Single‐Atom Iron Anchored Tubular g‐C3N4 Catalysts for Ultrafast Fenton‐Like Reaction: Roles of High‐Valency Iron‐Oxo Species and Organic Radicals
Single‐atom catalysts have emerged as an efficient oxidant activator for eliminating organic pollutants in Fenton‐like systems. However, the complex preparation, single active site, lack of understanding of the fundamental mechanism, and harsh pH conditions currently limit their practical applicatio...
Saved in:
Published in | Advanced materials (Weinheim) Vol. 34; no. 31 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
Wiley Subscription Services, Inc
01.08.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Single‐atom catalysts have emerged as an efficient oxidant activator for eliminating organic pollutants in Fenton‐like systems. However, the complex preparation, single active site, lack of understanding of the fundamental mechanism, and harsh pH conditions currently limit their practical applications. In this work, single‐atom iron anchored nitrogen‐rich g‐C3N4 nanotubes (FeCNs) are designed and synthesized by a facile approach, and eco‐friendly peracetic acid (PAA) is selected as the oxidant for Fenton‐like reactions. The constructed heterogenous system achieves an enhanced degradation of various organic contaminants over a wide pH range of 3.0–9.0, exhibiting an ultrahigh and stable catalytic activity, outperforming equivalent quantities of pristine g‐C3N4 by 75 times. The 18O isotope‐labeling technique, probe method, and theoretical calculations demonstrate that the efficient catalytic activity relies on the high‐valency iron‐oxo species coupled with organic radicals generated by PAA. An increase in electron transport from the contaminant to the formed “metastable PAA/FeCN catalyst surface complex” is detected. A double driving mechanism for the tubular g‐C3N4 regulated by a single Fe site and PAA activation is proposed. This work opens an avenue for developing novel catalysts with the coexistence of multiple active units and providing opportunities for significantly improving catalytic efficiency.
Atomically dispersing Fe(III) sites into fine‐tuned nitrogen‐rich graphitic carbon nitride nanotubes are designed for peracetic acid activation and further for Fenton‐like reactions. This work opens a new avenue to develop heterogenous catalytic systems with higher reactivity and better durability using a double engine mechanism. |
---|---|
AbstractList | Single‐atom catalysts have emerged as an efficient oxidant activator for eliminating organic pollutants in Fenton‐like systems. However, the complex preparation, single active site, lack of understanding of the fundamental mechanism, and harsh pH conditions currently limit their practical applications. In this work, single‐atom iron anchored nitrogen‐rich g‐C3N4 nanotubes (FeCNs) are designed and synthesized by a facile approach, and eco‐friendly peracetic acid (PAA) is selected as the oxidant for Fenton‐like reactions. The constructed heterogenous system achieves an enhanced degradation of various organic contaminants over a wide pH range of 3.0–9.0, exhibiting an ultrahigh and stable catalytic activity, outperforming equivalent quantities of pristine g‐C3N4 by 75 times. The 18O isotope‐labeling technique, probe method, and theoretical calculations demonstrate that the efficient catalytic activity relies on the high‐valency iron‐oxo species coupled with organic radicals generated by PAA. An increase in electron transport from the contaminant to the formed “metastable PAA/FeCN catalyst surface complex” is detected. A double driving mechanism for the tubular g‐C3N4 regulated by a single Fe site and PAA activation is proposed. This work opens an avenue for developing novel catalysts with the coexistence of multiple active units and providing opportunities for significantly improving catalytic efficiency. Single‐atom catalysts have emerged as an efficient oxidant activator for eliminating organic pollutants in Fenton‐like systems. However, the complex preparation, single active site, lack of understanding of the fundamental mechanism, and harsh pH conditions currently limit their practical applications. In this work, single‐atom iron anchored nitrogen‐rich g‐C3N4 nanotubes (FeCNs) are designed and synthesized by a facile approach, and eco‐friendly peracetic acid (PAA) is selected as the oxidant for Fenton‐like reactions. The constructed heterogenous system achieves an enhanced degradation of various organic contaminants over a wide pH range of 3.0–9.0, exhibiting an ultrahigh and stable catalytic activity, outperforming equivalent quantities of pristine g‐C3N4 by 75 times. The 18O isotope‐labeling technique, probe method, and theoretical calculations demonstrate that the efficient catalytic activity relies on the high‐valency iron‐oxo species coupled with organic radicals generated by PAA. An increase in electron transport from the contaminant to the formed “metastable PAA/FeCN catalyst surface complex” is detected. A double driving mechanism for the tubular g‐C3N4 regulated by a single Fe site and PAA activation is proposed. This work opens an avenue for developing novel catalysts with the coexistence of multiple active units and providing opportunities for significantly improving catalytic efficiency. Atomically dispersing Fe(III) sites into fine‐tuned nitrogen‐rich graphitic carbon nitride nanotubes are designed for peracetic acid activation and further for Fenton‐like reactions. This work opens a new avenue to develop heterogenous catalytic systems with higher reactivity and better durability using a double engine mechanism. |
Author | Chen, Fei Liu, Lian‐Lian Yu, Yan Wu, Jing‐Hang Rui, Xian‐Hong Chen, Jie‐Jie |
Author_xml | – sequence: 1 givenname: Fei surname: Chen fullname: Chen, Fei organization: Chongqing University – sequence: 2 givenname: Lian‐Lian surname: Liu fullname: Liu, Lian‐Lian organization: University of Science & Technology of China – sequence: 3 givenname: Jing‐Hang surname: Wu fullname: Wu, Jing‐Hang organization: University of Science & Technology of China – sequence: 4 givenname: Xian‐Hong surname: Rui fullname: Rui, Xian‐Hong organization: Guangdong University of Technology – sequence: 5 givenname: Jie‐Jie surname: Chen fullname: Chen, Jie‐Jie email: chenjiej@ustc.edu.cn organization: University of Science & Technology of China – sequence: 6 givenname: Yan orcidid: 0000-0002-3685-7773 surname: Yu fullname: Yu, Yan email: yanyumse@ustc.edu.cn organization: University of Science and Technology of China |
BookMark | eNo9kNFKwzAYhYMoOKe3Xge8riZp0ybelencYDqYm7flb5vMaJfMtEN35yP4AD6dT2J0IvxwOJyP_8A5QvvWWYXQKSXnlBB2AfUKzhlh4YSke6hHOaNRQiTfRz0iYx7JNBGH6KhtnwghMiVpD33eG7ts1Nf7R965FR57Z3Fuq0fnVY3nm3LTgMfLEA_iuwQPoINm23Yt1s7jRdN50NB2eKhs52ygJuZZ4ZmCqjPOXuKZa1SLncYjs3wM8QM0ylbb35pgp28O369VZQIEtsZTvwRrKjyD2lTQtMfoQAdRJ3_aR4vh9XwwiibTm_Egn0RrFsc00kIkmlOAikkqeFrWoDnnkulaiBgyWWoJWQpZllRapEyLpC7LwJegSs7quI_Odn_X3r1sVNsVT27jbagsWCqzlFMe00DJHfVqGrUt1t6swG8LSoqf-Yuf-Yv_-Yv86jb_d_E3hxODxA |
ContentType | Journal Article |
Copyright | 2022 Wiley‐VCH GmbH |
Copyright_xml | – notice: 2022 Wiley‐VCH GmbH |
DBID | 7SR 8BQ 8FD JG9 |
DOI | 10.1002/adma.202202891 |
DatabaseName | Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database |
DatabaseTitle | Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX |
DatabaseTitleList | Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1521-4095 |
EndPage | n/a |
ExternalDocumentID | ADMA202202891 |
Genre | article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 51978637; 51925207; U1910210; 52161145101; 51872277; 51908528; 51821006; 52022093 – fundername: National Synchrotron Radiation Laboratory funderid: KY2060000173 – fundername: Dalian National Laboratory for Clean Energy funderid: YLU‐DNL; 2021002 – fundername: Supercomputing Center of University of Science and Technology of China – fundername: Fundamental Research Funds for the Central Universities funderid: WK2400000004 – fundername: Hefei National Synchrotron Radiation Laboratory, China – fundername: Fundamental Research Funds for the Central Universities funderid: 2021CDJQY‐014 – fundername: Youth Innovation Promotion Association |
GroupedDBID | --- .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABIJN ABJNI ABLJU ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RWM RX1 RYL SUPJJ TN5 UB1 UPT V2E W8V W99 WBKPD WFSAM WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 YR2 ZZTAW ~02 ~IA ~WT 7SR 8BQ 8FD AAMMB ADMLS AEFGJ AEYWJ AGHNM AGXDD AGYGG AIDQK AIDYY JG9 |
ID | FETCH-LOGICAL-p2331-f884f51aac291856bdaf55592fd883a79bf9a76a774cf862f84dbb1aabaeb52d3 |
IEDL.DBID | DR2 |
ISSN | 0935-9648 |
IngestDate | Sun Jul 13 04:12:51 EDT 2025 Wed Jan 22 16:24:59 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 31 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-p2331-f884f51aac291856bdaf55592fd883a79bf9a76a774cf862f84dbb1aabaeb52d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-3685-7773 |
PQID | 2697651531 |
PQPubID | 2045203 |
PageCount | 11 |
ParticipantIDs | proquest_journals_2697651531 wiley_primary_10_1002_adma_202202891_ADMA202202891 |
PublicationCentury | 2000 |
PublicationDate | 2022-08-01 |
PublicationDateYYYYMMDD | 2022-08-01 |
PublicationDate_xml | – month: 08 year: 2022 text: 2022-08-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim |
PublicationTitle | Advanced materials (Weinheim) |
PublicationYear | 2022 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2020; 3 2018; 140 2017 2020 2020 2018 2020 2022 2021; 51 59 53 51 53 32 33 2020; 394 2020 2020 2020; 54 11 173 2022 2021; 34 33 2017 2020 2020 2020 2020; 51 54 54 6 117 2019 2020; 53 233 2022 2021; 144 14 2021; 280 2020 2018 2015 2017; 168 52 49 205 2020; 117 2017 2019; 51 30 2020 2020 2020 2017 2019; 14 1 54 123 149 2018; 52 2020; 189 2020; 54 2020; 10 2020 2020 2020 2021 2019 2019; 54 55 54 427 116 30 2020 2021; 4 33 2019 2020 2020; 53 7 185 |
References_xml | – volume: 34 33 year: 2022 2021 publication-title: Adv. Mater. Adv. Mater. – volume: 3 start-page: 649 year: 2020 publication-title: Nat. Catal. – volume: 51 54 54 6 117 start-page: 5685 5893 5258 1512 year: 2017 2020 2020 2020 2020 publication-title: Environ. Sci. Technol. Environ. Sci. Technol. Environ. Sci. Technol. Chem Proc. Natl. Acad. Sci. USA – volume: 144 14 start-page: 4913 3522 year: 2022 2021 publication-title: J. Am. Chem. Soc. Energy Environ. Sci. – volume: 53 233 year: 2019 2020 publication-title: Environ. Sci. Technol. Sep. Purif. Technol. – volume: 54 start-page: 5268 year: 2020 publication-title: Environ. Sci. Technol. – volume: 10 start-page: 6367 year: 2020 publication-title: ACS Catal. – volume: 51 30 start-page: 1129 year: 2017 2019 publication-title: Environ. Sci. Technol. Chin. Chem. Lett. – volume: 280 year: 2021 publication-title: Appl. Catal., B – volume: 54 11 173 start-page: 2476 4971 year: 2020 2020 2020 publication-title: Environ. Sci. Technol. Nat. Commun. Water Res. – volume: 51 59 53 51 53 32 33 start-page: 1893 678 2314 year: 2017 2020 2020 2018 2020 2022 2021 publication-title: Environ. Sci. Technol. Angew. Chem., Int. Ed. Acc. Chem. Res. Acc. Chem. Res. Acc. Chem. Res. Adv. Funct. Mater. Adv. Mater. – volume: 53 7 185 start-page: 219 year: 2019 2020 2020 publication-title: Environ. Sci. Technol. Environ. Sci. Technol. Lett. Water Res. – volume: 54 55 54 427 116 30 start-page: 1242 9980 6659 2139 year: 2020 2020 2020 2021 2019 2019 publication-title: Environ. Sci. Technol. Environ. Sci. Technol. Environ. Sci. Technol. Coord. Chem. Rev. Proc. Natl. Acad. Sci. USA Chin. Chem. Lett. – volume: 168 52 49 205 start-page: 649 133 year: 2020 2018 2015 2017 publication-title: Water Res. Environ. Sci. Technol. Environ. Sci. Technol. Appl. Catal., B – volume: 117 start-page: 6376 year: 2020 publication-title: Proc. Natl. Acad. Sci. USA – volume: 4 33 start-page: 36 year: 2020 2021 publication-title: Nat. Catal. Adv. Mater. – volume: 54 start-page: 464 year: 2020 publication-title: Environ. Sci. Technol. – volume: 394 year: 2020 publication-title: Chem. Eng. J. – volume: 52 start-page: 2197 year: 2018 publication-title: Environ. Sci. Technol. – volume: 140 year: 2018 publication-title: J. Am. Chem. Soc. – volume: 189 year: 2020 publication-title: Water Res. – volume: 54 start-page: 9702 year: 2020 publication-title: Environ. Sci. Technol. – volume: 54 start-page: 8509 year: 2020 publication-title: Environ. Sci. Technol. – volume: 54 year: 2020 publication-title: Environ. Sci. Technol. – volume: 14 1 54 123 149 start-page: 87 15 7579 153 272 year: 2020 2020 2020 2017 2019 publication-title: Front. Environ. Sci. Eng. ACS ES&T Water Environ. Sci. Technol. Water Res. Water Res. |
SSID | ssj0009606 |
Score | 2.710229 |
Snippet | Single‐atom catalysts have emerged as an efficient oxidant activator for eliminating organic pollutants in Fenton‐like systems. However, the complex... |
SourceID | proquest wiley |
SourceType | Aggregation Database Publisher |
SubjectTerms | Carbon nitride Catalytic activity Contaminants double driving mechanism Electron transport high‐valency iron‐oxo species Iron Materials science organic radicals Oxidizing agents Peracetic acid Pollutants Radicals Single atom catalysts |
Title | Single‐Atom Iron Anchored Tubular g‐C3N4 Catalysts for Ultrafast Fenton‐Like Reaction: Roles of High‐Valency Iron‐Oxo Species and Organic Radicals |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.202202891 https://www.proquest.com/docview/2697651531 |
Volume | 34 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NTtwwELYqTvTQ8isoSzWHXgOs7SQOt2gpAsSPtLCIWzSObVRBk9UmK7E99RH6AH06noRxsrssPZZTYtmOE43H-WY885mxb2RlcMPRBDZP8kBiHgXInQuEcTbsKqtQe3_HxWV0MpBnd-HdQhZ_yw8xd7h5zWjWa6_gqKv9V9JQNA1vEOd-r8zbPz5gy6Oi_it_lIfnDdmeCIMkkmrG2njA9992f4MvF1Fq85s5_sxw9oJtdMnD3rjWe_mvf7gb3_MFK-zTFINC2k6aVfbBFmvs4wIz4Tr7e02XR_v8-09alz_hdFQWkBa0VI6sgZux9sGrcE_VPXEpoed9QJOqroAgMAwe6xE6rGogFSBoSa3OfzxY6Ns2ieIQ-p5FCkoHPsqEqm_Rpz5NmmGoePVUwvXQ0qpTARYG2nzRHPrYbCpVG2xw_P2mdxJMD3IIhlyIbuCUki7sIuY8IXwQaYMuJFOGO6OUwDjRLsE4QoKiuSMTyylptKb2Gq0OuRGbbKkoC7vFwJ8nGHEZxk6hjCU9Q8s4FzI-iJQg9LTNOjNBZlNtrDIeEegi4Ca624w3EsmGLZdH1rI288zLIpvLIkuPLtJ56cv_dNphy_6-jRXssKV6NLa7hF9q_bWZoy_esu4t |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Pb9MwFLfGOMAO_EcMBrwDHLMttpM4SByilqllbZG6Fu0W7NhGaFtSNam2ctpH2AfgS_BV-Ah8Ep6Ttts4Iu3AKXLs2JHtZ__e83s_E_IGtQyqqdSeyeLM4zILPUmt9Zi2JvCFEVI5e0d_EHbG_ONhcLhGfi5jYRp-iJXBzUlGvV47AXcG6Z1L1lCpa-IgSt1hmb_wq9w381PU2sr33TYO8VtK9z6MWh1vcbGAN6GM-Z4VgtvAlzKjMe5XodLSBgitqdVCMBnFysYyCiVCo8wi5LeCa6WwvJJGBVQzrPcWue2uEXd0_e3hJWOVUwhqej8WeHHIxZIncpfuXP_fa4j2Ki6uN7a9--TXsksaf5aj7VmltrPvf7FF_ld99oDcW8BsSBq5eEjWTP6IbFwhX3xMfhzg49j8Pr9IquIEutMihyTH3WBqNIxmyvnnwlfMbrEBh5Yzc83LqgRE-TA-rqbSyrIClHJEz1iq9-3IwNA0cSLvYOiIsqCw4BxpMPuzdNFd87oZTH46K-BgYnBhLUHmGpqQ2AyGsj43K5-Q8Y10z1Oynhe5eUbAXZkYUh5EVkgecaxD8ShjPNoNBUOAuEm2ljMnXSw4ZUpDxJWITZm_SWg9BdJJQ1eSNsTUNHVjn67GPk3a_WSVev4vH70mdzqjfi_tdQf7L8hd975xjdwi69V0Zl4iXKvUq1pAgHy56dn1B-AGTqA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwELZKkRAc-EcUCswBjmk3tuM4SByiXVZd2i5o20W9pXZsI9SSrDZZwXLiEXgAHoJX4RV4EsbJ7rbliNQDp8ixY0czHvuzPfOZkOe4yqCGKhPYPMkDrnIRKOpcwIyzUSitVNrvd-wPxc6YvzmKjtbIz2UsTMsPsdpw85bRjNfewCfGbZ-RhirT8AZR6s_KwoVb5a6df8ZFW_Vq0EMNv6C0__qwuxMs7hUIJpSxMHBScheFSuU0welKaKNchMiaOiMlU3GiXaJioRAZ5Q4Rv5PcaI3ltbI6ooZhvVfIVS46ib8sojc6I6zy64GG3Y9FQSK4XNJEduj2xf-9AGjPw-JmXuvfIr-WEmndWU62ZrXeyr_-RRb5P4nsNrm5ANmQtlZxh6zZ4i65cY568R75cYCPU_v72_e0Lj_BYFoWkBY4F0ytgcOZ9t658AGzu2zIoes3ueZVXQFifBif1lPlVFUD2jhiZyy19_HEwsi2USIvYeRpsqB04N1oMPu98rFd86YZTL79UsLBxOKwWoEqDLQBsTmMVHNqVt0n40sRzwOyXpSFfUjAX5goKI9iJxWPOdaheZwzHneEZAgPN8jmsuNki-GmyqhAVInIlIUbhDY9IJu0ZCVZS0tNM6_7bKX7LO3tp6vUo3_56Bm59q7Xz_YGw93H5Lp_3fpFbpL1ejqzTxCr1fppYx5Aji-7c_0BmVlNTw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Single%E2%80%90Atom+Iron+Anchored+Tubular+g%E2%80%90C3N4+Catalysts+for+Ultrafast+Fenton%E2%80%90Like+Reaction%3A+Roles+of+High%E2%80%90Valency+Iron%E2%80%90Oxo+Species+and+Organic+Radicals&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Chen%2C+Fei&rft.au=Liu%2C+Lian%E2%80%90Lian&rft.au=Wu%2C+Jing%E2%80%90Hang&rft.au=Rui%2C+Xian%E2%80%90Hong&rft.date=2022-08-01&rft.issn=0935-9648&rft.eissn=1521-4095&rft.volume=34&rft.issue=31&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadma.202202891&rft.externalDBID=10.1002%252Fadma.202202891&rft.externalDocID=ADMA202202891 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon |