Shape Regulation of CeO2 Nanozymes Boosts Reaction Specificity and Activity
Among reported nanozymes, CeO2 seems to be the only transition metal oxide that can mimic phosphatase and peroxidase by catalyzing substrate dephosphorylation and oxidation (with H2O2). However, no consensus on the key Ce species was reached in the literature using spherical CeO2 enclosed by (111) a...
Saved in:
Published in | European journal of inorganic chemistry Vol. 2022; no. 20 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
Wiley Subscription Services, Inc
19.07.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Among reported nanozymes, CeO2 seems to be the only transition metal oxide that can mimic phosphatase and peroxidase by catalyzing substrate dephosphorylation and oxidation (with H2O2). However, no consensus on the key Ce species was reached in the literature using spherical CeO2 enclosed by (111) and (100) surfaces, not to mention the further control of its reaction specificity. In this study, octahedral and cubic CeO2 preferentially terminated by (111) and (100) surfaces were found to exhibit high reaction specificity (and activity) towards each of the above reactions. Spectroscopic evidence suggests that this is closely associated with the Lewis acidity (or electron density) of surface Ce species. The acidic Ce species on (111) surface can catalyze substrate dephosphorylation at room temperature but do not for substrate oxidation with H2O2. This correlation was further evidenced by the electron‐rich Ce species on (100) surface, hindering the first reaction while promoting the latter.
CeO2 nanosphere enclosed by (100) and (111) surfaces has been reported to mimic phosphatase and peroxidase by catalyzing substrate dephosphorylation and oxidation (with H2O2). We herein successfully boost the reaction specificity for this material by shape control. The acidic Ce species on octahedron (111) surface was found to selectively catalyze substrate dephosphorylation while its electron rich counterpart on cube (100) surface only promotes substrate oxidation. |
---|---|
AbstractList | Among reported nanozymes, CeO2 seems to be the only transition metal oxide that can mimic phosphatase and peroxidase by catalyzing substrate dephosphorylation and oxidation (with H2O2). However, no consensus on the key Ce species was reached in the literature using spherical CeO2 enclosed by (111) and (100) surfaces, not to mention the further control of its reaction specificity. In this study, octahedral and cubic CeO2 preferentially terminated by (111) and (100) surfaces were found to exhibit high reaction specificity (and activity) towards each of the above reactions. Spectroscopic evidence suggests that this is closely associated with the Lewis acidity (or electron density) of surface Ce species. The acidic Ce species on (111) surface can catalyze substrate dephosphorylation at room temperature but do not for substrate oxidation with H2O2. This correlation was further evidenced by the electron‐rich Ce species on (100) surface, hindering the first reaction while promoting the latter.
CeO2 nanosphere enclosed by (100) and (111) surfaces has been reported to mimic phosphatase and peroxidase by catalyzing substrate dephosphorylation and oxidation (with H2O2). We herein successfully boost the reaction specificity for this material by shape control. The acidic Ce species on octahedron (111) surface was found to selectively catalyze substrate dephosphorylation while its electron rich counterpart on cube (100) surface only promotes substrate oxidation. Among reported nanozymes, CeO2 seems to be the only transition metal oxide that can mimic phosphatase and peroxidase by catalyzing substrate dephosphorylation and oxidation (with H2O2). However, no consensus on the key Ce species was reached in the literature using spherical CeO2 enclosed by (111) and (100) surfaces, not to mention the further control of its reaction specificity. In this study, octahedral and cubic CeO2 preferentially terminated by (111) and (100) surfaces were found to exhibit high reaction specificity (and activity) towards each of the above reactions. Spectroscopic evidence suggests that this is closely associated with the Lewis acidity (or electron density) of surface Ce species. The acidic Ce species on (111) surface can catalyze substrate dephosphorylation at room temperature but do not for substrate oxidation with H2O2. This correlation was further evidenced by the electron‐rich Ce species on (100) surface, hindering the first reaction while promoting the latter. |
Author | Man Wong, Samantha Sze Tan, Zicong Zhang, Shiqing Peng, Yung‐Kang Wang, Ying Sun, Hongyan Yung, Ken Kin Lam Zhang, Jie Zhang, Zhang |
Author_xml | – sequence: 1 givenname: Zicong surname: Tan fullname: Tan, Zicong organization: City University of Hong Kong – sequence: 2 givenname: Ying surname: Wang fullname: Wang, Ying organization: Hong Kong Baptist University – sequence: 3 givenname: Jie surname: Zhang fullname: Zhang, Jie organization: City University of Hong Kong – sequence: 4 givenname: Zhang surname: Zhang fullname: Zhang, Zhang organization: Hong Kong Baptist University – sequence: 5 givenname: Samantha Sze surname: Man Wong fullname: Man Wong, Samantha Sze organization: Hong Kong Baptist University – sequence: 6 givenname: Shiqing surname: Zhang fullname: Zhang, Shiqing email: 13480138@life.hkbu.edu.hk organization: Jinan University – sequence: 7 givenname: Hongyan surname: Sun fullname: Sun, Hongyan organization: City University of Hong Kong – sequence: 8 givenname: Ken Kin Lam surname: Yung fullname: Yung, Ken Kin Lam email: kklyung@hkbu.edu.hk organization: Hong Kong Baptist University – sequence: 9 givenname: Yung‐Kang orcidid: 0000-0001-9590-6902 surname: Peng fullname: Peng, Yung‐Kang email: ykpeng@cityu.edu.hk organization: City University of Hong Kong |
BookMark | eNo9kEFPAjEQhRuDiYBePTfxvDhtl-72iBtElEgiem5Kt9US2K7bRbP-eosY5jLzJl_mTd4A9SpfGYSuCYwIAL01G6dHFCiNAugZ6hMQIgGe016cU5YmRKT5BRqEsAEABoz30dPqQ9UGv5j3_Va1zlfYW1yYJcXPqvI_3c4EfOd9aENklP4jVrXRzjrt2g6rqsSTuP6K4hKdW7UN5uq_D9Hb_fS1eEgWy9m8mCySmjJGE0rWpCyNSM2aKTouc6Xiz0poUTKuic44sTzPKOPWashKq0mmlY2VZ7Amlg3RzfFu3fjPvQmt3Ph9U0VLSbkgnIzHRERKHKlvtzWdrBu3U00nCchDWvKQljylJaeP8-Kk2C_lh2JF |
ContentType | Journal Article |
Copyright | 2022 Wiley‐VCH GmbH |
Copyright_xml | – notice: 2022 Wiley‐VCH GmbH |
DBID | 7SR 7U5 8BQ 8FD JG9 L7M |
DOI | 10.1002/ejic.202200202 |
DatabaseName | Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX |
DatabaseTitleList | Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1099-0682 |
EndPage | n/a |
ExternalDocumentID | EJIC202200202 |
Genre | article |
GrantInformation_xml | – fundername: Guangdong Basic and Applied Basic Research Foundation funderid: 2021A1515010064 – fundername: Hong Kong Research Grants Council funderid: 21301719; 11300020 – fundername: National Natural Science Foundation of China funderid: 21902138 – fundername: Chow Sang Sang Group Research Fund funderid: 9229063 |
GroupedDBID | -~X .3N .GA 05W 0R~ 10A 1L6 1OC 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5VS 66C 702 77Q 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABDBF ABEML ABIJN ABLJU ABPVW ACAHQ ACCFJ ACCZN ACNCT ACPOU ACSCC ACUHS ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS F00 F01 F04 F5P G-S G.N GNP GODZA HBH HGLYW HHY HHZ HZ~ IX1 JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K ROL RWI RX1 SUPJJ TN5 UB1 UPT V2E W8V W99 WBFHL WBKPD WH7 WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 ZZTAW ~IA ~WT 1OB 7SR 7U5 8BQ 8FD AAMMB AEFGJ AEYWJ AGHNM AGXDD AGYGG AIDQK AIDYY JG9 L7M |
ID | FETCH-LOGICAL-p2332-21b1dde94eb3a25d8aa220a9c9d36c1c761f687236ffc07dfc17caffff870b1f3 |
IEDL.DBID | DR2 |
ISSN | 1434-1948 |
IngestDate | Wed Aug 13 06:46:18 EDT 2025 Wed Jan 22 16:25:33 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 20 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-p2332-21b1dde94eb3a25d8aa220a9c9d36c1c761f687236ffc07dfc17caffff870b1f3 |
Notes | Equal contribution to this work. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-9590-6902 |
PQID | 2691615519 |
PQPubID | 2030176 |
PageCount | 8 |
ParticipantIDs | proquest_journals_2691615519 wiley_primary_10_1002_ejic_202200202_EJIC202200202 |
PublicationCentury | 2000 |
PublicationDate | July 19, 2022 |
PublicationDateYYYYMMDD | 2022-07-19 |
PublicationDate_xml | – month: 07 year: 2022 text: July 19, 2022 day: 19 |
PublicationDecade | 2020 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim |
PublicationTitle | European journal of inorganic chemistry |
PublicationYear | 2022 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2015; 12 2011; 115 2015; 59 2021; 7 2017; 8 2021; 4 2021; 22 2019; 11 2020; 264 2013; 42 2015; 32 2020 2020; 59 132 2020; 16 1996; 96 2019; 488 2020; 56 2020; 10 2015; 7 2017; 9 2006; 312 2020; 8 2021; 13 2016; 6 2018; 18 2018; 9 2003; 107 2021; 12 2014; 2 2021 2020 2020; 26 2011; 21 2019; 119 2008; 43 2016; 138 2007; 2 2012; 48 2012; 137 2021; 60 2016; 8 2022; 38 2010; 6 2022; 18 |
References_xml | – volume: 138 start-page: 2225 year: 2016 end-page: 2234 publication-title: J. Am. Chem. Soc. – volume: 38 start-page: 3617 year: 2022 end-page: 3622 publication-title: Langmuir – volume: 18 year: 2022 publication-title: Small – volume: 312 start-page: 1504 year: 2006 end-page: 1508 publication-title: Science – volume: 488 start-page: 351 year: 2019 end-page: 359 publication-title: Appl. Surf. Sci. – volume: 4 start-page: 407 year: 2021 end-page: 417 publication-title: Nat. Catal. – volume: 7 start-page: 15395 year: 2015 end-page: 15402 publication-title: ACS Appl. Mater. Interfaces – volume: 10 start-page: 4003 year: 2020 end-page: 4011 publication-title: ACS Catal. – volume: 21 start-page: 501 year: 2011 end-page: 509 publication-title: Adv. Funct. Mater. – volume: 8 start-page: 4428 year: 2020 end-page: 4433 publication-title: J. Mater. Chem. B – volume: 43 start-page: 628 year: 2008 end-page: 632 publication-title: J. Mass Spectrom. – volume: 32 start-page: 652 year: 2015 end-page: 660 publication-title: Part. Part. Syst. Charact. – volume: 22 start-page: 237 year: 2021 end-page: 255 publication-title: Nat. Rev. Neurosci. – volume: 96 start-page: 721 year: 1996 end-page: 758 publication-title: Chem. Rev. – volume: 26 start-page: 10598 year: 2020 end-page: 10606 publication-title: Chem. Eur. J. – year: 2021 publication-title: ACS Appl. Mater. Interfaces – volume: 119 start-page: 4357 year: 2019 end-page: 4412 publication-title: Chem. Rev. – volume: 12 start-page: 653 year: 2015 end-page: 660 publication-title: Int. J. Environ. Sci. Technol. – volume: 115 start-page: 3544 year: 2011 end-page: 3551 publication-title: J. Phys. Chem. C – volume: 6 start-page: 35344 year: 2016 publication-title: Sci. Rep. – volume: 2 start-page: 577 year: 2007 end-page: 583 publication-title: Nat. Nanotechnol. – volume: 59 132 start-page: 2565 2585 year: 2020 2020 end-page: 2576 2596 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 9 start-page: 2493 year: 2018 end-page: 2500 publication-title: Chem. Sci. – volume: 59 start-page: 116 year: 2015 end-page: 124 publication-title: Biomaterials – volume: 107 start-page: 13563 year: 2003 end-page: 13566 publication-title: J. Phys. Chem. B – start-page: 11 year: 2020 end-page: 5396 publication-title: J. Phys. Chem. Lett. – volume: 12 start-page: 303 year: 2021 publication-title: Nat. Commun. – volume: 137 start-page: 4552 year: 2012 end-page: 4558 publication-title: Analyst – volume: 16 year: 2020 publication-title: Small – volume: 264 year: 2020 publication-title: Appl. Catal. B – volume: 48 start-page: 2540 year: 2012 end-page: 2542 publication-title: Chem. Commun. – volume: 8 start-page: 13562 year: 2016 end-page: 13567 publication-title: Nanoscale – volume: 9 start-page: 6796 year: 2017 end-page: 6803 publication-title: ACS Appl. Mater. Interfaces – volume: 7 start-page: 436 year: 2021 end-page: 449 publication-title: Chem – volume: 8 start-page: 675 year: 2017 publication-title: Nat. Commun. – volume: 11 start-page: 195 year: 2019 end-page: 201 publication-title: ACS Appl. Mater. Interfaces – volume: 60 start-page: 16149 year: 2021 end-page: 16155 publication-title: Angew. Chem. Int. Ed. – volume: 11 start-page: 17841 year: 2019 end-page: 17850 publication-title: Nanoscale – volume: 18 start-page: 15 year: 2018 end-page: 34 publication-title: Nano Today – volume: 2 start-page: 6097 year: 2014 end-page: 6105 publication-title: J. Mater. Chem. B – volume: 42 year: 2013 publication-title: Chem. Soc. Rev. – volume: 6 start-page: 738 year: 2010 end-page: 744 publication-title: Nanomedicine: Nanotechnology, Biology and Medicine – volume: 56 start-page: 7897 year: 2020 end-page: 7900 publication-title: Chem. Commun. – volume: 13 start-page: 45269 year: 2021 end-page: 45278 publication-title: ACS Appl. Mater. Interfaces |
SSID | ssj0003036 |
Score | 2.4362533 |
Snippet | Among reported nanozymes, CeO2 seems to be the only transition metal oxide that can mimic phosphatase and peroxidase by catalyzing substrate dephosphorylation... |
SourceID | proquest wiley |
SourceType | Aggregation Database Publisher |
SubjectTerms | Ceria Cerium oxides Electron density Enzyme mimicking Hydrogen peroxide Inorganic chemistry Nanozymes Oxidation Peroxidase Reaction specificity Room temperature Shape-dependent catalysis Substrates Transition metal oxides |
Title | Shape Regulation of CeO2 Nanozymes Boosts Reaction Specificity and Activity |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fejic.202200202 https://www.proquest.com/docview/2691615519 |
Volume | 2022 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NT8IwFG8MHvTitxFF0oPXwdqObjvChCAmmqAk3Ja2a-NH3IgbB_jrbTvGh0fdaUvWpHvte_2tfe_3A-AOa0wvpes6yiPS8SjFTujJwBFUCb38Meoym-X7RIcTbzTtTLeq-Et-iPWGm_EMG6-NgzOetzekofLj3VAQYpNlYNkkTcKWQUXjDX-Uic-2vIh4jv5bDyrWRhe3d5vv4MttlGqXmcExYFUHy-ySz9a84C2x_MXd-J8vOAFHKwwKu-WkOQV7Mj0DB1El_XYOHl_e2EzCcalTr0cOZgpG8hlDHYyz5eJL5rCXZXmR63fKyghohewNHUWxgCxNYFeUuhQXYDLov0ZDZ6W64MwwIdjBiCMd8_SIccJwJwkY0z1koQgTQgUSPkWKBj4mVCnh-okSyBdM6Uu7PkeKXIJamqXyCsAEEY6R4omHmZeEXENkN0GBUNzo7gadOmhUVo9XrpPHmIb2sBSFdYCt-eJZSbwRlxTLODaGi9eGi_ujh2j9dP2XRjfg0NybPVsUNkCt-J7LWw02Ct4E-93efW_QtBPrBzQgzZk |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NT8IwFG8MHvDitxFF7cHrYG1Htx1xgfAlJgiJt6Xt2vgRGZFxgL_etmMgHnW3LWvSvfa9_vr2-vsBcI81ppfSdR3lEel4lGIn9GTgCKqEXv4YdZmt8h3SzsTrvTSKakJzFibnh9gk3Ixn2HhtHNwkpOtb1lD5_mY4CLEpMzB0kvtG1tvuqkZbBikToe0BI-I5er8eFLyNLq7vtt9BmD9xql1o2keAF13M60s-aouM18TqF3vjv77hGByuYShs5vPmBOzJ6SkoR4X62xnoP7-ymYSjXKpeDx5MFYzkE4Y6Hqer5aecw4c0nWdz_U5-OAJaLXvDSJEtIZsmsClyaYpzMGm3xlHHWQsvODNMCHYw4kiHPT1onDDcSALGdA9ZKMKEUIGET5GigY8JVUq4fqIE8gVT-tLez5EiF6A0TafyEsAEEY6R4omHmZeEXKNkN0GBUNxI7waNCqgWZo_X3jOPMQ3t_1IUVgC29otnOfdGnLMs49gYLt4YLm71utHm7uovje5AuTN-HMSD7rB_DQ7Mc5PCRWEVlLKvhbzR2CPjt3Z2fQOmxNBC |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwELVQkYALO6JQwAeuaWM7dZNjSVt1QQUVKvUWeRWLaCqSHtqvx066coTcEsWSM54Zv9ie9wC4xwbTK-W6jvaIcjxKsRN4yncE1cJMf4y6LDvl26ftodcdVUcbVfw5P8Rqwc1GRpavbYBPpK6sSUPVx7ulIMT2lIFlk9z1qOtbv24M1gRSNkFn9UXEc8zvur-kbXRxZbv9FsDchKnZPNM6AmzZw_x4yWd5mvKymP8ib_zPJxyDwwUIhfXca07Ajhqfgv1wqf12Bnovb2yi4CAXqjdDB2MNQ_WEocnG8Xz2pRL4EMdJmph38tIImCnZWz6KdAbZWMK6yIUpzsGw1XwN285CdsGZYEKwgxFHJumZIeOE4ar0GTM9ZIEIJKECiRpFmvo1TKjWwq1JLVBNMG0uE_scaXIBCuN4rC4BlIhwjDSXHmaeDLjByK5EvtDcCu_61SIoLa0eLWIniTANst1SFBQBzswXTXLmjSjnWMaRNVy0MlzU7HbC1d3VXxrdgb3nRit67PR71-DAPrbrtygogUL6PVU3Bnik_DbzrR9wGM76 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Shape+Regulation+of+CeO2+Nanozymes+Boosts+Reaction+Specificity+and+Activity&rft.jtitle=European+journal+of+inorganic+chemistry&rft.au=Tan%2C+Zicong&rft.au=Wang%2C+Ying&rft.au=Zhang%2C+Jie&rft.au=Zhang%2C+Zhang&rft.date=2022-07-19&rft.issn=1434-1948&rft.eissn=1099-0682&rft.volume=2022&rft.issue=20&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fejic.202200202&rft.externalDBID=10.1002%252Fejic.202200202&rft.externalDocID=EJIC202200202 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1434-1948&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1434-1948&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1434-1948&client=summon |