Highly Controllable Hierarchically Porous Ag/Ag2S Heterostructure by Cation Exchange for Efficient Hydrogen Evolution

Establishing the hierarchical porous architectures has been considered to be the most efficient approach to realize the efficient mass diffusion and large exposed active sites of designed micro/nanomaterial catalysts for hydrogen evolution reactions (HER). In this work, the nonequivalent cation exch...

Full description

Saved in:
Bibliographic Details
Published inSmall (Weinheim an der Bergstrasse, Germany) Vol. 17; no. 44
Main Authors Xu, Huajie, Niu, Xiaoxiao, Liu, Zhuangzhuang, Sun, Mingzi, Liu, Zhaodi, Tian, Zhimei, Wu, Xiaoxia, Huang, Bolong, Tang, Yu, Yan, Chun‐Hua
Format Journal Article
LanguageEnglish
Published Weinheim Wiley Subscription Services, Inc 01.11.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Establishing the hierarchical porous architectures has been considered to be the most efficient approach to realize the efficient mass diffusion and large exposed active sites of designed micro/nanomaterial catalysts for hydrogen evolution reactions (HER). In this work, the nonequivalent cation exchange strategy is developed to fabricate the hierarchically porous Ag/Ag2S heterostructure based on the rapid cation exchange by the metal‐organic framework (MOF)‐derived CoS. The as‐prepared Ag/Ag2S inherits the original 3D hollow morphology of CoS with porous nature, possessing abundant S‐vacancies and lattice strain simultaneously due to the coordination loss and in‐situ epitaxial growth of metallic Ag on the surface. Owing to the optimizations of lattice and electronic structures, the unique hierarchically porous Ag/Ag2S heterostructure exhibits superior catalytic performance than previously reported catalysts derived from MOF. Theoretical calculations have confirmed that the co‐existence of Ag cluster and sulfur vacancies activates the electroactivity of the interfacial defective region to boost the HER process. The binding strength of the proton and energetic trend of HER has been optimized with the formation of Ag/Ag2S heterostructure, which guarantees the efficient generation of H2. This study opens a new strategy for the utilization of the nonequivalent cation exchange strategy to efficiently synthesize advanced electrocatalysts with high performances. In this work, an effective nonequivalent cation exchange strategy is developed for engineering the hierarchically porous Ag/Ag2S heterostructure, which has shown superior catalytic performance for hydrogen evolution reaction (HER). The heterostructure guarantees efficient electron transfer and alleviates the overbinding effect of protons, leading to a low overpotential of HER and long‐term stability in the acidic media.
AbstractList Establishing the hierarchical porous architectures has been considered to be the most efficient approach to realize the efficient mass diffusion and large exposed active sites of designed micro/nanomaterial catalysts for hydrogen evolution reactions (HER). In this work, the nonequivalent cation exchange strategy is developed to fabricate the hierarchically porous Ag/Ag2S heterostructure based on the rapid cation exchange by the metal‐organic framework (MOF)‐derived CoS. The as‐prepared Ag/Ag2S inherits the original 3D hollow morphology of CoS with porous nature, possessing abundant S‐vacancies and lattice strain simultaneously due to the coordination loss and in‐situ epitaxial growth of metallic Ag on the surface. Owing to the optimizations of lattice and electronic structures, the unique hierarchically porous Ag/Ag2S heterostructure exhibits superior catalytic performance than previously reported catalysts derived from MOF. Theoretical calculations have confirmed that the co‐existence of Ag cluster and sulfur vacancies activates the electroactivity of the interfacial defective region to boost the HER process. The binding strength of the proton and energetic trend of HER has been optimized with the formation of Ag/Ag2S heterostructure, which guarantees the efficient generation of H2. This study opens a new strategy for the utilization of the nonequivalent cation exchange strategy to efficiently synthesize advanced electrocatalysts with high performances. In this work, an effective nonequivalent cation exchange strategy is developed for engineering the hierarchically porous Ag/Ag2S heterostructure, which has shown superior catalytic performance for hydrogen evolution reaction (HER). The heterostructure guarantees efficient electron transfer and alleviates the overbinding effect of protons, leading to a low overpotential of HER and long‐term stability in the acidic media.
Establishing the hierarchical porous architectures has been considered to be the most efficient approach to realize the efficient mass diffusion and large exposed active sites of designed micro/nanomaterial catalysts for hydrogen evolution reactions (HER). In this work, the nonequivalent cation exchange strategy is developed to fabricate the hierarchically porous Ag/Ag2S heterostructure based on the rapid cation exchange by the metal‐organic framework (MOF)‐derived CoS. The as‐prepared Ag/Ag2S inherits the original 3D hollow morphology of CoS with porous nature, possessing abundant S‐vacancies and lattice strain simultaneously due to the coordination loss and in‐situ epitaxial growth of metallic Ag on the surface. Owing to the optimizations of lattice and electronic structures, the unique hierarchically porous Ag/Ag2S heterostructure exhibits superior catalytic performance than previously reported catalysts derived from MOF. Theoretical calculations have confirmed that the co‐existence of Ag cluster and sulfur vacancies activates the electroactivity of the interfacial defective region to boost the HER process. The binding strength of the proton and energetic trend of HER has been optimized with the formation of Ag/Ag2S heterostructure, which guarantees the efficient generation of H2. This study opens a new strategy for the utilization of the nonequivalent cation exchange strategy to efficiently synthesize advanced electrocatalysts with high performances.
Author Tian, Zhimei
Wu, Xiaoxia
Tang, Yu
Yan, Chun‐Hua
Liu, Zhuangzhuang
Niu, Xiaoxiao
Huang, Bolong
Liu, Zhaodi
Sun, Mingzi
Xu, Huajie
Author_xml – sequence: 1
  givenname: Huajie
  surname: Xu
  fullname: Xu, Huajie
  organization: Fuyang Normal University
– sequence: 2
  givenname: Xiaoxiao
  surname: Niu
  fullname: Niu, Xiaoxiao
  organization: Fuyang Normal University
– sequence: 3
  givenname: Zhuangzhuang
  surname: Liu
  fullname: Liu, Zhuangzhuang
  organization: Fuyang Normal University
– sequence: 4
  givenname: Mingzi
  surname: Sun
  fullname: Sun, Mingzi
  organization: The Hong Kong Polytechnic University
– sequence: 5
  givenname: Zhaodi
  surname: Liu
  fullname: Liu, Zhaodi
  organization: Fuyang Normal University
– sequence: 6
  givenname: Zhimei
  surname: Tian
  fullname: Tian, Zhimei
  organization: Fuyang Normal University
– sequence: 7
  givenname: Xiaoxia
  surname: Wu
  fullname: Wu, Xiaoxia
  organization: Lanzhou University
– sequence: 8
  givenname: Bolong
  orcidid: 0000-0002-2526-2002
  surname: Huang
  fullname: Huang, Bolong
  email: bhuang@polyu.edu.hk
  organization: The Hong Kong Polytechnic University
– sequence: 9
  givenname: Yu
  surname: Tang
  fullname: Tang, Yu
  email: tangyu@lzu.edu.cn
  organization: Lanzhou University
– sequence: 10
  givenname: Chun‐Hua
  surname: Yan
  fullname: Yan, Chun‐Hua
  email: yan@lzu.edu.cn
  organization: Lanzhou University
BookMark eNo9kN1LwzAUxYMouE1ffQ74vC0fTdo-jjGtUFGYPoe0vekysmamrdr_3o7Jns69nN-9B84UXTe-AYQeKFlQQtiyPTi3YIRRwomMrtCESsrnMmHp9WWm5BZN23ZPCKcsiieoz2y9cwNe-6YL3jldOMCZhaBDubOldqP37oPvW7yql6uabXEGHQTfdqEvuz4ALsZr3Vnf4M1vudNNDdj4gDfG2NJC0-FsqIKvYfS_vetP5B26Mdq1cP-vM_T5tPlYZ_P87fllvcrnR8Z5NOck4qZINBslIaYgMRhGSw3GUClErIWsqpibWHJRVIU0IhXCVDyJQRrDUz5Dj-e_x-C_emg7tfd9aMZIxUTKkoTIOBqp9Ez9WAeDOgZ70GFQlKhTr-rUq7r0qraveX7Z-B_Ma3Iu
ContentType Journal Article
Copyright 2021 Wiley‐VCH GmbH
Copyright_xml – notice: 2021 Wiley‐VCH GmbH
DBID 7SR
7U5
8BQ
8FD
JG9
L7M
DOI 10.1002/smll.202103064
DatabaseName Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList
Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1613-6829
EndPage n/a
ExternalDocumentID SMLL202103064
Genre article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 21931001; 21871121; 21771156
– fundername: Natural Science Foundation of Higher Education Institutions in Anhui province
  funderid: KJ2019A0524; KJ2020A0541
– fundername: Natural Science Foundation of Anhui Province
  funderid: 1908085MB44
– fundername: Early Career Scheme (ECS) fund
  funderid: PolyU 253026/16P
– fundername: Natural Science Foundation of Fuyang Normal College
  funderid: 2019KYQD0019
– fundername: Innovation Training Program for the College Students
  funderid: 202010371002
– fundername: 111 Project
  funderid: B20027
GroupedDBID ---
05W
0R~
123
1L6
1OC
33P
3SF
3WU
4.4
50Y
52U
53G
5VS
66C
8-0
8-1
8UM
A00
AAESR
AAEVG
AAHHS
AAHQN
AAIHA
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCUV
ABIJN
ABJNI
ABLJU
ABRTZ
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZVAB
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BOGZA
BRXPI
CS3
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EMOBN
F5P
G-S
GNP
HBH
HGLYW
HHY
HHZ
HZ~
IX1
KQQ
LATKE
LAW
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
MY~
O66
O9-
OIG
P2P
P2W
P4E
QRW
R.K
RIWAO
RNS
ROL
RWI
RX1
RYL
SUPJJ
SV3
V2E
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WXSBR
WYISQ
WYJ
XV2
Y6R
ZZTAW
~S-
7SR
7U5
8BQ
8FD
AAMMB
AEFGJ
AGHNM
AGXDD
AGYGG
AIDQK
AIDYY
JG9
L7M
ID FETCH-LOGICAL-p2334-3043fb8a243f80fb07ef21caeff16557a56dd73f7635bdb6f5955fd387e6ff393
IEDL.DBID DR2
ISSN 1613-6810
IngestDate Fri Jul 25 11:49:44 EDT 2025
Wed Jan 22 16:27:01 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 44
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-p2334-3043fb8a243f80fb07ef21caeff16557a56dd73f7635bdb6f5955fd387e6ff393
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-2526-2002
PQID 2592880674
PQPubID 1046358
PageCount 12
ParticipantIDs proquest_journals_2592880674
wiley_primary_10_1002_smll_202103064_SMLL202103064
PublicationCentury 2000
PublicationDate 2021-11-01
PublicationDateYYYYMMDD 2021-11-01
PublicationDate_xml – month: 11
  year: 2021
  text: 2021-11-01
  day: 01
PublicationDecade 2020
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Small (Weinheim an der Bergstrasse, Germany)
PublicationYear 2021
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2015; 15
2018; 28
2018; 360
2019; 31
2020; 142
2019; 13
2019; 12
2013; 42
2019; 58
2020; 59
2020; 13
2017; 29
2020; 32
2009; 131
2017; 139
2020; 7
2016; 7
2015; 27
2013; 12
2017; 11
2010; 132
2009; 9
2018; 30
2016; 138
2020; 22
2014; 343
2018; 57
References_xml – volume: 59
  start-page: 8262
  year: 2020
  publication-title: Angew. Chem., Int. Ed.
– volume: 22
  start-page: 161
  year: 2020
  publication-title: J. Nanopart. Res.
– volume: 27
  start-page: 1120
  year: 2015
  publication-title: Chem. Mater.
– volume: 29
  year: 2017
  publication-title: Adv. Mater.
– volume: 138
  start-page: 7965
  year: 2016
  publication-title: J. Am. Chem. Soc.
– volume: 15
  start-page: 48
  year: 2015
  publication-title: Nat. Mater.
– volume: 30
  start-page: 7776
  year: 2018
  publication-title: Chem. Mater.
– volume: 13
  start-page: 6824
  year: 2019
  publication-title: ACS Nano
– volume: 132
  year: 2010
  publication-title: J. Am. Chem. Soc.
– volume: 7
  year: 2016
  publication-title: Nat. Commun.
– volume: 138
  start-page: 7252
  year: 2016
  publication-title: J. Am. Chem. Soc.
– volume: 58
  start-page: 4484
  year: 2019
  publication-title: Angew. Chem., Int. Ed.
– volume: 9
  start-page: 172
  year: 2009
  publication-title: Nat. Mater.
– volume: 59
  year: 2020
  publication-title: Angew. Chem., Int. Ed.
– volume: 343
  start-page: 1339
  year: 2014
  publication-title: Science
– volume: 31
  year: 2019
  publication-title: Adv. Mater.
– volume: 139
  year: 2017
  publication-title: J. Am. Chem. Soc.
– volume: 58
  start-page: 4679
  year: 2019
  publication-title: Angew. Chem., Int. Ed.
– volume: 7
  year: 2020
  publication-title: Adv. Sci.
– volume: 59
  start-page: 2644
  year: 2020
  publication-title: Angew. Chem., Int. Ed.
– volume: 59
  start-page: 2688
  year: 2020
  publication-title: Angew. Chem., Int. Ed.
– volume: 11
  year: 2017
  publication-title: ACS Nano
– volume: 142
  start-page: 4298
  year: 2020
  publication-title: J. Am. Chem. Soc.
– volume: 360
  start-page: 513
  year: 2018
  publication-title: Science
– volume: 30
  year: 2018
  publication-title: Adv. Mater.
– volume: 58
  year: 2019
  publication-title: Angew. Chem., Int. Ed.
– volume: 12
  start-page: 3348
  year: 2019
  publication-title: Energy Environ. Sci.
– volume: 57
  start-page: 8654
  year: 2018
  publication-title: Angew. Chem., Int. Ed.
– volume: 32
  year: 2020
  publication-title: Adv. Mater.
– volume: 13
  start-page: 2949
  year: 2020
  publication-title: Energy Environ. Sci.
– volume: 28
  year: 2018
  publication-title: Adv. Funct. Mater.
– volume: 42
  start-page: 89
  year: 2013
  publication-title: Chem. Soc. Rev.
– volume: 12
  start-page: 850
  year: 2013
  publication-title: Nat. Mater.
– volume: 131
  start-page: 5285
  year: 2009
  publication-title: J. Am. Chem. Soc.
– volume: 142
  year: 2020
  publication-title: J. Am. Chem. Soc.
– volume: 42
  start-page: 3876
  year: 2013
  publication-title: Chem. Soc. Rev.
SSID ssj0031247
Score 2.5248215
Snippet Establishing the hierarchical porous architectures has been considered to be the most efficient approach to realize the efficient mass diffusion and large...
SourceID proquest
wiley
SourceType Aggregation Database
Publisher
SubjectTerms Catalysts
Cation exchanging
Electroactivity
electrocatalyst
Electrocatalysts
Epitaxial growth
Heterostructures
hierarchically porous heterostructure
Hydrogen evolution reactions
Lattice strain
Lattice vacancies
Metal-organic frameworks
metal‐organic framework
Nanomaterials
Nanotechnology
nonequivalent cation exchange
Silver
vacancies and lattice strain
Title Highly Controllable Hierarchically Porous Ag/Ag2S Heterostructure by Cation Exchange for Efficient Hydrogen Evolution
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsmll.202103064
https://www.proquest.com/docview/2592880674
Volume 17
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3NT8IwFMAbw0kPfhs_0PTgdbC16z6OhIwsBowRSbgt69oSIzICzIh_vX3rmOBRT9vSdNleX_de1_d-D6F7JRxhhzKwPMF8y6UytLgUqaWkcDNFFMlcyEYePHrxyH0Ys_FWFr_hQ9Q_3GBmlN9rmOApX7Z_oKHL9ylsHRCok-UBEBQCtsAreq75UVQbr7K6irZZFoC3NtRGm7R3u-_4l9teamlmekco3TygiS55axUr3sq-frEb__MGx-iw8kFxxyjNCdqTs1N0sEUmPEMFxH9M17hrItmnkGCF41fIVi6Lp0x121O-yIsl7kzanQkZ4hgCa3LDoy0WEnPduxx2HH2a9GKsHWQclcwKbepwvBaLXOsvjj4q_T9Ho1700o2tqkKDNSeUwpaKSxUPUqIPga247UtFnCyVSjkeY37KPCF8qoB6xyHhj4WMKUEDX3pK0ZBeoMYsn8lLhJWUQCRlXHmpy219D1vo1RLXttPRLeIKNTcjlFTTbJnotRvRHyDPd68QKUWdzA2kIzE4ZpKAkJNayMlw0O_XV9d_6XSD9uHc5CM2UUOLVd5qx2TF70rl-wY5kd8E
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3PT8IwFG4UD-rB30YUtQevg9GuGxwJGZkKxAgk3paVtsSIjAAz4l9vXwsIHvW0bE2X7bWv7732fd9D6E6JsnCrsuL4ggWOR2XV4VIkjpLC6yuiSN8DNHKr7Uc97-GFLbMJAQtj-SFWG26gGWa9BgWHDenSD2vo9H0IZwcECmX53jbagbLeJqp6XjFIUW2-TH0VbbUcoN5a8ja6pLTZf8PDXPdTjaFpHCK-_ESbX_JWzGa82P_6xd74r384QgcLNxTX7Lw5RltydIL218gJT1EGKSDDOa7bZPYhYKxw9AqAZVM_ZajbntJJmk1xbVCqDUgHR5Bbk1pK2mwiMde9zcjj8NMijLH2kXFoaCu0tcPRXExSPYVx-LFQgTPUa4TdeuQsijQ4Y0IpnKp4VPFKQvSl4iruBlKRcj-RSpV9xoKE-UIEVAHxHQfMH6sypgStBNJXilbpOcqN0pG8QFhJCaSkjCs_8bir3-EKHTBxbT7LukXkUWE5RPFC06axDt-IXoP8wMsjYmQdjy1PR2wZmUkMQo5XQo47rWZzdXf5l063aDfqtppx8779eIX24LmFJxZQTotYXms_ZcZvzEz8BjCi4x8
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwELWgSAgO7IhCAR-4hqbekh6rLgrQVohF4hbFtV0hSlN1QZSvxxO3peUIpyixHCXjGc_YnvcGoSujSsov69ATigceo7rsSa0Sz2jFOoYY0mGARm61RfTMbl_4yxKK3_FDLDbcwDKy-RoMfKBM8Yc0dPTeg6MDAnWyBFtHG0z4Ieh17WFBIEWt98rKq1in5QHz1py20SfF1f4rAeZymJr5mcYuSuZf6NJL3q4nY3nd-fpF3vifX9hDO7MgFFec1uyjNd0_QNtL1ISHaAIJIL0prrpU9h4grHD0CnDlrHpKz7bdp8N0MsKVbrHSJY84gsya1BHSToYaS9s7G3dc_3T4YmwjZFzPSCusr8PRVA1Tq8C4_jEzgCP03Kg_VSNvVqLBGxBK4UyFUSPDhNhL6BvpB9qQUifRxpQE50HChVIBNUB7JwHxx8ucG0XDQAtjaJkeo1w_7esThI3WQEnKpREJk759h6_sckla51myLSqPCvMRimd2Nort4o3YGUgELI9IJup44Fg6YsfHTGIQcrwQcvzYajYXd6d_6XSJNu9rjbh50747Q1vw2GETCyhnJazPbZAylheZHn4DuyTh1w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Highly+Controllable+Hierarchically+Porous+Ag%2FAg2S+Heterostructure+by+Cation+Exchange+for+Efficient+Hydrogen+Evolution&rft.jtitle=Small+%28Weinheim+an+der+Bergstrasse%2C+Germany%29&rft.au=Xu%2C+Huajie&rft.au=Niu%2C+Xiaoxiao&rft.au=Liu%2C+Zhuangzhuang&rft.au=Sun%2C+Mingzi&rft.date=2021-11-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1613-6810&rft.eissn=1613-6829&rft.volume=17&rft.issue=44&rft_id=info:doi/10.1002%2Fsmll.202103064&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1613-6810&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1613-6810&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1613-6810&client=summon