P2W
P4E
QRW
R.K
RIWAO
RNS
ROL
RWI
RX1
RYL
SUPJJ
SV3
V2E
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WXSBR
WYISQ
WYJ
XV2
Y6R
ZZTAW
~S-
7SR
7U5
8BQ
8FD
AAMMB
AEFGJ
AGHNM
AGXDD
AGYGG
AIDQK
AIDYY
JG9
L7M
ID FETCH-LOGICAL-p2335-9c8c79cbad647eebcbc01b0f1b623f157f4d357a5dc95c383294ce1f08a542543
IEDL.DBID DR2
ISSN 1613-6810
IngestDate Fri Jul 25 12:01:22 EDT 2025
Wed Jan 22 16:26:35 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-p2335-9c8c79cbad647eebcbc01b0f1b623f157f4d357a5dc95c383294ce1f08a542543
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-2801-9163
PQID 2619097795
PQPubID 1046358
PageCount 10
ParticipantIDs proquest_journals_2619097795
wiley_primary_10_1002_smll_202104295_SMLL202104295
PublicationCentury 2000
PublicationDate 2022-01-01
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – month: 01
  year: 2022
  text: 2022-01-01
  day: 01
PublicationDecade 2020
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Small (Weinheim an der Bergstrasse, Germany)
PublicationYear 2022
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2017; 5
2011; 115
2017; 7
2002; 14
2017; 41
2017; 1
2017; 2
2013; 1
2013; 2
2000; 45
2020; 120
2003; 58
2018; 769
2020; 12
2013; 7
2017; 9
2014; 136
2020; 7
2020; 6
2018; 8
2018; 3
2021; 33
2005; 220
2018; 1
2013; 12
2019; 29
2002; 628
2008; 112
2001; 414
1989
2010; 9
2019; 7
2019; 9
2015; 3
2021; 2
2019; 31
2017; 27
1995; 55
2015; 11
2018; 63
2018; 27
1981; 23
2016; 4
2017; 53
2016; 6
2015; 27
1976; 13
2021; 11
2021
2017; 11
2019; 48
2017; 56
2021; 494
2020; 24
2020; 22
2018; 12
2018; 11
2018; 10
1994; 98
References_xml – volume: 27
  year: 2017
  publication-title: Adv. Funct. Mater.
– volume: 769
  start-page: 532
  year: 2018
  publication-title: J. Alloys Compd.
– volume: 10
  start-page: 46
  year: 2018
  publication-title: Nano‐Micro Lett.
– volume: 11
  start-page: 2511
  year: 2015
  publication-title: Small
– volume: 12
  start-page: 1
  year: 2018
  publication-title: FlatChem
– volume: 136
  year: 2014
  publication-title: J. Am. Chem. Soc.
– volume: 12
  year: 2020
  publication-title: ACS Appl. Mater. Interfaces
– volume: 628
  start-page: 1765
  year: 2002
  publication-title: Z. Anorg. Allg. Chem.
– volume: 2
  year: 2021
  publication-title: Cell Rep. Phys. Sci.
– volume: 1
  start-page: 6400
  year: 2013
  publication-title: J. Mater. Chem. A
– volume: 55
  start-page: 1
  year: 1995
  publication-title: J. Power Sources
– volume: 7
  start-page: 1529
  year: 2019
  publication-title: J. Mater. Chem. A
– volume: 10
  start-page: 4890
  year: 2018
  publication-title: Nanoscale
– volume: 33
  year: 2021
  publication-title: Adv. Mater.
– volume: 8
  year: 2018
  publication-title: Adv. Energy Mater.
– volume: 29
  year: 2019
  publication-title: Adv. Funct. Mater.
– volume: 11
  year: 2021
  publication-title: Adv. Energy Mater.
– volume: 27
  start-page: 190
  year: 2018
  publication-title: J. Energy Chem.
– volume: 414
  start-page: 359
  year: 2001
  publication-title: Nature
– start-page: 536
  year: 1989
  publication-title: J. Chem. Soc., Chem. Commun.
– volume: 3
  start-page: 779
  year: 2018
  publication-title: ACS Energy Lett.
– volume: 2
  start-page: 49
  year: 2013
  publication-title: Nano Energy
– volume: 41
  start-page: 117
  year: 2017
  publication-title: Nano Energy
– volume: 11
  start-page: 8519
  year: 2017
  publication-title: ACS Nano
– volume: 7
  start-page: 3131
  year: 2020
  publication-title: Mater. Horiz.
– volume: 14
  start-page: 2717
  year: 2002
  publication-title: J. Phys.: Condens. Matter
– volume: 24
  start-page: 208
  year: 2020
  publication-title: Energy Storage Mater.
– volume: 120
  start-page: 6934
  year: 2020
  publication-title: Chem. Rev.
– volume: 3
  year: 2015
  publication-title: J. Mater. Chem. A
– volume: 4
  year: 2016
  publication-title: J. Mater. Chem. A
– volume: 23
  start-page: 825
  year: 1981
  publication-title: Phys. Scr.
– volume: 5
  year: 2017
  publication-title: J. Mater. Chem. A
– volume: 11
  start-page: 67
  year: 2018
  publication-title: Energy Storage Mater.
– volume: 7
  year: 2019
  publication-title: J. Mater. Chem. A
– volume: 31
  start-page: 3652
  year: 2019
  publication-title: Chem. Mater.
– volume: 9
  start-page: 146
  year: 2010
  publication-title: Nat. Mater.
– volume: 27
  start-page: 3038
  year: 2015
  publication-title: Adv. Mater.
– volume: 220
  start-page: 567
  year: 2005
  publication-title: Z. Kristallogr. ‐ Cryst. Mater.
– volume: 63
  start-page: 1130
  year: 2018
  publication-title: Sci. Bull.
– volume: 112
  year: 2008
  publication-title: J. Phys. Chem. C
– volume: 494
  year: 2021
  publication-title: J. Power Sources
– volume: 56
  start-page: 3897
  year: 2017
  publication-title: Angew. Chem., Int. Ed.
– volume: 12
  year: 2018
  publication-title: ACS Nano
– volume: 53
  start-page: 8199
  year: 2017
  publication-title: Chem. Commun.
– volume: 2
  start-page: 364
  year: 2017
  publication-title: ACS Energy Lett.
– volume: 1
  year: 2017
  publication-title: Small Methods
– volume: 7
  start-page: 4610
  year: 2013
  publication-title: ACS Nano
– volume: 9
  year: 2019
  publication-title: Adv. Energy Mater.
– volume: 45
  start-page: 2461
  year: 2000
  publication-title: Electrochim. Acta
– volume: 9
  year: 2017
  publication-title: ACS Appl. Mater. Interfaces
– volume: 7
  year: 2017
  publication-title: Adv. Energy Mater.
– volume: 22
  start-page: 8315
  year: 2020
  publication-title: Phys. Chem. Chem. Phys.
– volume: 13
  start-page: 5188
  year: 1976
  publication-title: Phys. Rev. B
– volume: 48
  start-page: 3819
  year: 2019
  publication-title: Dalton Trans.
– volume: 12
  start-page: 2968
  year: 2018
  publication-title: ACS Nano
– volume: 58
  start-page: 105
  year: 2003
  publication-title: Microporous Mesoporous Mater.
– volume: 6
  start-page: 221
  year: 2020
  publication-title: Chem
– year: 2021
  publication-title: Chin. Chem. Lett.
– volume: 115
  start-page: 8300
  year: 2011
  publication-title: J. Phys. Chem. C
– volume: 1
  start-page: 5772
  year: 2018
  publication-title: ACS Appl. Energy Mater.
– volume: 6
  year: 2016
  publication-title: Sci. Rep.
– volume: 12
  start-page: 518
  year: 2013
  publication-title: Nat. Mater.
– volume: 7
  start-page: 8549
  year: 2017
  publication-title: ACS Catal.
– volume: 98
  start-page: 5089
  year: 1994
  publication-title: J. Phys. Chem.
SSID ssj0031247
Score 2.4846714
Snippet A promising anode material consisting of bimetallic thiophosphate ZnxCo1−xPS3 and CoS2 with 2D/3D heterostructure is designed and prepared by an effective...
SourceID proquest
wiley
SourceType Aggregation Database
Publisher
SubjectTerms 2D/3D heterostructures
Alloying
Anodes
Batteries
bimetallic alloys
Bimetals
Charge distribution
Cobalt sulfide
delocalizing charge
Density functional theory
Electric fields
Electrochemical analysis
Electrode materials
Heterostructures
Lithium
Lithium-ion batteries
metal thiophosphate
Nanotechnology
Rechargeable batteries
Title Lithium Storage Performance Boosted via Delocalizing Charge in ZnxCo1−xPS3/CoS2 of 2D/3D Heterostructure
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsmll.202104295
https://www.proquest.com/docview/2619097795
Volume 18
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NTsJAEN4YTnrw34ii2YPXQne3S-lRQUIMGCKSEC_N7nYbq9ISAUN4As8-ok_ibAsFPOqxSSdpZ3dmvtmZ-Rahq0C7XgCxwLI105bDHGpJ19OWZIwITkJwm6ai27mvtvrO3YAP1qb4M36I_MDNWEbqr42BCzmurEhDx8M3UzqAlAVcqpkyNw1bBhU95PxRDIJXersKxCzLEG8tWRttWtkU38CX6yg1DTPNPSSWH5h1l7yWpxNZVvNf3I3_-YN9tLvAoPg62zQHaEvHh2hnjZnwCL20o8lzNB3iHuTk4HJwdzVggG-SdDIEf0QCN3QaDaM5iGFTu4d3oxg_xbN6Qr4_v2bdHqvUkx7FSYhpo8IauGU6cJKMuHb6ro9Rv3n7WG9Zi2sZrBFljFueqinXU1IEVcfVWiqpbCLtkEiAUiHhbugEjLuCB8rjCjJg6jlKk9CuCe6Y2fsTVIiTWJ8iLBirhtyTgCIgRbeJqAL8c13iSA6rRcMiKi2XxV_Y1tg3OZ8NsNXjRURT_fqjjJnDzziYqW806-ea9Xuddjt_OvuL0DnapmbuIT17KaECqEhfABqZyMt0x_0AAgLXEA
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NTtwwEB5ROLQ9QKFF3UKLD-UYNvHPmhw4wAa0QBahLkiolzR2HEhbEsTutsAT9Nw36avwCDwJ42Sz_ByROPQYKbYSz9839sxngM-JkX6CscBxDTMOZ5w6SvrGUYx5sfBSdJv2RLe71-oc8p0jcTQB_-pemIofYrzhZi2j9NfWwO2GdPOONbR_-tOeHWDOgj61rqvcNZe_MWvrr20HKOJlSrc2D9odZ3SxgHNGGROOr1e19LWKkxaXxiittOspN_UUgoHUEzLlCRMyFon2hcYcjvpcGy91V2PBbfc4zvsCpuw14pauP_gyZqxiGC7L-1wwSjqW6qvmiXRp8-H3PkC093FxGdi2ZuC6XpKqnuXHynCgVvTVI7bI_2rN3sD0CGaT9couZmHC5HPw-h754lv4HmaDk2x4SnoDNINjQ_bveijIRlE2v5BfWUwCUwb87AqHEVuegO9mOfmaX7QL7-bP34v9Hmu2ix4lRUpo0GQB6dgio6Li5h2em3dw-Cw_Ow-TeZGb90Bixlqp8BUCJckRbcUtRLhSelwJVA-aNmCx1oNo5D76kU1rXUTmvmgALQUanVXkI1FFM00jK8loLMmo1w3D8dOHpwxagpedg24Yhdt7uwvwito2j3KraREmcbnMRwRfA_WpVHcC355bV24Bpl81lw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB6VIiF6KP9qSwEf4Jhu4p-4PnCADast3VYrlkoVlxA7Nk2hyYrdhdIn4MyT8Cq8Ak_CONlsW45IPXCMFFuJ5-8be-YzwNPcSpVjLAhCy2zAGaeBlsoGmrEoE5FDt-lPdPf24_4Bf30oDpfgZ9sL0_BDLDbcvGXU_tob-Dh3nXPS0MnJJ390gCkLutS2rHLXfvuKSdvk-U6CEn5Gae_V224_mN8rEIwpYyJQZttIZXSWx1xaq402YaRDF2nEAi4S0vGcCZmJ3ChhMIWjihsbuXA7E9w3j-O81-A6j0PlL4tI3iwIqxhGy_o6FwySgWf6amkiQ9q5_L2XAO1FWFzHtd4t-NWuSFPO8nFrNtVb5uwvssj_acluw-ocZJMXjVXcgSVb3oWVC9SL9-B4UEyPitkJGU3RCD5YMjzvoCAvq7r1hXwpMpLYOtwXZziM-OIEfLcoybvytFtFv7__OB2OWKdbjSipHKFJhyWk70uMqoaZd_bZ3oeDK_nZB7BcVqVdA5IxFjuhNMIkyRFrZTHiWykjrgVqB3XrsNmqQTp3HpPUJ7Uh4nIl1oHW8kzHDfVI2pBM09RLMl1IMh3tDQaLp41_GfQEbgyTXjrY2d99CDep7_Go95k2YRlXyz5C5DXVj2tlJ_D-qlXlD6sKNEY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Lithium+Storage+Performance+Boosted+via+Delocalizing+Charge+in+ZnxCo1%E2%88%92xPS3%2FCoS2+of+2D%2F3D+Heterostructure&rft.jtitle=Small+%28Weinheim+an+der+Bergstrasse%2C+Germany%29&rft.au=Hou%E2%80%90Yang+Zhong&rft.au=Lu%2C+Xian&rft.au=Yu%2C+Zhong&rft.au=Zhao%2C+Yi&rft.date=2022-01-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1613-6810&rft.eissn=1613-6829&rft.volume=18&rft.issue=2&rft_id=info:doi/10.1002%2Fsmll.202104295&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1613-6810&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1613-6810&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1613-6810&client=summon