Piezo‐Electrocatalysis for CO2 Reduction Driven by Vibration

With rising CO2 emissions caused by the massive consumption of fossil fuels, it is highly desirable to develop strategies that adopt renewable energy to convert CO2 into value‐added chemical feedstocks. Over the past decades, photocatalytic reduction of CO2 using light energy has attracted considera...

Full description

Saved in:
Bibliographic Details
Published inAdvanced energy materials Vol. 12; no. 27
Main Authors Ma, Jiangping, Jing, Shaojie, Wang, Yang, Liu, Xue, Gan, Li‐Yong, Wang, Cong, Dai, Ji‐Yan, Han, Xiaodong, Zhou, Xiaoyuan
Format Journal Article
LanguageEnglish
Published Weinheim Wiley Subscription Services, Inc 01.07.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract With rising CO2 emissions caused by the massive consumption of fossil fuels, it is highly desirable to develop strategies that adopt renewable energy to convert CO2 into value‐added chemical feedstocks. Over the past decades, photocatalytic reduction of CO2 using light energy has attracted considerable attention. However, the advanced photocatalysis techniques cannot exert their action where light is unavailable. Here, a method for CO2 reduction on basis of vibration‐driven piezoelectricity to yield a piezo‐electrocatalysis effect which requires mechanical vibration rather than light, is proposed. Under mild vibration and sacrificial agent‐free conditions, the piezoelectric BaTiO3 catalyst provides a suitable piezo‐potential to overcome the redox potential of CO2 and convert it into CO with a maximum yield of 63.3 µmol g−1, achieving a reactivity comparable to those of photocatalysts. The piezo‐electrocatalytic CO2 reduction reaction adds a new avenue in addition to the existing photocatalytic techniques by expanding the scope of energy utilization to promote carbon neutrality. Exploring strategies to expand the sources of natural energy utilization is imperative to cope with ever‐increasing CO2 emissions. A photon‐free piezo‐electrocatalysis system based on the coupling of piezoelectricity and electrochemistry enables the harvesting of dispersed and extensive mechanical energy and converts CO2 into value‐added chemical fuels. The piezo‐electrocatalytic CO2 reduction reaction adds a new avenue to promote carbon neutrality.
AbstractList With rising CO2 emissions caused by the massive consumption of fossil fuels, it is highly desirable to develop strategies that adopt renewable energy to convert CO2 into value‐added chemical feedstocks. Over the past decades, photocatalytic reduction of CO2 using light energy has attracted considerable attention. However, the advanced photocatalysis techniques cannot exert their action where light is unavailable. Here, a method for CO2 reduction on basis of vibration‐driven piezoelectricity to yield a piezo‐electrocatalysis effect which requires mechanical vibration rather than light, is proposed. Under mild vibration and sacrificial agent‐free conditions, the piezoelectric BaTiO3 catalyst provides a suitable piezo‐potential to overcome the redox potential of CO2 and convert it into CO with a maximum yield of 63.3 µmol g−1, achieving a reactivity comparable to those of photocatalysts. The piezo‐electrocatalytic CO2 reduction reaction adds a new avenue in addition to the existing photocatalytic techniques by expanding the scope of energy utilization to promote carbon neutrality.
With rising CO2 emissions caused by the massive consumption of fossil fuels, it is highly desirable to develop strategies that adopt renewable energy to convert CO2 into value‐added chemical feedstocks. Over the past decades, photocatalytic reduction of CO2 using light energy has attracted considerable attention. However, the advanced photocatalysis techniques cannot exert their action where light is unavailable. Here, a method for CO2 reduction on basis of vibration‐driven piezoelectricity to yield a piezo‐electrocatalysis effect which requires mechanical vibration rather than light, is proposed. Under mild vibration and sacrificial agent‐free conditions, the piezoelectric BaTiO3 catalyst provides a suitable piezo‐potential to overcome the redox potential of CO2 and convert it into CO with a maximum yield of 63.3 µmol g−1, achieving a reactivity comparable to those of photocatalysts. The piezo‐electrocatalytic CO2 reduction reaction adds a new avenue in addition to the existing photocatalytic techniques by expanding the scope of energy utilization to promote carbon neutrality. Exploring strategies to expand the sources of natural energy utilization is imperative to cope with ever‐increasing CO2 emissions. A photon‐free piezo‐electrocatalysis system based on the coupling of piezoelectricity and electrochemistry enables the harvesting of dispersed and extensive mechanical energy and converts CO2 into value‐added chemical fuels. The piezo‐electrocatalytic CO2 reduction reaction adds a new avenue to promote carbon neutrality.
Author Wang, Yang
Wang, Cong
Liu, Xue
Dai, Ji‐Yan
Jing, Shaojie
Gan, Li‐Yong
Han, Xiaodong
Zhou, Xiaoyuan
Ma, Jiangping
Author_xml – sequence: 1
  givenname: Jiangping
  surname: Ma
  fullname: Ma, Jiangping
  organization: Chongqing University
– sequence: 2
  givenname: Shaojie
  surname: Jing
  fullname: Jing, Shaojie
  organization: Chongqing University
– sequence: 3
  givenname: Yang
  surname: Wang
  fullname: Wang, Yang
  organization: Chongqing University
– sequence: 4
  givenname: Xue
  surname: Liu
  fullname: Liu, Xue
  organization: Chongqing University
– sequence: 5
  givenname: Li‐Yong
  surname: Gan
  fullname: Gan, Li‐Yong
  organization: Chongqing University
– sequence: 6
  givenname: Cong
  surname: Wang
  fullname: Wang, Cong
  organization: Beijing University of Technology
– sequence: 7
  givenname: Ji‐Yan
  surname: Dai
  fullname: Dai, Ji‐Yan
  email: jiyan.dai@polyu.edu.hk
  organization: The Hong Kong Polytechnic University
– sequence: 8
  givenname: Xiaodong
  surname: Han
  fullname: Han, Xiaodong
  email: xdhan@bjut.edu.cn
  organization: Beijing University of Technology
– sequence: 9
  givenname: Xiaoyuan
  orcidid: 0000-0003-1088-0809
  surname: Zhou
  fullname: Zhou, Xiaoyuan
  email: xiaoyuan2013@cqu.edu.cn
  organization: Chongqing University
BookMark eNo9kE1Lw0AQhhepYK29eg54Tp39SLp7EUqtH1CtiHpddpMJbEmzdZMq8eRP8Df6S0yodC4z7_DOO_CckkHlKyTknMKEArBLg9VmwoCxTiT8iAxpSkWcSgGDw8zZCRnX9Rq6EooC50Ny9eTwy_9-_yxKzJrgM9OYsq1dHRU-RPMVi54x32WN81V0HdwHVpFtozdng-l3Z-S4MGWN4_8-Iq83i5f5Xbxc3d7PZ8t4yzjnsZ2CpSphVGQUilymEqRUwvKEM4OY5JJxVLkpCmUhoamcGssLhcIohZQpPiIX-9xt8O87rBu99rtQdS81SxWD_kR0LrV3fboSW70NbmNCqynonpHuGekDIz1bPD4cFP8Dbl1d7Q
ContentType Journal Article
Copyright 2022 Wiley‐VCH GmbH
Copyright_xml – notice: 2022 Wiley‐VCH GmbH
DBID 7SP
7TB
8FD
F28
FR3
H8D
L7M
DOI 10.1002/aenm.202200253
DatabaseName Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitle Aerospace Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
DatabaseTitleList Aerospace Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1614-6840
EndPage n/a
ExternalDocumentID AENM202200253
Genre article
GrantInformation_xml – fundername: National Science Fund for Distinguished Young Scholars
  funderid: 52125103
– fundername: Beijing Outstanding Young Scientists Projects
  funderid: BJJWZYJH01201910005018
– fundername: Natural Science Foundation of Beijing Municipality
  funderid: Z180014; 2192008
– fundername: Beijing University of Technology
– fundername: Guangdong‐Hong Kong‐Macao Joint Laboratory
– fundername: Hong Kong Polytechnic University
  funderid: 1‐ZVSQ; 15301421
– fundername: Fundamental Research Funds for the Central Universities
  funderid: 106112017CDJQJ308821
– fundername: Analytical and Testing Center at Chongqing University
– fundername: Fundamental and Frontier Research in Chongqing
  funderid: cstc2020jcyj‐msxmX0777; cstc2020jcyj‐msxmX0796
– fundername: National Natural Science Foundation of China
  funderid: 51772035; 11604032; 52071041; 12074048
GroupedDBID 05W
0R~
1OC
33P
4.4
50Y
5VS
8-0
8-1
A00
AAESR
AAHHS
AAHQN
AAIHA
AAMNL
AANLZ
AAXRX
AAYCA
AAZKR
ABCUV
ABJNI
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADKYN
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AENEX
AEQDE
AEUYR
AFBPY
AFFPM
AFWVQ
AFZJQ
AHBTC
AIACR
AITYG
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMYDB
AZVAB
BDRZF
BFHJK
BMXJE
BRXPI
D-A
DCZOG
EBS
G-S
HGLYW
HZ~
KBYEO
LATKE
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MY.
MY~
O9-
P2W
P4E
RNS
ROL
RX1
SUPJJ
WBKPD
WOHZO
WXSBR
WYJ
ZZTAW
~S-
7SP
7TB
8FD
AAMMB
ADMLS
AEFGJ
AEYWJ
AGHNM
AGXDD
AGYGG
AIDQK
AIDYY
F28
FR3
H8D
L7M
ID FETCH-LOGICAL-p2333-b70b195214c10fd86808894b3532aee5d823e9daff9b051687ab3f9e4a99e1293
ISSN 1614-6832
IngestDate Fri Jul 25 12:07:10 EDT 2025
Wed Jan 22 16:25:30 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 27
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-p2333-b70b195214c10fd86808894b3532aee5d823e9daff9b051687ab3f9e4a99e1293
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-1088-0809
PQID 2692016874
PQPubID 886389
PageCount 10
ParticipantIDs proquest_journals_2692016874
wiley_primary_10_1002_aenm_202200253_AENM202200253
PublicationCentury 2000
PublicationDate 2022-07-01
PublicationDateYYYYMMDD 2022-07-01
PublicationDate_xml – month: 07
  year: 2022
  text: 2022-07-01
  day: 01
PublicationDecade 2020
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Advanced energy materials
PublicationYear 2022
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2014; 514
1991; 253
2017 2022 2022 2021 2021; 46 92 14 11 14
2021; 6
2010 2012; 110 41
2019; 4
2017; 4
2021; 586
2014 2018 2022; 53 11 24
2020; 142
2020; 60
2018; 762
2019; 58
2019; 366
2020; 11
2020; 32
2018; 45
1987 2019; 3 366
2018; 44
2004; 108
2020 2017 2020 2020 2017 2018; 586 355 581 3 139 140
2012; 429
2015; 24
2020; 8
1998; 37
2021; 13
2020; 6
2018; 9
2020; 3
2018; 2
2014; 4
2012 2011; 15 115
2010; 1
2019 2021; 9 4
2017 2020 2017 2021; 3 8 139 402
2019; 48
2010; 132
2016
2020; 23
2011; 23
2020; 276
2010; 3
2016; 28
2012; 116
2008; 130
2016; 9
References_xml – volume: 762
  start-page: 915
  year: 2018
  publication-title: J. Alloys Compd.
– volume: 13
  start-page: 358
  year: 2021
  publication-title: Nat. Chem.
– volume: 253
  start-page: 1397
  year: 1991
  publication-title: Science
– volume: 4
  start-page: 1212
  year: 2014
  publication-title: RSC Adv.
– volume: 58
  start-page: 6972
  year: 2019
  publication-title: Angew. Chem., Int. Ed.
– volume: 4
  start-page: 690
  year: 2019
  publication-title: Nat. Energy
– volume: 24
  start-page: 165
  year: 2015
  publication-title: Ultrason. Sonochem.
– volume: 110 41
  start-page: 6503 131
  year: 2010 2012
  publication-title: Chem. Rev. Desalin. Water Treat.
– volume: 6
  year: 2020
  publication-title: Sci. Adv.
– volume: 45
  start-page: 44
  year: 2018
  publication-title: Nano Energy
– volume: 586
  start-page: 758
  year: 2021
  publication-title: J. Colloid Interface Sci.
– volume: 28
  start-page: 3718
  year: 2016
  publication-title: Adv. Mater.
– volume: 6
  start-page: 388
  year: 2021
  publication-title: Nat. Energy
– volume: 15 115
  start-page: 152 2024
  year: 2012 2011
  publication-title: Mater. Sci. Semicond. Process. J. Phys. Chem. B
– volume: 3 8 139 402
  start-page: 7177 3438 166
  year: 2017 2020 2017 2021
  publication-title: Sci. Adv. J. Mater. Chem. A J. Am. Chem. Soc. J. Catal.
– volume: 46 92 14 11 14
  start-page: 7757 74 4998
  year: 2017 2022 2022 2021 2021
  publication-title: Chem. Soc. Rev. Nano Energy Nano‐Micro Lett. Adv. Energy Mater. Energy Environ. Sci.
– volume: 3 366
  start-page: 289 475
  year: 1987 2019
  publication-title: Science
– volume: 60
  year: 2020
  publication-title: Ultrason. Sonochem.
– volume: 23
  start-page: 1922
  year: 2011
  publication-title: Adv. Mater.
– volume: 9
  start-page: 2177
  year: 2016
  publication-title: Energy Environ. Sci.
– volume: 4
  year: 2017
  publication-title: Appl. Phys. Rev.
– year: 2016
– volume: 44
  year: 2018
  publication-title: Ceram. Int.
– volume: 429
  start-page: 48
  year: 2012
  publication-title: Ferroelectrics
– volume: 2
  start-page: 0105
  year: 2018
  publication-title: Nat. Rev. Chem.
– volume: 9 4
  start-page: 719
  year: 2019 2021
  publication-title: Adv. Energy Mater. Nat. Catal.
– volume: 37
  start-page: 5385
  year: 1998
  publication-title: Jpn. J. Appl. Phys.
– volume: 9
  start-page: 5236
  year: 2018
  publication-title: Nat. Commun.
– volume: 116
  year: 2012
  publication-title: J. Phys. Chem. C
– volume: 108
  year: 2004
  publication-title: J. Phys. Chem. B
– volume: 276
  year: 2020
  publication-title: J. Cleaner Prod.
– volume: 514
  start-page: 470
  year: 2014
  publication-title: Nature
– volume: 3
  start-page: 1063
  year: 2020
  publication-title: ACS Appl. Nano Mater
– volume: 8
  start-page: 1511
  year: 2020
  publication-title: J. Mater. Chem. A
– volume: 58
  year: 2019
  publication-title: Angew. Chem., Int. Ed.
– volume: 48
  start-page: 1194
  year: 2019
  publication-title: Chem. Soc. Rev.
– volume: 32
  year: 2020
  publication-title: Adv. Mater.
– volume: 130
  start-page: 6955
  year: 2008
  publication-title: J. Am. Chem. Soc.
– volume: 53 11 24
  start-page: 1034 306
  year: 2014 2018 2022
  publication-title: Angew. Chem., Int. Ed. Energy Environ. Sci. Mater. Today Energy
– volume: 23
  year: 2020
  publication-title: iScience
– volume: 366
  start-page: 1500
  year: 2019
  publication-title: Science
– volume: 11
  start-page: 1328
  year: 2020
  publication-title: Nat. Commun.
– volume: 142
  start-page: 4154
  year: 2020
  publication-title: J. Am. Chem. Soc.
– volume: 586 355 581 3 139 140
  start-page: 549 4998 178 775 7586 5037
  year: 2020 2017 2020 2020 2017 2018
  publication-title: Nature Science Nature Nat. Catal. J. Am. Chem. Soc. J. Am. Chem. Soc.
– volume: 1
  start-page: 997
  year: 2010
  publication-title: J. Phys. Chem. Lett.
– volume: 6
  year: 2020
  publication-title: Mater. Today Adv.
– volume: 3
  start-page: 1311
  year: 2010
  publication-title: Energy Environ. Sci.
– volume: 132
  year: 2010
  publication-title: J. Chem. Phys.
SSID ssj0000491033
Score 2.6182868
Snippet With rising CO2 emissions caused by the massive consumption of fossil fuels, it is highly desirable to develop strategies that adopt renewable energy to...
SourceID proquest
wiley
SourceType Aggregation Database
Publisher
SubjectTerms barium titanate
Barium titanates
Carbon dioxide
Chemical reduction
Electrocatalysis
Energy utilization
Fossil fuels
Photocatalysis
piezoelectric effect
Piezoelectricity
piezo‐electrocatalytic CO 2 reduction reaction
Vibration
Title Piezo‐Electrocatalysis for CO2 Reduction Driven by Vibration
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Faenm.202200253
https://www.proquest.com/docview/2692016874
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV29TsMwELaALjAgfkX5UwY2FHBtJ40XJARFFWoBqS0qU2Q3DpShrUo7wMQj8Iw8Cec4cVJACFii1HUT5e7L-e569xmhA0Kwopj03IhFkctoJN0g5j58VBUBHrPoSd3g3Lzy6x122fW6eSo76S6ZyKPey7d9Jf_RKoyBXnWX7B80ay8KA3AO-oUjaBiOv9LxTV-9DG25Qs3saJMkZBKeEV1BeHZNQISR4Yg9PB9r46ZdzlsdJlulZDS0WUGAMh2B4M2ax8jz1onWAVL3o2zN0-U36cYorQcxfOzn__akueg7kU9t9Kd6qDtVxXwDyWtTMxMJC7rrB2lWUhXHDPGStaukgB9DAJAusXYB-mK_DR-sUANNEkB0AYmhEp4lyrYzvZ_nGl7f2lXTfj-PSgTiCTCIpdPzZqNl03EQKFUwTdoxsufLKD4xOZ69yUwwUgxpEp-kvYKW02DCOTXIWEVzarCGlgoUk-voJMHI--vbZ3Q4gA4H0OFYdDgGHY58diw6NlDnotY-q7vpnhnuiFBKXVnFssLBJ2O9Co6jQO-sEnAmqUeJUMqLAkIVj0Qccwn22A-qQtKYKyY4V9r320QLg-FAbSHHBz_Go34cKwZmnsdScoYDjqnwqlXMZBntZmII05fiKSQ-B5cSLsvKiCSiCUeGNiU0BNkk1MIMrTDDGf1s_-dHO2gxB-ouWpiMp2oPXMWJ3E_V_AGEwmAo
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Piezo%E2%80%90Electrocatalysis+for+CO2+Reduction+Driven+by+Vibration&rft.jtitle=Advanced+energy+materials&rft.au=Ma%2C+Jiangping&rft.au=Jing%2C+Shaojie&rft.au=Wang%2C+Yang&rft.au=Liu%2C+Xue&rft.date=2022-07-01&rft.issn=1614-6832&rft.eissn=1614-6840&rft.volume=12&rft.issue=27&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Faenm.202200253&rft.externalDBID=10.1002%252Faenm.202200253&rft.externalDocID=AENM202200253
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1614-6832&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1614-6832&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1614-6832&client=summon