Piezo‐Electrocatalysis for CO2 Reduction Driven by Vibration
With rising CO2 emissions caused by the massive consumption of fossil fuels, it is highly desirable to develop strategies that adopt renewable energy to convert CO2 into value‐added chemical feedstocks. Over the past decades, photocatalytic reduction of CO2 using light energy has attracted considera...
Saved in:
Published in | Advanced energy materials Vol. 12; no. 27 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
Wiley Subscription Services, Inc
01.07.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | With rising CO2 emissions caused by the massive consumption of fossil fuels, it is highly desirable to develop strategies that adopt renewable energy to convert CO2 into value‐added chemical feedstocks. Over the past decades, photocatalytic reduction of CO2 using light energy has attracted considerable attention. However, the advanced photocatalysis techniques cannot exert their action where light is unavailable. Here, a method for CO2 reduction on basis of vibration‐driven piezoelectricity to yield a piezo‐electrocatalysis effect which requires mechanical vibration rather than light, is proposed. Under mild vibration and sacrificial agent‐free conditions, the piezoelectric BaTiO3 catalyst provides a suitable piezo‐potential to overcome the redox potential of CO2 and convert it into CO with a maximum yield of 63.3 µmol g−1, achieving a reactivity comparable to those of photocatalysts. The piezo‐electrocatalytic CO2 reduction reaction adds a new avenue in addition to the existing photocatalytic techniques by expanding the scope of energy utilization to promote carbon neutrality.
Exploring strategies to expand the sources of natural energy utilization is imperative to cope with ever‐increasing CO2 emissions. A photon‐free piezo‐electrocatalysis system based on the coupling of piezoelectricity and electrochemistry enables the harvesting of dispersed and extensive mechanical energy and converts CO2 into value‐added chemical fuels. The piezo‐electrocatalytic CO2 reduction reaction adds a new avenue to promote carbon neutrality. |
---|---|
AbstractList | With rising CO2 emissions caused by the massive consumption of fossil fuels, it is highly desirable to develop strategies that adopt renewable energy to convert CO2 into value‐added chemical feedstocks. Over the past decades, photocatalytic reduction of CO2 using light energy has attracted considerable attention. However, the advanced photocatalysis techniques cannot exert their action where light is unavailable. Here, a method for CO2 reduction on basis of vibration‐driven piezoelectricity to yield a piezo‐electrocatalysis effect which requires mechanical vibration rather than light, is proposed. Under mild vibration and sacrificial agent‐free conditions, the piezoelectric BaTiO3 catalyst provides a suitable piezo‐potential to overcome the redox potential of CO2 and convert it into CO with a maximum yield of 63.3 µmol g−1, achieving a reactivity comparable to those of photocatalysts. The piezo‐electrocatalytic CO2 reduction reaction adds a new avenue in addition to the existing photocatalytic techniques by expanding the scope of energy utilization to promote carbon neutrality. With rising CO2 emissions caused by the massive consumption of fossil fuels, it is highly desirable to develop strategies that adopt renewable energy to convert CO2 into value‐added chemical feedstocks. Over the past decades, photocatalytic reduction of CO2 using light energy has attracted considerable attention. However, the advanced photocatalysis techniques cannot exert their action where light is unavailable. Here, a method for CO2 reduction on basis of vibration‐driven piezoelectricity to yield a piezo‐electrocatalysis effect which requires mechanical vibration rather than light, is proposed. Under mild vibration and sacrificial agent‐free conditions, the piezoelectric BaTiO3 catalyst provides a suitable piezo‐potential to overcome the redox potential of CO2 and convert it into CO with a maximum yield of 63.3 µmol g−1, achieving a reactivity comparable to those of photocatalysts. The piezo‐electrocatalytic CO2 reduction reaction adds a new avenue in addition to the existing photocatalytic techniques by expanding the scope of energy utilization to promote carbon neutrality. Exploring strategies to expand the sources of natural energy utilization is imperative to cope with ever‐increasing CO2 emissions. A photon‐free piezo‐electrocatalysis system based on the coupling of piezoelectricity and electrochemistry enables the harvesting of dispersed and extensive mechanical energy and converts CO2 into value‐added chemical fuels. The piezo‐electrocatalytic CO2 reduction reaction adds a new avenue to promote carbon neutrality. |
Author | Wang, Yang Wang, Cong Liu, Xue Dai, Ji‐Yan Jing, Shaojie Gan, Li‐Yong Han, Xiaodong Zhou, Xiaoyuan Ma, Jiangping |
Author_xml | – sequence: 1 givenname: Jiangping surname: Ma fullname: Ma, Jiangping organization: Chongqing University – sequence: 2 givenname: Shaojie surname: Jing fullname: Jing, Shaojie organization: Chongqing University – sequence: 3 givenname: Yang surname: Wang fullname: Wang, Yang organization: Chongqing University – sequence: 4 givenname: Xue surname: Liu fullname: Liu, Xue organization: Chongqing University – sequence: 5 givenname: Li‐Yong surname: Gan fullname: Gan, Li‐Yong organization: Chongqing University – sequence: 6 givenname: Cong surname: Wang fullname: Wang, Cong organization: Beijing University of Technology – sequence: 7 givenname: Ji‐Yan surname: Dai fullname: Dai, Ji‐Yan email: jiyan.dai@polyu.edu.hk organization: The Hong Kong Polytechnic University – sequence: 8 givenname: Xiaodong surname: Han fullname: Han, Xiaodong email: xdhan@bjut.edu.cn organization: Beijing University of Technology – sequence: 9 givenname: Xiaoyuan orcidid: 0000-0003-1088-0809 surname: Zhou fullname: Zhou, Xiaoyuan email: xiaoyuan2013@cqu.edu.cn organization: Chongqing University |
BookMark | eNo9kE1Lw0AQhhepYK29eg54Tp39SLp7EUqtH1CtiHpddpMJbEmzdZMq8eRP8Df6S0yodC4z7_DOO_CckkHlKyTknMKEArBLg9VmwoCxTiT8iAxpSkWcSgGDw8zZCRnX9Rq6EooC50Ny9eTwy_9-_yxKzJrgM9OYsq1dHRU-RPMVi54x32WN81V0HdwHVpFtozdng-l3Z-S4MGWN4_8-Iq83i5f5Xbxc3d7PZ8t4yzjnsZ2CpSphVGQUilymEqRUwvKEM4OY5JJxVLkpCmUhoamcGssLhcIohZQpPiIX-9xt8O87rBu99rtQdS81SxWD_kR0LrV3fboSW70NbmNCqynonpHuGekDIz1bPD4cFP8Dbl1d7Q |
ContentType | Journal Article |
Copyright | 2022 Wiley‐VCH GmbH |
Copyright_xml | – notice: 2022 Wiley‐VCH GmbH |
DBID | 7SP 7TB 8FD F28 FR3 H8D L7M |
DOI | 10.1002/aenm.202200253 |
DatabaseName | Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitle | Aerospace Database Technology Research Database Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts Engineering Research Database Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering |
DatabaseTitleList | Aerospace Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1614-6840 |
EndPage | n/a |
ExternalDocumentID | AENM202200253 |
Genre | article |
GrantInformation_xml | – fundername: National Science Fund for Distinguished Young Scholars funderid: 52125103 – fundername: Beijing Outstanding Young Scientists Projects funderid: BJJWZYJH01201910005018 – fundername: Natural Science Foundation of Beijing Municipality funderid: Z180014; 2192008 – fundername: Beijing University of Technology – fundername: Guangdong‐Hong Kong‐Macao Joint Laboratory – fundername: Hong Kong Polytechnic University funderid: 1‐ZVSQ; 15301421 – fundername: Fundamental Research Funds for the Central Universities funderid: 106112017CDJQJ308821 – fundername: Analytical and Testing Center at Chongqing University – fundername: Fundamental and Frontier Research in Chongqing funderid: cstc2020jcyj‐msxmX0777; cstc2020jcyj‐msxmX0796 – fundername: National Natural Science Foundation of China funderid: 51772035; 11604032; 52071041; 12074048 |
GroupedDBID | 05W 0R~ 1OC 33P 4.4 50Y 5VS 8-0 8-1 A00 AAESR AAHHS AAHQN AAIHA AAMNL AANLZ AAXRX AAYCA AAZKR ABCUV ABJNI ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADKYN ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AENEX AEQDE AEUYR AFBPY AFFPM AFWVQ AFZJQ AHBTC AIACR AITYG AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMYDB AZVAB BDRZF BFHJK BMXJE BRXPI D-A DCZOG EBS G-S HGLYW HZ~ KBYEO LATKE LEEKS LITHE LOXES LUTES LYRES MEWTI MY. MY~ O9- P2W P4E RNS ROL RX1 SUPJJ WBKPD WOHZO WXSBR WYJ ZZTAW ~S- 7SP 7TB 8FD AAMMB ADMLS AEFGJ AEYWJ AGHNM AGXDD AGYGG AIDQK AIDYY F28 FR3 H8D L7M |
ID | FETCH-LOGICAL-p2333-b70b195214c10fd86808894b3532aee5d823e9daff9b051687ab3f9e4a99e1293 |
ISSN | 1614-6832 |
IngestDate | Fri Jul 25 12:07:10 EDT 2025 Wed Jan 22 16:25:30 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 27 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-p2333-b70b195214c10fd86808894b3532aee5d823e9daff9b051687ab3f9e4a99e1293 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-1088-0809 |
PQID | 2692016874 |
PQPubID | 886389 |
PageCount | 10 |
ParticipantIDs | proquest_journals_2692016874 wiley_primary_10_1002_aenm_202200253_AENM202200253 |
PublicationCentury | 2000 |
PublicationDate | 2022-07-01 |
PublicationDateYYYYMMDD | 2022-07-01 |
PublicationDate_xml | – month: 07 year: 2022 text: 2022-07-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim |
PublicationTitle | Advanced energy materials |
PublicationYear | 2022 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2014; 514 1991; 253 2017 2022 2022 2021 2021; 46 92 14 11 14 2021; 6 2010 2012; 110 41 2019; 4 2017; 4 2021; 586 2014 2018 2022; 53 11 24 2020; 142 2020; 60 2018; 762 2019; 58 2019; 366 2020; 11 2020; 32 2018; 45 1987 2019; 3 366 2018; 44 2004; 108 2020 2017 2020 2020 2017 2018; 586 355 581 3 139 140 2012; 429 2015; 24 2020; 8 1998; 37 2021; 13 2020; 6 2018; 9 2020; 3 2018; 2 2014; 4 2012 2011; 15 115 2010; 1 2019 2021; 9 4 2017 2020 2017 2021; 3 8 139 402 2019; 48 2010; 132 2016 2020; 23 2011; 23 2020; 276 2010; 3 2016; 28 2012; 116 2008; 130 2016; 9 |
References_xml | – volume: 762 start-page: 915 year: 2018 publication-title: J. Alloys Compd. – volume: 13 start-page: 358 year: 2021 publication-title: Nat. Chem. – volume: 253 start-page: 1397 year: 1991 publication-title: Science – volume: 4 start-page: 1212 year: 2014 publication-title: RSC Adv. – volume: 58 start-page: 6972 year: 2019 publication-title: Angew. Chem., Int. Ed. – volume: 4 start-page: 690 year: 2019 publication-title: Nat. Energy – volume: 24 start-page: 165 year: 2015 publication-title: Ultrason. Sonochem. – volume: 110 41 start-page: 6503 131 year: 2010 2012 publication-title: Chem. Rev. Desalin. Water Treat. – volume: 6 year: 2020 publication-title: Sci. Adv. – volume: 45 start-page: 44 year: 2018 publication-title: Nano Energy – volume: 586 start-page: 758 year: 2021 publication-title: J. Colloid Interface Sci. – volume: 28 start-page: 3718 year: 2016 publication-title: Adv. Mater. – volume: 6 start-page: 388 year: 2021 publication-title: Nat. Energy – volume: 15 115 start-page: 152 2024 year: 2012 2011 publication-title: Mater. Sci. Semicond. Process. J. Phys. Chem. B – volume: 3 8 139 402 start-page: 7177 3438 166 year: 2017 2020 2017 2021 publication-title: Sci. Adv. J. Mater. Chem. A J. Am. Chem. Soc. J. Catal. – volume: 46 92 14 11 14 start-page: 7757 74 4998 year: 2017 2022 2022 2021 2021 publication-title: Chem. Soc. Rev. Nano Energy Nano‐Micro Lett. Adv. Energy Mater. Energy Environ. Sci. – volume: 3 366 start-page: 289 475 year: 1987 2019 publication-title: Science – volume: 60 year: 2020 publication-title: Ultrason. Sonochem. – volume: 23 start-page: 1922 year: 2011 publication-title: Adv. Mater. – volume: 9 start-page: 2177 year: 2016 publication-title: Energy Environ. Sci. – volume: 4 year: 2017 publication-title: Appl. Phys. Rev. – year: 2016 – volume: 44 year: 2018 publication-title: Ceram. Int. – volume: 429 start-page: 48 year: 2012 publication-title: Ferroelectrics – volume: 2 start-page: 0105 year: 2018 publication-title: Nat. Rev. Chem. – volume: 9 4 start-page: 719 year: 2019 2021 publication-title: Adv. Energy Mater. Nat. Catal. – volume: 37 start-page: 5385 year: 1998 publication-title: Jpn. J. Appl. Phys. – volume: 9 start-page: 5236 year: 2018 publication-title: Nat. Commun. – volume: 116 year: 2012 publication-title: J. Phys. Chem. C – volume: 108 year: 2004 publication-title: J. Phys. Chem. B – volume: 276 year: 2020 publication-title: J. Cleaner Prod. – volume: 514 start-page: 470 year: 2014 publication-title: Nature – volume: 3 start-page: 1063 year: 2020 publication-title: ACS Appl. Nano Mater – volume: 8 start-page: 1511 year: 2020 publication-title: J. Mater. Chem. A – volume: 58 year: 2019 publication-title: Angew. Chem., Int. Ed. – volume: 48 start-page: 1194 year: 2019 publication-title: Chem. Soc. Rev. – volume: 32 year: 2020 publication-title: Adv. Mater. – volume: 130 start-page: 6955 year: 2008 publication-title: J. Am. Chem. Soc. – volume: 53 11 24 start-page: 1034 306 year: 2014 2018 2022 publication-title: Angew. Chem., Int. Ed. Energy Environ. Sci. Mater. Today Energy – volume: 23 year: 2020 publication-title: iScience – volume: 366 start-page: 1500 year: 2019 publication-title: Science – volume: 11 start-page: 1328 year: 2020 publication-title: Nat. Commun. – volume: 142 start-page: 4154 year: 2020 publication-title: J. Am. Chem. Soc. – volume: 586 355 581 3 139 140 start-page: 549 4998 178 775 7586 5037 year: 2020 2017 2020 2020 2017 2018 publication-title: Nature Science Nature Nat. Catal. J. Am. Chem. Soc. J. Am. Chem. Soc. – volume: 1 start-page: 997 year: 2010 publication-title: J. Phys. Chem. Lett. – volume: 6 year: 2020 publication-title: Mater. Today Adv. – volume: 3 start-page: 1311 year: 2010 publication-title: Energy Environ. Sci. – volume: 132 year: 2010 publication-title: J. Chem. Phys. |
SSID | ssj0000491033 |
Score | 2.6182868 |
Snippet | With rising CO2 emissions caused by the massive consumption of fossil fuels, it is highly desirable to develop strategies that adopt renewable energy to... |
SourceID | proquest wiley |
SourceType | Aggregation Database Publisher |
SubjectTerms | barium titanate Barium titanates Carbon dioxide Chemical reduction Electrocatalysis Energy utilization Fossil fuels Photocatalysis piezoelectric effect Piezoelectricity piezo‐electrocatalytic CO 2 reduction reaction Vibration |
Title | Piezo‐Electrocatalysis for CO2 Reduction Driven by Vibration |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Faenm.202200253 https://www.proquest.com/docview/2692016874 |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV29TsMwELaALjAgfkX5UwY2FHBtJ40XJARFFWoBqS0qU2Q3DpShrUo7wMQj8Iw8Cec4cVJACFii1HUT5e7L-e569xmhA0Kwopj03IhFkctoJN0g5j58VBUBHrPoSd3g3Lzy6x122fW6eSo76S6ZyKPey7d9Jf_RKoyBXnWX7B80ay8KA3AO-oUjaBiOv9LxTV-9DG25Qs3saJMkZBKeEV1BeHZNQISR4Yg9PB9r46ZdzlsdJlulZDS0WUGAMh2B4M2ax8jz1onWAVL3o2zN0-U36cYorQcxfOzn__akueg7kU9t9Kd6qDtVxXwDyWtTMxMJC7rrB2lWUhXHDPGStaukgB9DAJAusXYB-mK_DR-sUANNEkB0AYmhEp4lyrYzvZ_nGl7f2lXTfj-PSgTiCTCIpdPzZqNl03EQKFUwTdoxsufLKD4xOZ69yUwwUgxpEp-kvYKW02DCOTXIWEVzarCGlgoUk-voJMHI--vbZ3Q4gA4H0OFYdDgGHY58diw6NlDnotY-q7vpnhnuiFBKXVnFssLBJ2O9Co6jQO-sEnAmqUeJUMqLAkIVj0Qccwn22A-qQtKYKyY4V9r320QLg-FAbSHHBz_Go34cKwZmnsdScoYDjqnwqlXMZBntZmII05fiKSQ-B5cSLsvKiCSiCUeGNiU0BNkk1MIMrTDDGf1s_-dHO2gxB-ouWpiMp2oPXMWJ3E_V_AGEwmAo |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Piezo%E2%80%90Electrocatalysis+for+CO2+Reduction+Driven+by+Vibration&rft.jtitle=Advanced+energy+materials&rft.au=Ma%2C+Jiangping&rft.au=Jing%2C+Shaojie&rft.au=Wang%2C+Yang&rft.au=Liu%2C+Xue&rft.date=2022-07-01&rft.issn=1614-6832&rft.eissn=1614-6840&rft.volume=12&rft.issue=27&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Faenm.202200253&rft.externalDBID=10.1002%252Faenm.202200253&rft.externalDocID=AENM202200253 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1614-6832&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1614-6832&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1614-6832&client=summon |