Hierarchical Co0.85Se‐CdSe/MoSe2/CdSe Sandwich‐Like Heterostructured Cages for Efficient Photocatalytic CO2 Reduction

Fabricating efficient photocatalysts with rapid charge carrier separation and high visible light harvesting is an advisable strategy to improve CO2 reduction performance. Herein, hierarchical Co0.85Se‐CdSe/MoSe2/CdSe cages with sandwich‐like heterostructure are prepared to act as efficient photocata...

Full description

Saved in:
Bibliographic Details
Published inSmall (Weinheim an der Bergstrasse, Germany) Vol. 17; no. 31
Main Authors Du, Lizhi, Chen, Yajie, Wang, Qi, Zhao, Yumeng, Li, Longge, Liu, Xiu, Tian, Guohui
Format Journal Article
LanguageEnglish
Published Weinheim Wiley Subscription Services, Inc 01.08.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Fabricating efficient photocatalysts with rapid charge carrier separation and high visible light harvesting is an advisable strategy to improve CO2 reduction performance. Herein, hierarchical Co0.85Se‐CdSe/MoSe2/CdSe cages with sandwich‐like heterostructure are prepared to act as efficient photocatalysts for CO2 reduction. In this study, the structure and composition of the final products can be regulated through the cation‐exchange reaction in the presence of ascorbic acid. In the Co0.85Se‐CdSe/MoSe2/CdSe cages, MoSe2 nanosheets function as a bridge to integrate Co0.85Se‐CdSe and CdSe on both sides of the MoSe2 nanosheet shell into a sandwich‐like heterostructured catalyst system, which possesses multiple positive merits for photocatalysis, including accelerated transport and separation of photogenerated carriers, improved visible light utilization, and increased catalytic active sites. Thus, the optimized Co0.85Se‐CdSe/MoSe2/CdSe cages exhibit remarkable visible‐light photocatalytic performance and outstanding stability for CO2 reduction with a high CO average yield of 15.04 µmol g−1 h−1 and 90.14% selectivity, which are much higher than those of other control samples including single‐component catalysts and binary hybrid catalysts. This study provides a promising way for the design and fabrication of high‐efficiency photocatalysts. The hierarchical Co0.85Se‐CdSe/MoSe2/CdSe cages with sandwich‐like heterostructure are prepared with the assistance of ascorbic acid and exhibit remarkable visible‐light photocatalytic CO2 reduction performance with a high CO average yield of 15.04 μmol g−1 h−1 owing to the synergistic effects of accelerated photogenerated carriers transport and separation, improved visible light utilization, and increased catalytic active sites.
AbstractList Fabricating efficient photocatalysts with rapid charge carrier separation and high visible light harvesting is an advisable strategy to improve CO2 reduction performance. Herein, hierarchical Co0.85Se‐CdSe/MoSe2/CdSe cages with sandwich‐like heterostructure are prepared to act as efficient photocatalysts for CO2 reduction. In this study, the structure and composition of the final products can be regulated through the cation‐exchange reaction in the presence of ascorbic acid. In the Co0.85Se‐CdSe/MoSe2/CdSe cages, MoSe2 nanosheets function as a bridge to integrate Co0.85Se‐CdSe and CdSe on both sides of the MoSe2 nanosheet shell into a sandwich‐like heterostructured catalyst system, which possesses multiple positive merits for photocatalysis, including accelerated transport and separation of photogenerated carriers, improved visible light utilization, and increased catalytic active sites. Thus, the optimized Co0.85Se‐CdSe/MoSe2/CdSe cages exhibit remarkable visible‐light photocatalytic performance and outstanding stability for CO2 reduction with a high CO average yield of 15.04 µmol g−1 h−1 and 90.14% selectivity, which are much higher than those of other control samples including single‐component catalysts and binary hybrid catalysts. This study provides a promising way for the design and fabrication of high‐efficiency photocatalysts.
Fabricating efficient photocatalysts with rapid charge carrier separation and high visible light harvesting is an advisable strategy to improve CO2 reduction performance. Herein, hierarchical Co0.85Se‐CdSe/MoSe2/CdSe cages with sandwich‐like heterostructure are prepared to act as efficient photocatalysts for CO2 reduction. In this study, the structure and composition of the final products can be regulated through the cation‐exchange reaction in the presence of ascorbic acid. In the Co0.85Se‐CdSe/MoSe2/CdSe cages, MoSe2 nanosheets function as a bridge to integrate Co0.85Se‐CdSe and CdSe on both sides of the MoSe2 nanosheet shell into a sandwich‐like heterostructured catalyst system, which possesses multiple positive merits for photocatalysis, including accelerated transport and separation of photogenerated carriers, improved visible light utilization, and increased catalytic active sites. Thus, the optimized Co0.85Se‐CdSe/MoSe2/CdSe cages exhibit remarkable visible‐light photocatalytic performance and outstanding stability for CO2 reduction with a high CO average yield of 15.04 µmol g−1 h−1 and 90.14% selectivity, which are much higher than those of other control samples including single‐component catalysts and binary hybrid catalysts. This study provides a promising way for the design and fabrication of high‐efficiency photocatalysts. The hierarchical Co0.85Se‐CdSe/MoSe2/CdSe cages with sandwich‐like heterostructure are prepared with the assistance of ascorbic acid and exhibit remarkable visible‐light photocatalytic CO2 reduction performance with a high CO average yield of 15.04 μmol g−1 h−1 owing to the synergistic effects of accelerated photogenerated carriers transport and separation, improved visible light utilization, and increased catalytic active sites.
Author Li, Longge
Liu, Xiu
Zhao, Yumeng
Wang, Qi
Tian, Guohui
Du, Lizhi
Chen, Yajie
Author_xml – sequence: 1
  givenname: Lizhi
  surname: Du
  fullname: Du, Lizhi
  organization: Heilongjiang University
– sequence: 2
  givenname: Yajie
  surname: Chen
  fullname: Chen, Yajie
  email: chenyajie1970@163.com
  organization: Heilongjiang University
– sequence: 3
  givenname: Qi
  surname: Wang
  fullname: Wang, Qi
  organization: Heilongjiang University
– sequence: 4
  givenname: Yumeng
  surname: Zhao
  fullname: Zhao, Yumeng
  organization: Heilongjiang University
– sequence: 5
  givenname: Longge
  surname: Li
  fullname: Li, Longge
  organization: Heilongjiang University
– sequence: 6
  givenname: Xiu
  surname: Liu
  fullname: Liu, Xiu
  organization: Heilongjiang University
– sequence: 7
  givenname: Guohui
  surname: Tian
  fullname: Tian, Guohui
  email: tiangh@hlju.edu.cn
  organization: Heilongjiang University
BookMark eNo9kMFOwzAQRC1UJNrClbMlzmltb-PERxQVipSqiMA5Ms6GuqRxcRJVvfEJfCNfQqqinnZGO7MrvREZ1K5GQm45m3DGxLTZVtVEMNGbGRcXZMglh0DGQg3OmrMrMmqaDWPAxSwaksPCotferK3RFU0cm8Rhhr_fP0mR4XTpMhTTo6SZrou9Net-ldpPpAts0bum9Z1pO48FTfQHNrR0ns7L0hqLdUuf1651Rre6OrTW0GQl6AsWfcO6-ppclrpq8OZ_jsnbw_w1WQTp6vEpuU-DnQAQAUZcgoISpEAZAfD4XWoQwFikoZwZE2qttBY8UkoKZqSW6lgxAEqVkYIxuTvd3Xn31WHT5hvX-bp_mYswjCGKWRz2KXVK7W2Fh3zn7Vb7Q85ZfmSbH9nmZ7Z5tkzTs4M_FlNx-A
ContentType Journal Article
Copyright 2021 Wiley‐VCH GmbH
Copyright_xml – notice: 2021 Wiley‐VCH GmbH
DBID 7SR
7U5
8BQ
8FD
JG9
L7M
DOI 10.1002/smll.202100412
DatabaseName Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList Materials Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1613-6829
EndPage n/a
ExternalDocumentID SMLL202100412
Genre article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 51772079; 22072037
– fundername: Natural Science Foundation of Heilongjiang Province of China
  funderid: LH2020B018
GroupedDBID ---
05W
0R~
123
1L6
1OC
33P
3SF
3WU
4.4
50Y
52U
53G
5VS
66C
8-0
8-1
8UM
A00
AAESR
AAEVG
AAHHS
AAIHA
AANLZ
AAONW
AAXRX
AAZKR
ABCUV
ABIJN
ABJNI
ABLJU
ABRTZ
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ATUGU
AUFTA
AZVAB
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BOGZA
BRXPI
CS3
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EMOBN
F5P
G-S
GNP
HBH
HGLYW
HHY
HHZ
HZ~
IX1
KQQ
LATKE
LAW
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
MY~
O66
O9-
OIG
P2P
P2W
P4E
QRW
R.K
RIWAO
RNS
ROL
RWI
RX1
RYL
SUPJJ
SV3
V2E
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WXSBR
WYISQ
WYJ
XV2
Y6R
ZZTAW
~S-
7SR
7U5
8BQ
8FD
JG9
L7M
ID FETCH-LOGICAL-p2332-e716393f362e673318b6a323007a3f4cc5aa9aa21799620c6a697163c3399f793
IEDL.DBID DR2
ISSN 1613-6810
IngestDate Thu Oct 10 16:44:04 EDT 2024
Sat Aug 24 01:00:53 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 31
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-p2332-e716393f362e673318b6a323007a3f4cc5aa9aa21799620c6a697163c3399f793
PQID 2558378085
PQPubID 1046358
PageCount 13
ParticipantIDs proquest_journals_2558378085
wiley_primary_10_1002_smll_202100412_SMLL202100412
PublicationCentury 2000
PublicationDate 2021-08-01
PublicationDateYYYYMMDD 2021-08-01
PublicationDate_xml – month: 08
  year: 2021
  text: 2021-08-01
  day: 01
PublicationDecade 2020
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Small (Weinheim an der Bergstrasse, Germany)
PublicationYear 2021
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2015 2020; 7 7
2019 2016 2012; 31 3 22
2019 2014 2020; 2 2 4
2018 2020; 14 7
2020 2016 2014; 12 3 53
2019 2020; 7 509
2015 2020 2020; 51 59 26
2018 2020; 6 45
2020 2018 2018 2013; 270 1 6 1
2019 2019; 15 7
2014 2016 2021 2021; 26 8 230 5
2014 2020 2009 2019; 53 16 131 373
2015; 46
2019 2020 2017 2020; 12 10 5 30
2015 2019 2014 2016; 137 11 53 55
2012 2017; 134 27
2016 2017; 4 29
2020 2019; 32 59
2018; 8
2015; 27
2018 2018 2018 2019; 8 6 98 378
2019 2019 2020 2014; 12 141 13 136
2018 2019 2020; 30 534 381
2015 2012 2017; 11 3 7
2020 2019 2018; 13 244 6
2018 2019 2021 2018; 8 29 408 237
2018 2019; 10 9
2018 2020 2018 2020; 3 12 30 30
2011 2018 2020 2020; 4 140 16 67
2019 2018 2020; 7 9 270
2015 2015; 17 7
2016 2009; 128 113
2020 2020; 3 383
2018 2020 2017 2020 2020; 140 30 17 49 456
2016; 8
References_xml – volume: 3 383
  start-page: 2278
  year: 2020 2020
  publication-title: ACS Appl. Nano Mater. Chem. Eng. J.
– volume: 12 3 53
  start-page: 3139 7838
  year: 2020 2016 2014
  publication-title: ChemCatChem Adv. Mater. Interfaces Angew. Chem., Int. Ed.
– volume: 51 59 26
  start-page: 1743 9710
  year: 2015 2020 2020
  publication-title: Chem. Commun. Angew. Chem., Int. Ed. Chem. Eur. J.
– volume: 134 27
  year: 2012 2017
  publication-title: J. Am. Chem. Soc. Adv. Funct. Mater.
– volume: 13 244 6
  start-page: 2950 76
  year: 2020 2019 2018
  publication-title: Nano Res. Appl. Catal. B J. Mater. Chem. A
– volume: 128 113
  start-page: 9666 2368
  year: 2016 2009
  publication-title: Angew. Chem. J. Phys. Chem. C
– volume: 12 141 13 136
  start-page: 164 2238 3967 8839
  year: 2019 2019 2020 2014
  publication-title: Energy Environ. Sci. J. Am. Chem. Soc. ChemSusChem J. Am. Chem. Soc.
– volume: 7 7
  year: 2015 2020
  publication-title: Nanoscale Adv. Sci.
– volume: 17 7
  start-page: 3173
  year: 2015 2015
  publication-title: Phys. Chem. Chem. Phys. Nanoscale
– volume: 137 11 53 55
  start-page: 8356 2655 7838
  year: 2015 2019 2014 2016
  publication-title: J. Am. Chem. Soc. ACS Appl. Mater. Interfaces Angew. Chem., Int. Ed. Angew.Chem., Int. Ed.
– volume: 7 509
  start-page: 3317
  year: 2019 2020
  publication-title: J. Mater. Chem. A Appl. Surf. Sci.
– volume: 31 3 22
  start-page: 2821
  year: 2019 2016 2012
  publication-title: Adv. Mater. Adv. Sci. Adv. Funct. Mater.
– volume: 3 12 30 30
  start-page: 2656
  year: 2018 2020 2018 2020
  publication-title: ACS Energy Lett. ACS Appl. Mater. Interfaces Adv. Mater. Adv. Funct. Mater.
– volume: 53 16 131 373
  start-page: 7838 1132
  year: 2014 2020 2009 2019
  publication-title: Angew. Chem., Int. Ed. Small. J. Am. Chem. Soc. Chem. Eng. J.
– volume: 15 7
  year: 2019 2019
  publication-title: Small J. Mater. Chem. A
– volume: 4 140 16 67
  start-page: 42
  year: 2011 2018 2020 2020
  publication-title: Energy Environ. Sci. J. Am. Chem. Soc. Mater. Today Chem. Nano Energy
– volume: 27
  start-page: 7531
  year: 2015
  publication-title: Chem. Mater.
– volume: 14 7
  start-page: 31
  year: 2018 2020
  publication-title: Small ChemElectroChem
– volume: 10 9
  start-page: 8860 4867
  year: 2018 2019
  publication-title: ACS Appl. Mater. Interfaces ACS Catal.
– volume: 8
  start-page: 1009
  year: 2018
  publication-title: ACS Catal.
– volume: 46
  start-page: 970
  year: 2015
  publication-title: Science
– volume: 26 8 230 5
  start-page: 4607 6712
  year: 2014 2016 2021 2021
  publication-title: Adv. Mater. Nanoscale Chem. Eng. Sci. Sol. RRL
– volume: 4 29
  start-page: 1336
  year: 2016 2017
  publication-title: J. Mater. Chem. A Adv. Mater.
– volume: 30 534 381
  start-page: 131
  year: 2018 2019 2020
  publication-title: Adv. Mater. J. Colloid Interface Sci. J. Hazard. Mater.
– volume: 32 59
  year: 2020 2019
  publication-title: Adv. Mater. Angew. Chem., Int. Ed.
– volume: 11 3 7
  start-page: 5262 673
  year: 2015 2012 2017
  publication-title: Small J. Phys. Chem. Lett. Adv. Energy Mater.
– volume: 8
  start-page: 440
  year: 2016
  publication-title: Nanoscale
– volume: 12 10 5 30
  start-page: 5246 7878
  year: 2019 2020 2017 2020
  publication-title: ChemSusChem Adv. Energy Mater. ACS Sustainable Chem. Eng. Adv. Funct. Mater.
– volume: 270 1 6 1
  start-page: 6733 1239 4628
  year: 2020 2018 2018 2013
  publication-title: Appl. Catal. B ACS Appl. Nano Mater. J. Mater. Chem. C J. Mater. Chem. C
– volume: 140 30 17 49 456
  start-page: 2923 9213
  year: 2018 2020 2017 2020 2020
  publication-title: J. Am. Chem. Soc. Adv. Funct. Mater. Cryst. Growth Des. Dalton Trans. J. Power Sources
– volume: 2 2 4
  start-page: 5622 3407
  year: 2019 2014 2020
  publication-title: ACS Appl. Energy Mater. J. Mater. Chem. A Adv. Funct. Mater.
– volume: 7 9 270
  start-page: 2212
  year: 2019 2018 2020
  publication-title: ACS Sustainable Chem. Eng. J. Phys. Chem. Lett. Appl. Catal. B
– volume: 6 45
  start-page: 6519
  year: 2018 2020
  publication-title: ACS Sustainable Chem. Eng. Int. J. Hydrogen Energy
– volume: 8 6 98 378
  start-page: 1934
  year: 2018 2018 2018 2019
  publication-title: Adv. Energy Mater. ACS Sustainable Chem. Eng. Phys. Rev. Appl. Chem. Eng. J.
– volume: 8 29 408 237
  start-page: 4928 1082
  year: 2018 2019 2021 2018
  publication-title: ACS Catal. Adv. Funct. Mater. Chem. Eng. J. Appl. Catal. B
SSID ssj0031247
Score 2.5441093
Snippet Fabricating efficient photocatalysts with rapid charge carrier separation and high visible light harvesting is an advisable strategy to improve CO2 reduction...
SourceID proquest
wiley
SourceType Aggregation Database
Publisher
SubjectTerms Ascorbic acid
Cages
Carbon dioxide
Catalysts
cation‐exchange reaction
Co 0.85Se‐CdSe/MoSe 2/CdSe
CO 2 photoreduction
Current carriers
Heterostructures
Molybdenum compounds
Nanosheets
Nanotechnology
Photocatalysis
Photocatalysts
Reduction
sandwich‐like heterostructure
Selectivity
Separation
Title Hierarchical Co0.85Se‐CdSe/MoSe2/CdSe Sandwich‐Like Heterostructured Cages for Efficient Photocatalytic CO2 Reduction
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsmll.202100412
https://www.proquest.com/docview/2558378085
Volume 17
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3PT8IwFMcbw0kP_jaiaHrwOpjt1m1Hs0CIATVMEm5L13WBgIwIxODJP8G_0b_E9zpA8Ki3LluT7u31vW-79lNCbgJPCuUpZjGeOpbj-qkVuJlngesEjmDKFgr3DrcfRLPr3Pfc3sYu_oIPsZ5ww55h4jV2cJlMaz_Q0OnLCH8dsFuDjIIgjDQ9VEWdNT-KQ_Iyp6tAzrIQvLWiNtqstl19S19uqlSTZhoHRK4aWKwuGVbns6Sq3n-xG__zBodkf6lB6V3hNEdkR4-Pyd4GmfCELJoD3JlsDkoZ0TC3q74b6a-PzzCNdK2dR5rVsEgjOU7fBqoPt1qDoaZNXF6TF1Ta-atOaQgBa0pBGtO6oVVAkqNP_XyWm4mjBTSBho-MdhAhi05ySrqN-nPYtJanNFgTxjmzNIy4eMAzyIRa4AmQfiIkh5GN7UmeOUq5UgZSMkTPCWYrIQViq7jioI0yCA9npDTOx_qcUHg0tTMQcBJEhwiYn6V-mjE_kbZyXU-XSWX1leJlV5vGMCZCKD5IxzJhxtzxpAB1xAWSmcVo6Hht6Dhqt1rrq4u_VLoku1guFgJWSAmMqq9AnMySa-OA33Xg3OM
link.rule.ids 315,786,790,1382,27955,27956,46327,46751
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3JTsMwEIYtKAfgwI5YCvjANW2wEyc5otAqQAqIgMQtchxHrYAG0SIEJx6BZ-RJmHHashzhls2SM_F4fjv2N4TsB54UylPMYjx3LMf1cytwC8-CphM4gilbKNw73DkT0bVzcuOOVxPiXpiKDzGZcEPPMP01OjhOSDe_qKGD-zv8d8AODDNqmsyAz7vom0eXE4IUh_Bl8qtA1LIQvTXmNtqs-bP8D4X5XaeaQNNeJNm4itX6ktvG0zBrqNdf9MZ_vcMSWRjJUHpYtZtlMqX7K2T-G5xwlbxEPdycbHKl3NGwtBu-m-iPt_cwT3SzUyaaNfGQJrKfP_dUF27FvVtNI1xhU1Zg2qdHndMQ-qwBBXVMWwZYAXGOXnTLYWnmjl6gCjQ8Z_QSKbLYTtbIdbt1FUbWKFGD9cA4Z5aGQRcPeAHBUAtMAulnQnIY3Nie5IWjlCtlICVD-pxgthJSILmKKw7yqIAeYp3U-mVfbxAKj-Z2ARpOgu4QAfOL3M8L5mfSVq7r6U1SH3-mdORtgxSGRcjFB_W4SZixd_pQsTrSisrMUjR0OjF0mnTieHK29ZdCe2Q2uurEaXx8drpN5vB6tS6wTmpgYL0DWmWY7ZrW-AlftuED
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3JTsMwEIYtKBKCAztixweuaYOdOMkRpVQF2lIRkLhFru2ICmgqWoTgxCPwjDwJM05bCke4ZbPkTMaefxz7MyFHUSCFChRzGNee4_mhdiI_CxxwncgTTLlC4drhZkvUb7zzW_92ahV_wYeYDLhhy7D9NTbwvs4q39DQweMD_jpgxxYZNUvmPMEZpl_VqwlAikP0sturQNBykLw1xja6rPKz_A-BOS1TbZypLRM5rmExveS-_DzslNXbL3jjf15hhSyNRCg9KbxmlcyY3hpZnEITrpPXeheXJtudUh5onLvl0E_M5_tHrBNTaeaJYRU8pIns6ZeuuoNbje69oXWcX5MXWNrnJ6NpDD3WgII2pqcWVwFRjrbv8mFuR45eoQo0vmT0Chmy6CUb5KZ2eh3XndE2DU6fcc4cAykXj3gGodAI3AIy7AjJIbVxA8kzTylfykhKhuw5wVwlpEBuFVccxFEG_cMmKfXyntkiFB7VbgYKToLqEBELMx3qjIUd6SrfD8w22Rt_pXTU1gYpJEVIxQftuE2YNXfaL0gdacFkZikaOp0YOk2ajcbkbOcvhQ7JfLtaSxtnrYtdsoCXi0mBe6QE9jX7IFSGnQPri1_U2d-y
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hierarchical+Co0.85Se%E2%80%90CdSe%2FMoSe2%2FCdSe+Sandwich%E2%80%90Like+Heterostructured+Cages+for+Efficient+Photocatalytic+CO2+Reduction&rft.jtitle=Small+%28Weinheim+an+der+Bergstrasse%2C+Germany%29&rft.au=Du%2C+Lizhi&rft.au=Chen%2C+Yajie&rft.au=Wang%2C+Qi&rft.au=Zhao%2C+Yumeng&rft.date=2021-08-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1613-6810&rft.eissn=1613-6829&rft.volume=17&rft.issue=31&rft_id=info:doi/10.1002%2Fsmll.202100412&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1613-6810&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1613-6810&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1613-6810&client=summon