Shape Regulation of CeO2 Nanozymes Boosts Reaction Specificity and Activity

Among reported nanozymes, CeO2 seems to be the only transition metal oxide that can mimic phosphatase and peroxidase by catalyzing substrate dephosphorylation and oxidation (with H2O2). However, no consensus on the key Ce species was reached in the literature using spherical CeO2 enclosed by (111) a...

Full description

Saved in:
Bibliographic Details
Published inEuropean journal of inorganic chemistry Vol. 2022; no. 20
Main Authors Tan, Zicong, Wang, Ying, Zhang, Jie, Zhang, Zhang, Man Wong, Samantha Sze, Zhang, Shiqing, Sun, Hongyan, Yung, Ken Kin Lam, Peng, Yung‐Kang
Format Journal Article
LanguageEnglish
Published Weinheim Wiley Subscription Services, Inc 19.07.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Among reported nanozymes, CeO2 seems to be the only transition metal oxide that can mimic phosphatase and peroxidase by catalyzing substrate dephosphorylation and oxidation (with H2O2). However, no consensus on the key Ce species was reached in the literature using spherical CeO2 enclosed by (111) and (100) surfaces, not to mention the further control of its reaction specificity. In this study, octahedral and cubic CeO2 preferentially terminated by (111) and (100) surfaces were found to exhibit high reaction specificity (and activity) towards each of the above reactions. Spectroscopic evidence suggests that this is closely associated with the Lewis acidity (or electron density) of surface Ce species. The acidic Ce species on (111) surface can catalyze substrate dephosphorylation at room temperature but do not for substrate oxidation with H2O2. This correlation was further evidenced by the electron‐rich Ce species on (100) surface, hindering the first reaction while promoting the latter. CeO2 nanosphere enclosed by (100) and (111) surfaces has been reported to mimic phosphatase and peroxidase by catalyzing substrate dephosphorylation and oxidation (with H2O2). We herein successfully boost the reaction specificity for this material by shape control. The acidic Ce species on octahedron (111) surface was found to selectively catalyze substrate dephosphorylation while its electron rich counterpart on cube (100) surface only promotes substrate oxidation.
AbstractList Among reported nanozymes, CeO2 seems to be the only transition metal oxide that can mimic phosphatase and peroxidase by catalyzing substrate dephosphorylation and oxidation (with H2O2). However, no consensus on the key Ce species was reached in the literature using spherical CeO2 enclosed by (111) and (100) surfaces, not to mention the further control of its reaction specificity. In this study, octahedral and cubic CeO2 preferentially terminated by (111) and (100) surfaces were found to exhibit high reaction specificity (and activity) towards each of the above reactions. Spectroscopic evidence suggests that this is closely associated with the Lewis acidity (or electron density) of surface Ce species. The acidic Ce species on (111) surface can catalyze substrate dephosphorylation at room temperature but do not for substrate oxidation with H2O2. This correlation was further evidenced by the electron‐rich Ce species on (100) surface, hindering the first reaction while promoting the latter. CeO2 nanosphere enclosed by (100) and (111) surfaces has been reported to mimic phosphatase and peroxidase by catalyzing substrate dephosphorylation and oxidation (with H2O2). We herein successfully boost the reaction specificity for this material by shape control. The acidic Ce species on octahedron (111) surface was found to selectively catalyze substrate dephosphorylation while its electron rich counterpart on cube (100) surface only promotes substrate oxidation.
Among reported nanozymes, CeO2 seems to be the only transition metal oxide that can mimic phosphatase and peroxidase by catalyzing substrate dephosphorylation and oxidation (with H2O2). However, no consensus on the key Ce species was reached in the literature using spherical CeO2 enclosed by (111) and (100) surfaces, not to mention the further control of its reaction specificity. In this study, octahedral and cubic CeO2 preferentially terminated by (111) and (100) surfaces were found to exhibit high reaction specificity (and activity) towards each of the above reactions. Spectroscopic evidence suggests that this is closely associated with the Lewis acidity (or electron density) of surface Ce species. The acidic Ce species on (111) surface can catalyze substrate dephosphorylation at room temperature but do not for substrate oxidation with H2O2. This correlation was further evidenced by the electron‐rich Ce species on (100) surface, hindering the first reaction while promoting the latter.
Author Man Wong, Samantha Sze
Tan, Zicong
Zhang, Shiqing
Peng, Yung‐Kang
Wang, Ying
Sun, Hongyan
Yung, Ken Kin Lam
Zhang, Jie
Zhang, Zhang
Author_xml – sequence: 1
  givenname: Zicong
  surname: Tan
  fullname: Tan, Zicong
  organization: City University of Hong Kong
– sequence: 2
  givenname: Ying
  surname: Wang
  fullname: Wang, Ying
  organization: Hong Kong Baptist University
– sequence: 3
  givenname: Jie
  surname: Zhang
  fullname: Zhang, Jie
  organization: City University of Hong Kong
– sequence: 4
  givenname: Zhang
  surname: Zhang
  fullname: Zhang, Zhang
  organization: Hong Kong Baptist University
– sequence: 5
  givenname: Samantha Sze
  surname: Man Wong
  fullname: Man Wong, Samantha Sze
  organization: Hong Kong Baptist University
– sequence: 6
  givenname: Shiqing
  surname: Zhang
  fullname: Zhang, Shiqing
  email: 13480138@life.hkbu.edu.hk
  organization: Jinan University
– sequence: 7
  givenname: Hongyan
  surname: Sun
  fullname: Sun, Hongyan
  organization: City University of Hong Kong
– sequence: 8
  givenname: Ken Kin Lam
  surname: Yung
  fullname: Yung, Ken Kin Lam
  email: kklyung@hkbu.edu.hk
  organization: Hong Kong Baptist University
– sequence: 9
  givenname: Yung‐Kang
  orcidid: 0000-0001-9590-6902
  surname: Peng
  fullname: Peng, Yung‐Kang
  email: ykpeng@cityu.edu.hk
  organization: City University of Hong Kong
BookMark eNo9kEFPAjEQhRuDiYBePTfxvDhtl-72iBtElEgiem5Kt9US2K7bRbP-eosY5jLzJl_mTd4A9SpfGYSuCYwIAL01G6dHFCiNAugZ6hMQIgGe016cU5YmRKT5BRqEsAEABoz30dPqQ9UGv5j3_Va1zlfYW1yYJcXPqvI_3c4EfOd9aENklP4jVrXRzjrt2g6rqsSTuP6K4hKdW7UN5uq_D9Hb_fS1eEgWy9m8mCySmjJGE0rWpCyNSM2aKTouc6Xiz0poUTKuic44sTzPKOPWashKq0mmlY2VZ7Amlg3RzfFu3fjPvQmt3Ph9U0VLSbkgnIzHRERKHKlvtzWdrBu3U00nCchDWvKQljylJaeP8-Kk2C_lh2JF
ContentType Journal Article
Copyright 2022 Wiley‐VCH GmbH
Copyright_xml – notice: 2022 Wiley‐VCH GmbH
DBID 7SR
7U5
8BQ
8FD
JG9
L7M
DOI 10.1002/ejic.202200202
DatabaseName Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList
Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1099-0682
EndPage n/a
ExternalDocumentID EJIC202200202
Genre article
GrantInformation_xml – fundername: Guangdong Basic and Applied Basic Research Foundation
  funderid: 2021A1515010064
– fundername: Hong Kong Research Grants Council
  funderid: 21301719; 11300020
– fundername: National Natural Science Foundation of China
  funderid: 21902138
– fundername: Chow Sang Sang Group Research Fund
  funderid: 9229063
GroupedDBID -~X
.3N
.GA
05W
0R~
10A
1L6
1OC
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
702
77Q
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABEML
ABIJN
ABLJU
ABPVW
ACAHQ
ACCFJ
ACCZN
ACNCT
ACPOU
ACSCC
ACUHS
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
HBH
HGLYW
HHY
HHZ
HZ~
IX1
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
ROL
RWI
RX1
SUPJJ
TN5
UB1
UPT
V2E
W8V
W99
WBFHL
WBKPD
WH7
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
ZZTAW
~IA
~WT
1OB
7SR
7U5
8BQ
8FD
AAMMB
AEFGJ
AEYWJ
AGHNM
AGXDD
AGYGG
AIDQK
AIDYY
JG9
L7M
ID FETCH-LOGICAL-p2332-21b1dde94eb3a25d8aa220a9c9d36c1c761f687236ffc07dfc17caffff870b1f3
IEDL.DBID DR2
ISSN 1434-1948
IngestDate Wed Aug 13 06:46:18 EDT 2025
Wed Jan 22 16:25:33 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 20
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-p2332-21b1dde94eb3a25d8aa220a9c9d36c1c761f687236ffc07dfc17caffff870b1f3
Notes Equal contribution to this work.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-9590-6902
PQID 2691615519
PQPubID 2030176
PageCount 8
ParticipantIDs proquest_journals_2691615519
wiley_primary_10_1002_ejic_202200202_EJIC202200202
PublicationCentury 2000
PublicationDate July 19, 2022
PublicationDateYYYYMMDD 2022-07-19
PublicationDate_xml – month: 07
  year: 2022
  text: July 19, 2022
  day: 19
PublicationDecade 2020
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle European journal of inorganic chemistry
PublicationYear 2022
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2015; 12
2011; 115
2015; 59
2021; 7
2017; 8
2021; 4
2021; 22
2019; 11
2020; 264
2013; 42
2015; 32
2020 2020; 59 132
2020; 16
1996; 96
2019; 488
2020; 56
2020; 10
2015; 7
2017; 9
2006; 312
2020; 8
2021; 13
2016; 6
2018; 18
2018; 9
2003; 107
2021; 12
2014; 2
2021
2020
2020; 26
2011; 21
2019; 119
2008; 43
2016; 138
2007; 2
2012; 48
2012; 137
2021; 60
2016; 8
2022; 38
2010; 6
2022; 18
References_xml – volume: 138
  start-page: 2225
  year: 2016
  end-page: 2234
  publication-title: J. Am. Chem. Soc.
– volume: 38
  start-page: 3617
  year: 2022
  end-page: 3622
  publication-title: Langmuir
– volume: 18
  year: 2022
  publication-title: Small
– volume: 312
  start-page: 1504
  year: 2006
  end-page: 1508
  publication-title: Science
– volume: 488
  start-page: 351
  year: 2019
  end-page: 359
  publication-title: Appl. Surf. Sci.
– volume: 4
  start-page: 407
  year: 2021
  end-page: 417
  publication-title: Nat. Catal.
– volume: 7
  start-page: 15395
  year: 2015
  end-page: 15402
  publication-title: ACS Appl. Mater. Interfaces
– volume: 10
  start-page: 4003
  year: 2020
  end-page: 4011
  publication-title: ACS Catal.
– volume: 21
  start-page: 501
  year: 2011
  end-page: 509
  publication-title: Adv. Funct. Mater.
– volume: 8
  start-page: 4428
  year: 2020
  end-page: 4433
  publication-title: J. Mater. Chem. B
– volume: 43
  start-page: 628
  year: 2008
  end-page: 632
  publication-title: J. Mass Spectrom.
– volume: 32
  start-page: 652
  year: 2015
  end-page: 660
  publication-title: Part. Part. Syst. Charact.
– volume: 22
  start-page: 237
  year: 2021
  end-page: 255
  publication-title: Nat. Rev. Neurosci.
– volume: 96
  start-page: 721
  year: 1996
  end-page: 758
  publication-title: Chem. Rev.
– volume: 26
  start-page: 10598
  year: 2020
  end-page: 10606
  publication-title: Chem. Eur. J.
– year: 2021
  publication-title: ACS Appl. Mater. Interfaces
– volume: 119
  start-page: 4357
  year: 2019
  end-page: 4412
  publication-title: Chem. Rev.
– volume: 12
  start-page: 653
  year: 2015
  end-page: 660
  publication-title: Int. J. Environ. Sci. Technol.
– volume: 115
  start-page: 3544
  year: 2011
  end-page: 3551
  publication-title: J. Phys. Chem. C
– volume: 6
  start-page: 35344
  year: 2016
  publication-title: Sci. Rep.
– volume: 2
  start-page: 577
  year: 2007
  end-page: 583
  publication-title: Nat. Nanotechnol.
– volume: 59 132
  start-page: 2565 2585
  year: 2020 2020
  end-page: 2576 2596
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 9
  start-page: 2493
  year: 2018
  end-page: 2500
  publication-title: Chem. Sci.
– volume: 59
  start-page: 116
  year: 2015
  end-page: 124
  publication-title: Biomaterials
– volume: 107
  start-page: 13563
  year: 2003
  end-page: 13566
  publication-title: J. Phys. Chem. B
– start-page: 11
  year: 2020
  end-page: 5396
  publication-title: J. Phys. Chem. Lett.
– volume: 12
  start-page: 303
  year: 2021
  publication-title: Nat. Commun.
– volume: 137
  start-page: 4552
  year: 2012
  end-page: 4558
  publication-title: Analyst
– volume: 16
  year: 2020
  publication-title: Small
– volume: 264
  year: 2020
  publication-title: Appl. Catal. B
– volume: 48
  start-page: 2540
  year: 2012
  end-page: 2542
  publication-title: Chem. Commun.
– volume: 8
  start-page: 13562
  year: 2016
  end-page: 13567
  publication-title: Nanoscale
– volume: 9
  start-page: 6796
  year: 2017
  end-page: 6803
  publication-title: ACS Appl. Mater. Interfaces
– volume: 7
  start-page: 436
  year: 2021
  end-page: 449
  publication-title: Chem
– volume: 8
  start-page: 675
  year: 2017
  publication-title: Nat. Commun.
– volume: 11
  start-page: 195
  year: 2019
  end-page: 201
  publication-title: ACS Appl. Mater. Interfaces
– volume: 60
  start-page: 16149
  year: 2021
  end-page: 16155
  publication-title: Angew. Chem. Int. Ed.
– volume: 11
  start-page: 17841
  year: 2019
  end-page: 17850
  publication-title: Nanoscale
– volume: 18
  start-page: 15
  year: 2018
  end-page: 34
  publication-title: Nano Today
– volume: 2
  start-page: 6097
  year: 2014
  end-page: 6105
  publication-title: J. Mater. Chem. B
– volume: 42
  year: 2013
  publication-title: Chem. Soc. Rev.
– volume: 6
  start-page: 738
  year: 2010
  end-page: 744
  publication-title: Nanomedicine: Nanotechnology, Biology and Medicine
– volume: 56
  start-page: 7897
  year: 2020
  end-page: 7900
  publication-title: Chem. Commun.
– volume: 13
  start-page: 45269
  year: 2021
  end-page: 45278
  publication-title: ACS Appl. Mater. Interfaces
SSID ssj0003036
Score 2.4362533
Snippet Among reported nanozymes, CeO2 seems to be the only transition metal oxide that can mimic phosphatase and peroxidase by catalyzing substrate dephosphorylation...
SourceID proquest
wiley
SourceType Aggregation Database
Publisher
SubjectTerms Ceria
Cerium oxides
Electron density
Enzyme mimicking
Hydrogen peroxide
Inorganic chemistry
Nanozymes
Oxidation
Peroxidase
Reaction specificity
Room temperature
Shape-dependent catalysis
Substrates
Transition metal oxides
Title Shape Regulation of CeO2 Nanozymes Boosts Reaction Specificity and Activity
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fejic.202200202
https://www.proquest.com/docview/2691615519
Volume 2022
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NT8IwFG8MHvTitxFF0oPXwdqObjvChCAmmqAk3Ja2a-NH3IgbB_jrbTvGh0fdaUvWpHvte_2tfe_3A-AOa0wvpes6yiPS8SjFTujJwBFUCb38Meoym-X7RIcTbzTtTLeq-Et-iPWGm_EMG6-NgzOetzekofLj3VAQYpNlYNkkTcKWQUXjDX-Uic-2vIh4jv5bDyrWRhe3d5vv4MttlGqXmcExYFUHy-ySz9a84C2x_MXd-J8vOAFHKwwKu-WkOQV7Mj0DB1El_XYOHl_e2EzCcalTr0cOZgpG8hlDHYyz5eJL5rCXZXmR63fKyghohewNHUWxgCxNYFeUuhQXYDLov0ZDZ6W64MwwIdjBiCMd8_SIccJwJwkY0z1koQgTQgUSPkWKBj4mVCnh-okSyBdM6Uu7PkeKXIJamqXyCsAEEY6R4omHmZeEXENkN0GBUNzo7gadOmhUVo9XrpPHmIb2sBSFdYCt-eJZSbwRlxTLODaGi9eGi_ujh2j9dP2XRjfg0NybPVsUNkCt-J7LWw02Ct4E-93efW_QtBPrBzQgzZk
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NT8IwFG8MHvDitxFF7cHrYG1Htx1xgfAlJgiJt6Xt2vgRGZFxgL_etmMgHnW3LWvSvfa9_vr2-vsBcI81ppfSdR3lEel4lGIn9GTgCKqEXv4YdZmt8h3SzsTrvTSKakJzFibnh9gk3Ixn2HhtHNwkpOtb1lD5_mY4CLEpMzB0kvtG1tvuqkZbBikToe0BI-I5er8eFLyNLq7vtt9BmD9xql1o2keAF13M60s-aouM18TqF3vjv77hGByuYShs5vPmBOzJ6SkoR4X62xnoP7-ymYSjXKpeDx5MFYzkE4Y6Hqer5aecw4c0nWdz_U5-OAJaLXvDSJEtIZsmsClyaYpzMGm3xlHHWQsvODNMCHYw4kiHPT1onDDcSALGdA9ZKMKEUIGET5GigY8JVUq4fqIE8gVT-tLez5EiF6A0TafyEsAEEY6R4omHmZeEXKNkN0GBUNxI7waNCqgWZo_X3jOPMQ3t_1IUVgC29otnOfdGnLMs49gYLt4YLm71utHm7uovje5AuTN-HMSD7rB_DQ7Mc5PCRWEVlLKvhbzR2CPjt3Z2fQOmxNBC
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwELVQkYALO6JQwAeuaWM7dZNjSVt1QQUVKvUWeRWLaCqSHtqvx066coTcEsWSM54Zv9ie9wC4xwbTK-W6jvaIcjxKsRN4yncE1cJMf4y6LDvl26ftodcdVUcbVfw5P8Rqwc1GRpavbYBPpK6sSUPVx7ulIMT2lIFlk9z1qOtbv24M1gRSNkFn9UXEc8zvur-kbXRxZbv9FsDchKnZPNM6AmzZw_x4yWd5mvKymP8ib_zPJxyDwwUIhfXca07Ajhqfgv1wqf12Bnovb2yi4CAXqjdDB2MNQ_WEocnG8Xz2pRL4EMdJmph38tIImCnZWz6KdAbZWMK6yIUpzsGw1XwN285CdsGZYEKwgxFHJumZIeOE4ar0GTM9ZIEIJKECiRpFmvo1TKjWwq1JLVBNMG0uE_scaXIBCuN4rC4BlIhwjDSXHmaeDLjByK5EvtDcCu_61SIoLa0eLWIniTANst1SFBQBzswXTXLmjSjnWMaRNVy0MlzU7HbC1d3VXxrdgb3nRit67PR71-DAPrbrtygogUL6PVU3Bnik_DbzrR9wGM76
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Shape+Regulation+of+CeO2+Nanozymes+Boosts+Reaction+Specificity+and+Activity&rft.jtitle=European+journal+of+inorganic+chemistry&rft.au=Tan%2C+Zicong&rft.au=Wang%2C+Ying&rft.au=Zhang%2C+Jie&rft.au=Zhang%2C+Zhang&rft.date=2022-07-19&rft.issn=1434-1948&rft.eissn=1099-0682&rft.volume=2022&rft.issue=20&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fejic.202200202&rft.externalDBID=10.1002%252Fejic.202200202&rft.externalDocID=EJIC202200202
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1434-1948&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1434-1948&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1434-1948&client=summon