Single‐Atom Iron Anchored Tubular g‐C3N4 Catalysts for Ultrafast Fenton‐Like Reaction: Roles of High‐Valency Iron‐Oxo Species and Organic Radicals

Single‐atom catalysts have emerged as an efficient oxidant activator for eliminating organic pollutants in Fenton‐like systems. However, the complex preparation, single active site, lack of understanding of the fundamental mechanism, and harsh pH conditions currently limit their practical applicatio...

Full description

Saved in:
Bibliographic Details
Published inAdvanced materials (Weinheim) Vol. 34; no. 31
Main Authors Chen, Fei, Liu, Lian‐Lian, Wu, Jing‐Hang, Rui, Xian‐Hong, Chen, Jie‐Jie, Yu, Yan
Format Journal Article
LanguageEnglish
Published Weinheim Wiley Subscription Services, Inc 01.08.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Single‐atom catalysts have emerged as an efficient oxidant activator for eliminating organic pollutants in Fenton‐like systems. However, the complex preparation, single active site, lack of understanding of the fundamental mechanism, and harsh pH conditions currently limit their practical applications. In this work, single‐atom iron anchored nitrogen‐rich g‐C3N4 nanotubes (FeCNs) are designed and synthesized by a facile approach, and eco‐friendly peracetic acid (PAA) is selected as the oxidant for Fenton‐like reactions. The constructed heterogenous system achieves an enhanced degradation of various organic contaminants over a wide pH range of 3.0–9.0, exhibiting an ultrahigh and stable catalytic activity, outperforming equivalent quantities of pristine g‐C3N4 by 75 times. The 18O isotope‐labeling technique, probe method, and theoretical calculations demonstrate that the efficient catalytic activity relies on the high‐valency iron‐oxo species coupled with organic radicals generated by PAA. An increase in electron transport from the contaminant to the formed “metastable PAA/FeCN catalyst surface complex” is detected. A double driving mechanism for the tubular g‐C3N4 regulated by a single Fe site and PAA activation is proposed. This work opens an avenue for developing novel catalysts with the coexistence of multiple active units and providing opportunities for significantly improving catalytic efficiency. Atomically dispersing Fe(III) sites into fine‐tuned nitrogen‐rich graphitic carbon nitride nanotubes are designed for peracetic acid activation and further for Fenton‐like reactions. This work opens a new avenue to develop heterogenous catalytic systems with higher reactivity and better durability using a double engine mechanism.
AbstractList Single‐atom catalysts have emerged as an efficient oxidant activator for eliminating organic pollutants in Fenton‐like systems. However, the complex preparation, single active site, lack of understanding of the fundamental mechanism, and harsh pH conditions currently limit their practical applications. In this work, single‐atom iron anchored nitrogen‐rich g‐C3N4 nanotubes (FeCNs) are designed and synthesized by a facile approach, and eco‐friendly peracetic acid (PAA) is selected as the oxidant for Fenton‐like reactions. The constructed heterogenous system achieves an enhanced degradation of various organic contaminants over a wide pH range of 3.0–9.0, exhibiting an ultrahigh and stable catalytic activity, outperforming equivalent quantities of pristine g‐C3N4 by 75 times. The 18O isotope‐labeling technique, probe method, and theoretical calculations demonstrate that the efficient catalytic activity relies on the high‐valency iron‐oxo species coupled with organic radicals generated by PAA. An increase in electron transport from the contaminant to the formed “metastable PAA/FeCN catalyst surface complex” is detected. A double driving mechanism for the tubular g‐C3N4 regulated by a single Fe site and PAA activation is proposed. This work opens an avenue for developing novel catalysts with the coexistence of multiple active units and providing opportunities for significantly improving catalytic efficiency.
Single‐atom catalysts have emerged as an efficient oxidant activator for eliminating organic pollutants in Fenton‐like systems. However, the complex preparation, single active site, lack of understanding of the fundamental mechanism, and harsh pH conditions currently limit their practical applications. In this work, single‐atom iron anchored nitrogen‐rich g‐C3N4 nanotubes (FeCNs) are designed and synthesized by a facile approach, and eco‐friendly peracetic acid (PAA) is selected as the oxidant for Fenton‐like reactions. The constructed heterogenous system achieves an enhanced degradation of various organic contaminants over a wide pH range of 3.0–9.0, exhibiting an ultrahigh and stable catalytic activity, outperforming equivalent quantities of pristine g‐C3N4 by 75 times. The 18O isotope‐labeling technique, probe method, and theoretical calculations demonstrate that the efficient catalytic activity relies on the high‐valency iron‐oxo species coupled with organic radicals generated by PAA. An increase in electron transport from the contaminant to the formed “metastable PAA/FeCN catalyst surface complex” is detected. A double driving mechanism for the tubular g‐C3N4 regulated by a single Fe site and PAA activation is proposed. This work opens an avenue for developing novel catalysts with the coexistence of multiple active units and providing opportunities for significantly improving catalytic efficiency. Atomically dispersing Fe(III) sites into fine‐tuned nitrogen‐rich graphitic carbon nitride nanotubes are designed for peracetic acid activation and further for Fenton‐like reactions. This work opens a new avenue to develop heterogenous catalytic systems with higher reactivity and better durability using a double engine mechanism.
Author Chen, Fei
Liu, Lian‐Lian
Yu, Yan
Wu, Jing‐Hang
Rui, Xian‐Hong
Chen, Jie‐Jie
Author_xml – sequence: 1
  givenname: Fei
  surname: Chen
  fullname: Chen, Fei
  organization: Chongqing University
– sequence: 2
  givenname: Lian‐Lian
  surname: Liu
  fullname: Liu, Lian‐Lian
  organization: University of Science & Technology of China
– sequence: 3
  givenname: Jing‐Hang
  surname: Wu
  fullname: Wu, Jing‐Hang
  organization: University of Science & Technology of China
– sequence: 4
  givenname: Xian‐Hong
  surname: Rui
  fullname: Rui, Xian‐Hong
  organization: Guangdong University of Technology
– sequence: 5
  givenname: Jie‐Jie
  surname: Chen
  fullname: Chen, Jie‐Jie
  email: chenjiej@ustc.edu.cn
  organization: University of Science & Technology of China
– sequence: 6
  givenname: Yan
  orcidid: 0000-0002-3685-7773
  surname: Yu
  fullname: Yu, Yan
  email: yanyumse@ustc.edu.cn
  organization: University of Science and Technology of China
BookMark eNo9kNFKwzAYhYMoOKe3Xge8riZp0ybelencYDqYm7flb5vMaJfMtEN35yP4AD6dT2J0IvxwOJyP_8A5QvvWWYXQKSXnlBB2AfUKzhlh4YSke6hHOaNRQiTfRz0iYx7JNBGH6KhtnwghMiVpD33eG7ts1Nf7R965FR57Z3Fuq0fnVY3nm3LTgMfLEA_iuwQPoINm23Yt1s7jRdN50NB2eKhs52ygJuZZ4ZmCqjPOXuKZa1SLncYjs3wM8QM0ylbb35pgp28O369VZQIEtsZTvwRrKjyD2lTQtMfoQAdRJ3_aR4vh9XwwiibTm_Egn0RrFsc00kIkmlOAikkqeFrWoDnnkulaiBgyWWoJWQpZllRapEyLpC7LwJegSs7quI_Odn_X3r1sVNsVT27jbagsWCqzlFMe00DJHfVqGrUt1t6swG8LSoqf-Yuf-Yv_-Yv86jb_d_E3hxODxA
ContentType Journal Article
Copyright 2022 Wiley‐VCH GmbH
Copyright_xml – notice: 2022 Wiley‐VCH GmbH
DBID 7SR
8BQ
8FD
JG9
DOI 10.1002/adma.202202891
DatabaseName Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
DatabaseTitle Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
DatabaseTitleList Materials Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1521-4095
EndPage n/a
ExternalDocumentID ADMA202202891
Genre article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 51978637; 51925207; U1910210; 52161145101; 51872277; 51908528; 51821006; 52022093
– fundername: National Synchrotron Radiation Laboratory
  funderid: KY2060000173
– fundername: Dalian National Laboratory for Clean Energy
  funderid: YLU‐DNL; 2021002
– fundername: Supercomputing Center of University of Science and Technology of China
– fundername: Fundamental Research Funds for the Central Universities
  funderid: WK2400000004
– fundername: Hefei National Synchrotron Radiation Laboratory, China
– fundername: Fundamental Research Funds for the Central Universities
  funderid: 2021CDJQY‐014
– fundername: Youth Innovation Promotion Association
GroupedDBID ---
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RWM
RX1
RYL
SUPJJ
TN5
UB1
UPT
V2E
W8V
W99
WBKPD
WFSAM
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
YR2
ZZTAW
~02
~IA
~WT
7SR
8BQ
8FD
AAMMB
ADMLS
AEFGJ
AEYWJ
AGHNM
AGXDD
AGYGG
AIDQK
AIDYY
JG9
ID FETCH-LOGICAL-p2331-f884f51aac291856bdaf55592fd883a79bf9a76a774cf862f84dbb1aabaeb52d3
IEDL.DBID DR2
ISSN 0935-9648
IngestDate Sun Jul 13 04:12:51 EDT 2025
Wed Jan 22 16:24:59 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 31
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-p2331-f884f51aac291856bdaf55592fd883a79bf9a76a774cf862f84dbb1aabaeb52d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-3685-7773
PQID 2697651531
PQPubID 2045203
PageCount 11
ParticipantIDs proquest_journals_2697651531
wiley_primary_10_1002_adma_202202891_ADMA202202891
PublicationCentury 2000
PublicationDate 2022-08-01
PublicationDateYYYYMMDD 2022-08-01
PublicationDate_xml – month: 08
  year: 2022
  text: 2022-08-01
  day: 01
PublicationDecade 2020
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Advanced materials (Weinheim)
PublicationYear 2022
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2020; 3
2018; 140
2017 2020 2020 2018 2020 2022 2021; 51 59 53 51 53 32 33
2020; 394
2020 2020 2020; 54 11 173
2022 2021; 34 33
2017 2020 2020 2020 2020; 51 54 54 6 117
2019 2020; 53 233
2022 2021; 144 14
2021; 280
2020 2018 2015 2017; 168 52 49 205
2020; 117
2017 2019; 51 30
2020 2020 2020 2017 2019; 14 1 54 123 149
2018; 52
2020; 189
2020; 54
2020; 10
2020 2020 2020 2021 2019 2019; 54 55 54 427 116 30
2020 2021; 4 33
2019 2020 2020; 53 7 185
References_xml – volume: 34 33
  year: 2022 2021
  publication-title: Adv. Mater. Adv. Mater.
– volume: 3
  start-page: 649
  year: 2020
  publication-title: Nat. Catal.
– volume: 51 54 54 6 117
  start-page: 5685 5893 5258 1512
  year: 2017 2020 2020 2020 2020
  publication-title: Environ. Sci. Technol. Environ. Sci. Technol. Environ. Sci. Technol. Chem Proc. Natl. Acad. Sci. USA
– volume: 144 14
  start-page: 4913 3522
  year: 2022 2021
  publication-title: J. Am. Chem. Soc. Energy Environ. Sci.
– volume: 53 233
  year: 2019 2020
  publication-title: Environ. Sci. Technol. Sep. Purif. Technol.
– volume: 54
  start-page: 5268
  year: 2020
  publication-title: Environ. Sci. Technol.
– volume: 10
  start-page: 6367
  year: 2020
  publication-title: ACS Catal.
– volume: 51 30
  start-page: 1129
  year: 2017 2019
  publication-title: Environ. Sci. Technol. Chin. Chem. Lett.
– volume: 280
  year: 2021
  publication-title: Appl. Catal., B
– volume: 54 11 173
  start-page: 2476 4971
  year: 2020 2020 2020
  publication-title: Environ. Sci. Technol. Nat. Commun. Water Res.
– volume: 51 59 53 51 53 32 33
  start-page: 1893 678 2314
  year: 2017 2020 2020 2018 2020 2022 2021
  publication-title: Environ. Sci. Technol. Angew. Chem., Int. Ed. Acc. Chem. Res. Acc. Chem. Res. Acc. Chem. Res. Adv. Funct. Mater. Adv. Mater.
– volume: 53 7 185
  start-page: 219
  year: 2019 2020 2020
  publication-title: Environ. Sci. Technol. Environ. Sci. Technol. Lett. Water Res.
– volume: 54 55 54 427 116 30
  start-page: 1242 9980 6659 2139
  year: 2020 2020 2020 2021 2019 2019
  publication-title: Environ. Sci. Technol. Environ. Sci. Technol. Environ. Sci. Technol. Coord. Chem. Rev. Proc. Natl. Acad. Sci. USA Chin. Chem. Lett.
– volume: 168 52 49 205
  start-page: 649 133
  year: 2020 2018 2015 2017
  publication-title: Water Res. Environ. Sci. Technol. Environ. Sci. Technol. Appl. Catal., B
– volume: 117
  start-page: 6376
  year: 2020
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 4 33
  start-page: 36
  year: 2020 2021
  publication-title: Nat. Catal. Adv. Mater.
– volume: 54
  start-page: 464
  year: 2020
  publication-title: Environ. Sci. Technol.
– volume: 394
  year: 2020
  publication-title: Chem. Eng. J.
– volume: 52
  start-page: 2197
  year: 2018
  publication-title: Environ. Sci. Technol.
– volume: 140
  year: 2018
  publication-title: J. Am. Chem. Soc.
– volume: 189
  year: 2020
  publication-title: Water Res.
– volume: 54
  start-page: 9702
  year: 2020
  publication-title: Environ. Sci. Technol.
– volume: 54
  start-page: 8509
  year: 2020
  publication-title: Environ. Sci. Technol.
– volume: 54
  year: 2020
  publication-title: Environ. Sci. Technol.
– volume: 14 1 54 123 149
  start-page: 87 15 7579 153 272
  year: 2020 2020 2020 2017 2019
  publication-title: Front. Environ. Sci. Eng. ACS ES&T Water Environ. Sci. Technol. Water Res. Water Res.
SSID ssj0009606
Score 2.710229
Snippet Single‐atom catalysts have emerged as an efficient oxidant activator for eliminating organic pollutants in Fenton‐like systems. However, the complex...
SourceID proquest
wiley
SourceType Aggregation Database
Publisher
SubjectTerms Carbon nitride
Catalytic activity
Contaminants
double driving mechanism
Electron transport
high‐valency iron‐oxo species
Iron
Materials science
organic radicals
Oxidizing agents
Peracetic acid
Pollutants
Radicals
Single atom catalysts
Title Single‐Atom Iron Anchored Tubular g‐C3N4 Catalysts for Ultrafast Fenton‐Like Reaction: Roles of High‐Valency Iron‐Oxo Species and Organic Radicals
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.202202891
https://www.proquest.com/docview/2697651531
Volume 34
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NTtwwELYqTvTQ8isoSzWHXgOs7SQOt2gpAsSPtLCIWzSObVRBk9UmK7E99RH6AH06noRxsrssPZZTYtmOE43H-WY885mxb2RlcMPRBDZP8kBiHgXInQuEcTbsKqtQe3_HxWV0MpBnd-HdQhZ_yw8xd7h5zWjWa6_gqKv9V9JQNA1vEOd-r8zbPz5gy6Oi_it_lIfnDdmeCIMkkmrG2njA9992f4MvF1Fq85s5_sxw9oJtdMnD3rjWe_mvf7gb3_MFK-zTFINC2k6aVfbBFmvs4wIz4Tr7e02XR_v8-09alz_hdFQWkBa0VI6sgZux9sGrcE_VPXEpoed9QJOqroAgMAwe6xE6rGogFSBoSa3OfzxY6Ns2ieIQ-p5FCkoHPsqEqm_Rpz5NmmGoePVUwvXQ0qpTARYG2nzRHPrYbCpVG2xw_P2mdxJMD3IIhlyIbuCUki7sIuY8IXwQaYMuJFOGO6OUwDjRLsE4QoKiuSMTyylptKb2Gq0OuRGbbKkoC7vFwJ8nGHEZxk6hjCU9Q8s4FzI-iJQg9LTNOjNBZlNtrDIeEegi4Ca624w3EsmGLZdH1rI288zLIpvLIkuPLtJ56cv_dNphy_6-jRXssKV6NLa7hF9q_bWZoy_esu4t
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Pb9MwFLfGOMAO_EcMBrwDHLMttpM4SByilqllbZG6Fu0W7NhGaFtSNam2ctpH2AfgS_BV-Ah8Ep6Ttts4Iu3AKXLs2JHtZ__e83s_E_IGtQyqqdSeyeLM4zILPUmt9Zi2JvCFEVI5e0d_EHbG_ONhcLhGfi5jYRp-iJXBzUlGvV47AXcG6Z1L1lCpa-IgSt1hmb_wq9w381PU2sr33TYO8VtK9z6MWh1vcbGAN6GM-Z4VgtvAlzKjMe5XodLSBgitqdVCMBnFysYyCiVCo8wi5LeCa6WwvJJGBVQzrPcWue2uEXd0_e3hJWOVUwhqej8WeHHIxZIncpfuXP_fa4j2Ki6uN7a9--TXsksaf5aj7VmltrPvf7FF_ld99oDcW8BsSBq5eEjWTP6IbFwhX3xMfhzg49j8Pr9IquIEutMihyTH3WBqNIxmyvnnwlfMbrEBh5Yzc83LqgRE-TA-rqbSyrIClHJEz1iq9-3IwNA0cSLvYOiIsqCw4BxpMPuzdNFd87oZTH46K-BgYnBhLUHmGpqQ2AyGsj43K5-Q8Y10z1Oynhe5eUbAXZkYUh5EVkgecaxD8ShjPNoNBUOAuEm2ljMnXSw4ZUpDxJWITZm_SWg9BdJJQ1eSNsTUNHVjn67GPk3a_WSVev4vH70mdzqjfi_tdQf7L8hd975xjdwi69V0Zl4iXKvUq1pAgHy56dn1B-AGTqA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwELZKkRAc-EcUCswBjmk3tuM4SByiXVZd2i5o20W9pXZsI9SSrDZZwXLiEXgAHoJX4RV4EsbJ7rbliNQDp8ixY0czHvuzPfOZkOe4yqCGKhPYPMkDrnIRKOpcwIyzUSitVNrvd-wPxc6YvzmKjtbIz2UsTMsPsdpw85bRjNfewCfGbZ-RhirT8AZR6s_KwoVb5a6df8ZFW_Vq0EMNv6C0__qwuxMs7hUIJpSxMHBScheFSuU0welKaKNchMiaOiMlU3GiXaJioRAZ5Q4Rv5PcaI3ltbI6ooZhvVfIVS46ib8sojc6I6zy64GG3Y9FQSK4XNJEduj2xf-9AGjPw-JmXuvfIr-WEmndWU62ZrXeyr_-RRb5P4nsNrm5ANmQtlZxh6zZ4i65cY568R75cYCPU_v72_e0Lj_BYFoWkBY4F0ytgcOZ9t658AGzu2zIoes3ueZVXQFifBif1lPlVFUD2jhiZyy19_HEwsi2USIvYeRpsqB04N1oMPu98rFd86YZTL79UsLBxOKwWoEqDLQBsTmMVHNqVt0n40sRzwOyXpSFfUjAX5goKI9iJxWPOdaheZwzHneEZAgPN8jmsuNki-GmyqhAVInIlIUbhDY9IJu0ZCVZS0tNM6_7bKX7LO3tp6vUo3_56Bm59q7Xz_YGw93H5Lp_3fpFbpL1ejqzTxCr1fppYx5Aji-7c_0BmVlNTw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Single%E2%80%90Atom+Iron+Anchored+Tubular+g%E2%80%90C3N4+Catalysts+for+Ultrafast+Fenton%E2%80%90Like+Reaction%3A+Roles+of+High%E2%80%90Valency+Iron%E2%80%90Oxo+Species+and+Organic+Radicals&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Chen%2C+Fei&rft.au=Liu%2C+Lian%E2%80%90Lian&rft.au=Wu%2C+Jing%E2%80%90Hang&rft.au=Rui%2C+Xian%E2%80%90Hong&rft.date=2022-08-01&rft.issn=0935-9648&rft.eissn=1521-4095&rft.volume=34&rft.issue=31&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadma.202202891&rft.externalDBID=10.1002%252Fadma.202202891&rft.externalDocID=ADMA202202891
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon