A Network Intrusion Detection System with Broadband WO3–x/WO3–x‐Ag/WO3–x Optoelectronic Memristor
Real‐time intrusion detection system based on the von Neumann architecture struggle to balance low power consumption and high computing speed. In this work, a strategy for network intrusion detection system based on the WO3–x/WO3–x‐Ag/WO3–x structured optoelectronic memristor overcoming the aforemen...
Saved in:
Published in | Advanced functional materials Vol. 34; no. 23 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken
Wiley Subscription Services, Inc
06.06.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Real‐time intrusion detection system based on the von Neumann architecture struggle to balance low power consumption and high computing speed. In this work, a strategy for network intrusion detection system based on the WO3–x/WO3–x‐Ag/WO3–x structured optoelectronic memristor overcoming the aforementioned issues is proposed and demonstrated. Through the modulation of electrical signals, the memristor successfully simulates a series of important synaptic functionalities including short‐term/long‐term synaptic plasticity. Meanwhile, when subjected to light stimulus, it demonstrates remarkable synaptic behaviors in terms of long/short‐term memory and “learning‐forgetting‐relearning.” Based on this memristor array, a convolutional neural network is constructed to recognize abnormal network records within the KDDCup‐99 dataset accurately and efficiently. The power consumption (10–6 W) is over seven orders of magnitude lower than that of central processing unit, etc. Subsequently, an intrusion detection system is established to integrate collection, processing, and detection of real‐time network data, successfully classifying various types of network records. Hence, this work is expected to promote the development of high‐density storage and neuromorphic computing technology, and provides an application idea for intelligent electronic devices.
A broadband optoelectronic synapse based on WO3–x/WO3–x‐Ag/WO3–x is proposed, which achieves a variety of fundamental and advanced electro‐optical synaptic behaviors. Because of the low power consumption advantage demonstrated by memristor array, the proposed intrusion detection system (IDS) can classify types of network records from KDDCup‐99 dataset and real‐time network data. |
---|---|
AbstractList | Real‐time intrusion detection system based on the von Neumann architecture struggle to balance low power consumption and high computing speed. In this work, a strategy for network intrusion detection system based on the WO3–x/WO3–x‐Ag/WO3–x structured optoelectronic memristor overcoming the aforementioned issues is proposed and demonstrated. Through the modulation of electrical signals, the memristor successfully simulates a series of important synaptic functionalities including short‐term/long‐term synaptic plasticity. Meanwhile, when subjected to light stimulus, it demonstrates remarkable synaptic behaviors in terms of long/short‐term memory and “learning‐forgetting‐relearning.” Based on this memristor array, a convolutional neural network is constructed to recognize abnormal network records within the KDDCup‐99 dataset accurately and efficiently. The power consumption (10–6 W) is over seven orders of magnitude lower than that of central processing unit, etc. Subsequently, an intrusion detection system is established to integrate collection, processing, and detection of real‐time network data, successfully classifying various types of network records. Hence, this work is expected to promote the development of high‐density storage and neuromorphic computing technology, and provides an application idea for intelligent electronic devices.
A broadband optoelectronic synapse based on WO3–x/WO3–x‐Ag/WO3–x is proposed, which achieves a variety of fundamental and advanced electro‐optical synaptic behaviors. Because of the low power consumption advantage demonstrated by memristor array, the proposed intrusion detection system (IDS) can classify types of network records from KDDCup‐99 dataset and real‐time network data. Real‐time intrusion detection system based on the von Neumann architecture struggle to balance low power consumption and high computing speed. In this work, a strategy for network intrusion detection system based on the WO3–x/WO3–x‐Ag/WO3–x structured optoelectronic memristor overcoming the aforementioned issues is proposed and demonstrated. Through the modulation of electrical signals, the memristor successfully simulates a series of important synaptic functionalities including short‐term/long‐term synaptic plasticity. Meanwhile, when subjected to light stimulus, it demonstrates remarkable synaptic behaviors in terms of long/short‐term memory and “learning‐forgetting‐relearning.” Based on this memristor array, a convolutional neural network is constructed to recognize abnormal network records within the KDDCup‐99 dataset accurately and efficiently. The power consumption (10–6 W) is over seven orders of magnitude lower than that of central processing unit, etc. Subsequently, an intrusion detection system is established to integrate collection, processing, and detection of real‐time network data, successfully classifying various types of network records. Hence, this work is expected to promote the development of high‐density storage and neuromorphic computing technology, and provides an application idea for intelligent electronic devices. |
Author | Shen, Guozhen Li, Yang Yang, Wenhao Kan, Hao |
Author_xml | – sequence: 1 givenname: Wenhao surname: Yang fullname: Yang, Wenhao organization: University of Jinan – sequence: 2 givenname: Hao surname: Kan fullname: Kan, Hao email: ise_kanh@ujn.edu.cn organization: University of Jinan – sequence: 3 givenname: Guozhen orcidid: 0000-0002-9755-1647 surname: Shen fullname: Shen, Guozhen email: gzshen@bit.edu.cn organization: Beijing Institute of Technology – sequence: 4 givenname: Yang surname: Li fullname: Li, Yang email: yang.li@sdu.edu.cn organization: Shandong University |
BookMark | eNo9kMtOwkAYhScGEwHdup7EdWEuvUyXFURJQBZqdDeZdma0SDt1OgS74xFMfEOexBKQ1TknOef_k68HOqUpFQDXGA0wQmQopC4GBBGKCWPBGejiEIceRYR1Th6_XYBeXS8RwlFE_S7IE_io3MbYTzgtnV3XuSnhWDmVub17amqnCrjJ3Qe8tUbIVJQSvi7obvv7PTzqbvuTvP8HuKicUat2b02ZZ3CuCpvXzthLcK7FqlZXR-2Dl8nd8-jBmy3up6Nk5lWE0sBjJGUqxYFug5YsinUYyUj6MSEsirRmPiY0FFKIOJSE-JmMqcxESuMgTTWVtA9uDncra77WqnZ8ada2bF9yikKfEUJJ2LbiQ2uTr1TDK5sXwjYcI75nyfcs-YklT8aT-SnRPxiPcD8 |
ContentType | Journal Article |
Copyright | 2024 Wiley‐VCH GmbH |
Copyright_xml | – notice: 2024 Wiley‐VCH GmbH |
DBID | 7SP 7SR 7U5 8BQ 8FD JG9 L7M |
DOI | 10.1002/adfm.202312885 |
DatabaseName | Electronics & Communications Abstracts Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | Materials Research Database Engineered Materials Abstracts Technology Research Database Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace METADEX |
DatabaseTitleList | Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1616-3028 |
EndPage | n/a |
ExternalDocumentID | ADFM202312885 |
Genre | article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 62174068 62311540155 – fundername: Shandong Provincial Natural Science Foundation funderid: ZR202112010027; ZR2023ZD03 – fundername: Jinan City‐University Integrated Development Strategy Project funderid: JNSX202301 |
GroupedDBID | -~X .3N .GA 05W 0R~ 10A 1L6 1OC 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHQN AAMMB AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABPVW ACAHQ ACCZN ACGFS ACIWK ACPOU ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADMLS ADOZA ADXAS ADZMN AEFGJ AEIGN AEIMD AENEX AEUYR AEYWJ AFBPY AFFPM AFGKR AFWVQ AFZJQ AGHNM AGXDD AGYGG AHBTC AIDQK AIDYY AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RX1 RYL SUPJJ UB1 V2E W8V W99 WBKPD WFSAM WIH WIK WJL WOHZO WQJ WXSBR WYISQ XG1 XPP XV2 ~IA ~WT 7SP 7SR 7U5 8BQ 8FD JG9 L7M |
ID | FETCH-LOGICAL-p2335-82b8eb15f335fd879f67d7d4922877ff841236adaa96d224cd93dcab395bbf3d3 |
IEDL.DBID | DR2 |
ISSN | 1616-301X |
IngestDate | Sat Jul 26 02:02:21 EDT 2025 Sun Jul 06 04:45:19 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 23 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-p2335-82b8eb15f335fd879f67d7d4922877ff841236adaa96d224cd93dcab395bbf3d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-9755-1647 |
PQID | 3064822326 |
PQPubID | 2045204 |
PageCount | 13 |
ParticipantIDs | proquest_journals_3064822326 wiley_primary_10_1002_adfm_202312885_ADFM202312885 |
PublicationCentury | 2000 |
PublicationDate | June 6, 2024 |
PublicationDateYYYYMMDD | 2024-06-06 |
PublicationDate_xml | – month: 06 year: 2024 text: June 6, 2024 day: 06 |
PublicationDecade | 2020 |
PublicationPlace | Hoboken |
PublicationPlace_xml | – name: Hoboken |
PublicationTitle | Advanced functional materials |
PublicationYear | 2024 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2023; 35 2023; 33 2020; 20 2023; 5 2019; 58 2023; 106 2019; 366 2020; 15 2019; 18 2018; 41 2023; 1 2020; 10 1998; 394 1973; 232 2018; 6 2021; 37 2023; 24 2021; 31 2018; 1 2020; 577 2002; 545 2018; 30 2022; 608 2022; 32 2023; 617 2012; 22 2019; 194 2021; 9 2023; 10 2019; 7 2018; 28 2023; 14 2021; 89 2019; 31 2019; 2 2019; 35 2015; 11 2020; 585 2021; 52 2011; 5 2021; 13 2022 2022; 5 2022; 6 2022; 9 2023; 111 2019; 575 2020; 25 2022; 11 2008; 453 2018; 10 2014; 104 2012; 8 2019; 572 |
References_xml | – volume: 13 year: 2021 publication-title: ACS Appl. Mater. Interfaces – volume: 8 start-page: 3237 year: 2012 publication-title: J. Comput. Inf. Syst. – volume: 232 start-page: 331 year: 1973 publication-title: J. Physiol. – volume: 104 start-page: 9 year: 2014 publication-title: Appl. Phys. Lett. – volume: 20 start-page: 8059 year: 2020 publication-title: Nano Lett. – volume: 10 start-page: 28 year: 2023 publication-title: Adv. Sci. – volume: 453 start-page: 80 year: 2008 publication-title: Nature – volume: 89 year: 2021 publication-title: Nano Energy – volume: 577 start-page: 641 year: 2020 publication-title: Nature – volume: 608 start-page: 757 year: 2022 publication-title: Inf. Sci. – volume: 366 start-page: 210 year: 2019 publication-title: Science – volume: 6 year: 2018 publication-title: IEEE Access – volume: 14 start-page: 2169 year: 2023 publication-title: Nat. Commun. – volume: 35 start-page: 1157 year: 2019 publication-title: Acta. Phys. Chim. Sin. – volume: 41 start-page: 45 year: 2018 publication-title: Bull. Mater. Sci – volume: 31 start-page: 49 year: 2019 publication-title: Adv. Mater. – volume: 1 start-page: 22 year: 2018 publication-title: Nat. Electron. – volume: 37 year: 2021 publication-title: Semicond. Sci. Technol. – volume: 617 start-page: E13 year: 2023 publication-title: Nature – volume: 111 year: 2023 – volume: 7 year: 2019 publication-title: IEEE Access – volume: 5 start-page: 10 year: 2023 publication-title: InfoMat – volume: 28 start-page: 40 year: 2018 publication-title: Adv. Funct. Mater. – volume: 33 start-page: 49 year: 2023 publication-title: Adv. Funct. Mater. – volume: 52 start-page: 3527 year: 2021 publication-title: Appl. Intell. – volume: 194 year: 2019 publication-title: Optik – year: 2022 publication-title: Adv. Mater. Technol. – volume: 106 year: 2023 publication-title: Nano Energy – volume: 545 start-page: 153 year: 2002 – volume: 9 year: 2021 publication-title: APL Mater. – volume: 18 start-page: 309 year: 2019 publication-title: Nat. Mater. – volume: 35 start-page: 28 year: 2023 publication-title: Adv. Mater. – volume: 58 start-page: 293 year: 2019 publication-title: Nano Energy – volume: 575 start-page: 607 year: 2019 publication-title: Nature – volume: 5 start-page: 7669 year: 2011 publication-title: ACS Nano – volume: 2 start-page: 290 year: 2019 publication-title: Nat. Electron. – volume: 394 start-page: 78 year: 1998 publication-title: Nature – volume: 30 start-page: 34 year: 2018 publication-title: Adv. Mater. – volume: 9 start-page: 6 year: 2021 publication-title: Adv. Sci. – volume: 10 start-page: 13 year: 2023 publication-title: Adv. Sci. – volume: 9 year: 2022 publication-title: Adv. Electron. Mater. – volume: 22 start-page: 2759 year: 2012 publication-title: Adv. Funct. Mater. – volume: 35 start-page: 33 year: 2023 publication-title: Adv. Mater. – volume: 31 year: 2019 publication-title: Nanotechnology – volume: 32 start-page: 44 year: 2022 publication-title: Adv. Funct. Mater. – volume: 5 start-page: 1578 year: 2022 publication-title: Matter – volume: 572 start-page: 106 year: 2019 publication-title: Nature – volume: 15 start-page: 529 year: 2020 publication-title: Nat. Nanotechnol. – volume: 11 start-page: 515 year: 2022 publication-title: Electronics – volume: 585 start-page: 58 year: 2020 publication-title: Nature – volume: 10 start-page: 8357 year: 2020 publication-title: Sci. Rep. – volume: 11 start-page: 944 year: 2015 publication-title: Electron. Mater. Lett. – volume: 1 start-page: 3 year: 2023 publication-title: Multimedia Tools Appl. – volume: 24 year: 2023 publication-title: Sci. Technol. Adv. Mater. – volume: 10 start-page: 33 year: 2023 publication-title: Nano Convergence – volume: 6 start-page: 93 year: 2022 publication-title: npj Flexible Electron. – volume: 25 start-page: 4283 year: 2020 publication-title: Soft Comput. – volume: 10 year: 2018 publication-title: ACS Appl. Mater. Interfaces – volume: 10 year: 2020 publication-title: Sci. Rep. – volume: 31 start-page: 34 year: 2021 publication-title: Adv. Funct. Mater. |
SSID | ssj0017734 |
Score | 2.644675 |
Snippet | Real‐time intrusion detection system based on the von Neumann architecture struggle to balance low power consumption and high computing speed. In this work, a... |
SourceID | proquest wiley |
SourceType | Aggregation Database Publisher |
SubjectTerms | Artificial neural networks Broadband Central processing units CPUs intrusion detection system Intrusion detection systems KDDCup‐99 dataset Memristors neural network optoelectronic memristor Optoelectronics Power consumption Power management WO3–x |
Title | A Network Intrusion Detection System with Broadband WO3–x/WO3–x‐Ag/WO3–x Optoelectronic Memristor |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.202312885 https://www.proquest.com/docview/3064822326 |
Volume | 34 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV29TsMwELZQWWDgH1EolQfWtI2dxM4YUaqCSCsBFd0iO44RQqQVDRJi6iMg8YZ9Euw4SVtGmJIbLCX3Y39n330G4IIRxhlLqBVziS3H48yi3OUWE0ytTp6LaEc3J4cDrz9ybsbueKWL3_BDVBtuOjLy-VoHOOOz9pI0lAmpO8kVPkGU6i5zXbClUdFdxR9lE2KOlT1bF3jZ45K1sYPa68PX8OUqSs2Xmd4uYOUHmuqSl9Z7xlvx5y_uxv_8wR7YKTAoDIzT7IONJD0A2yvMhIfgOYADUyAOr1Pdl6HMB7tJlhdupdDwnEO9iQtVIs8EZ6mAj0O8mH9_tIvnYv4VPJUCHE6zyfLOHRgmrzmrwdsRGPWuHi77VnErgzVFGLsWRZyqCd6VSpCCEl96RBDh-EglX0RK6mhCF2Vr5ntCAYRY-FjEjGPf5cofBD4GtXSSJicAElva0mMK5GDuxDHnWGfqOKG2lC7xUR00SqtERWjNIp0yKVSjYGcdoFy90dQQc0SGghlFWrFRpdgo6PbCSjr9y6AzsKXenbxEzGuAmtJ7cq7ASMabYDPohrf3zdzxfgBQOd2Q |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V29btswED6kztBmaNM_JG1-OLSj4oiURGro4EYx7PoPKGzUm0qKYhEEkQ1bQZtMfoQCfZK-Sh8hT5KjZDlxxwIZOgknQALJOx4_Hu8-AryTXCopU-EkyjDHC5R0hPKVI7XE1SnwqTi2xcm9ftAaeZ_G_ngDfle1MCU_xCrgZmdG4a_tBLcB6foda6jUxpaSI0ChQlR5lZ306jvu2uYf2hGq-D2lzdPhSctZXizgTCljviOoEuijfIOC0YKHJuCaay-kuH_gxgjPcpJgc2UYaFzjEh0ynUjFQl9hlzTD_z6CTXuNuKXrjz6vGKtczsuD7MC1KWXuuOKJPKb19fauIdr7uLhY2JrP4E81JGU-y_nRZa6Okuu_2CL_qzHbhqdLmE0a5bx4Dhtp9gK27pEvvoSzBumXOfCkndnSE7RQEqV5kZuWkZLKndg4Nfk4m0itZKbJlwG7Wfz6UV8-bxY_G98qgQym-eTuWiHSSy8K4obZKxg9SF9fQy2bZOkOEO4a1wQScRxTXpIoxWwwgqXCNcbnId2FvcoM4qX3mMd2V4jADZH1LtBCn_G05B6JS5ZpGltFxitFxo2o2VtJb_7lo0N43Br2unG33e-8hSf43isy4oI9qKEO0n3EXrk6KKydwNeHNpVbI8Q63Q |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbhMxEB6VVEL0AOWnamgoPsBxm6y9a3sPPaRso4aSBCEqclvs9RohxCZKUvXnlEeo1BfhVXiFPgnj3WyackTqgdPKK-3K9szYn8cz3wC8UUJppTLppdoyL-BaeVKH2lNG4e7EQypbLjm51-dHJ8H7YThcg19VLkzJD7F0uDnLKNZrZ-BjY5u3pKHKWJdJjviESlmFVR5nF2d4aJvud2OU8FtKO4ef3x15i7oC3pgyFnqSaolLVGixYY0UkeXCCBNEFI8PwloZOEoS7K2KuMEtLjURM6nSLAo1jsgw_O8DWA94K3LFIuJPS8IqX4jyHpv7LqLMH1Y0kS3avNvfO4B2FRYX-1rnCfyuZqQMZ_mxdzrTe-nlX2SR_9OUbcLjBcgm7dIqnsJalj-DjRXqxefwvU36ZQQ86eYu8QT1k8TZrIhMy0lJ5E6cl5ocTEbKaJUb8mXAbubX583F82Z-1f5WNchgPBvdFhUivexnQdsweQEn9zLWLajlozzbBiJ861uuEMUxHaSp1sy5IlgmfWtDEdE6NCotSBZrxzRxZ0KEbYir60ALcSbjknkkKTmmaeIEmSwFmbTjTm_ZevkvH72Ghx_jTvKh2z_egUf4OijC4XgDaiiC7BUCr5neLXSdwNf71pQ_Iac5jA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Network+Intrusion+Detection+System+with+Broadband+WO3%E2%80%93x%2FWO3%E2%80%93x%E2%80%90Ag%2FWO3%E2%80%93x+Optoelectronic+Memristor&rft.jtitle=Advanced+functional+materials&rft.au=Yang%2C+Wenhao&rft.au=Kan%2C+Hao&rft.au=Shen%2C+Guozhen&rft.au=Yang%2C+Li&rft.date=2024-06-06&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=34&rft.issue=23&rft_id=info:doi/10.1002%2Fadfm.202312885&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon |