Solving Kepler’s equation via Smale’s α-theory
We obtain an approximate solution E ~ = E ~ ( e , M ) of Kepler’s equation E - e sin ( E ) = M for any e ∈ [ 0 , 1 ) and M ∈ [ 0 , π ] . Our solution is guaranteed, via Smale’s α -theory, to converge to the actual solution E through Newton’s method at quadratic speed, i.e. the n -th iteration produc...
Saved in:
Published in | Celestial mechanics and dynamical astronomy Vol. 119; no. 1; pp. 27 - 44 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Dordrecht
Springer Netherlands
01.05.2014
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | We obtain an approximate solution
E
~
=
E
~
(
e
,
M
)
of Kepler’s equation
E
-
e
sin
(
E
)
=
M
for any
e
∈
[
0
,
1
)
and
M
∈
[
0
,
π
]
. Our solution is guaranteed, via Smale’s
α
-theory, to converge to the actual solution
E
through Newton’s method at quadratic speed, i.e. the
n
-th iteration produces a value
E
n
such that
|
E
n
-
E
|
≤
(
1
2
)
2
n
-
1
|
E
~
-
E
|
. The formula provided for
E
~
is a piecewise rational function with conditions defined by polynomial inequalities, except for a small region near
e
=
1
and
M
=
0
, where a single cubic root is used. We also show that the root operation is unavoidable, by proving that no approximate solution can be computed in the entire region
[
0
,
1
)
×
[
0
,
π
]
if only rational functions are allowed in each branch. |
---|---|
AbstractList | We obtain an approximate solution E = E(e,M) of Kepler's equation E - esin(E) = M for any e member of [0,1) and M member of [0, pi ]. Our solution is guaranteed, via Smale's alpha -theory, to converge to the actual solution E through Newton's method at quadratic speed, i.e. the n-th iteration produces a value E sub(n) such that |E sub(n) - E| less than or equal to (1/2) super(2n-1) |E - E|. The formula provided for E is a piecewise rational function with conditions defined by polynomial inequalities, except for a small region near e = 1 and M = 0, where a single cubic root is used. We also show that the root operation is unavoidable, by proving that no approximate solution can be computed in the entire region [0,1) x [0, pi ] if only rational functions are allowed in each branch. We obtain an approximate solution E ~ = E ~ ( e , M ) of Kepler’s equation E - e sin ( E ) = M for any e ∈ [ 0 , 1 ) and M ∈ [ 0 , π ] . Our solution is guaranteed, via Smale’s α -theory, to converge to the actual solution E through Newton’s method at quadratic speed, i.e. the n -th iteration produces a value E n such that | E n - E | ≤ ( 1 2 ) 2 n - 1 | E ~ - E | . The formula provided for E ~ is a piecewise rational function with conditions defined by polynomial inequalities, except for a small region near e = 1 and M = 0 , where a single cubic root is used. We also show that the root operation is unavoidable, by proving that no approximate solution can be computed in the entire region [ 0 , 1 ) × [ 0 , π ] if only rational functions are allowed in each branch. |
Author | Ortigas-Galindo, Jorge Martín-Molina, Verónica Avendano, Martín |
Author_xml | – sequence: 1 givenname: Martín surname: Avendano fullname: Avendano, Martín organization: Centro Universitario de la Defensa, IUMA, Universidad de Zaragoza – sequence: 2 givenname: Verónica surname: Martín-Molina fullname: Martín-Molina, Verónica email: vmartin@unizar.es organization: Centro Universitario de la Defensa, IUMA, Universidad de Zaragoza – sequence: 3 givenname: Jorge surname: Ortigas-Galindo fullname: Ortigas-Galindo, Jorge organization: Centro Universitario de la Defensa, IUMA, Universidad de Zaragoza |
BookMark | eNotkE1OwzAUhC1UJNLCAdhlycbwHPvF9hJV_IlKLApry0lfIFWapHFSiR3X4BhchENwElLKaqTRaDTzTdmkbmpi7FzApQDQV0EAppaDUNyiQm6OWCRQJ9wqbSYsAptInlg0J2wawhoAECxGTC6balfWr_EjtRV1Px-fIabt4PuyqeNd6ePlxlf0Z39_8f6Nmu79lB0Xvgp09q8z9nJ78zy_54unu4f59YK3iRQ9T4txiCWrjSTMUXpLBvNspQqfobRCGSFTjdrn0qeFzIzGDBX4TOcElK3kjF0cetuu2Q4UercpQ05V5WtqhuAEKgUiAQFjNDlEQ9uNb6hz62bo6nGdE-D2hNyBkBsJuT0hZ-Qvbihcwg |
ContentType | Journal Article |
Copyright | Springer Science+Business Media Dordrecht 2014 |
Copyright_xml | – notice: Springer Science+Business Media Dordrecht 2014 |
DBID | 7TG KL. |
DOI | 10.1007/s10569-014-9545-8 |
DatabaseName | Meteorological & Geoastrophysical Abstracts Meteorological & Geoastrophysical Abstracts - Academic |
DatabaseTitle | Meteorological & Geoastrophysical Abstracts - Academic Meteorological & Geoastrophysical Abstracts |
DatabaseTitleList | Meteorological & Geoastrophysical Abstracts - Academic |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Astronomy & Astrophysics Physics |
EISSN | 1572-9478 |
EndPage | 44 |
ExternalDocumentID | 10_1007_s10569_014_9545_8 |
GroupedDBID | -54 -5F -5G -BR -EM -Y2 -~C .86 .VR 06D 0R~ 0VY 1N0 1SB 2.D 203 28- 29B 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2WC 2~H 30V 3V. 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6J9 6NX 88I 8FE 8FG 8FH 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AABYN AAFGU AAHNG AAIAL AAJKR AANZL AAPBV AARHV AARTL AATNV AATVU AAUYE AAWCG AAYFA AAYIU AAYQN AAYTO ABBBX ABBXA ABDZT ABECU ABFGW ABFTV ABHLI ABHQN ABJNI ABJOX ABKAS ABKCH ABKTR ABMNI ABMQK ABNWP ABPTK ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACBMV ACBRV ACBXY ACBYP ACGFO ACGFS ACGOD ACHSB ACHXU ACIGE ACIPQ ACKNC ACMDZ ACMLO ACOKC ACOMO ACREN ACSNA ACTTH ACVWB ACWMK ADHHG ADHIR ADINQ ADJSZ ADKNI ADKPE ADMDM ADOXG ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEBTG AEEQQ AEFIE AEFTE AEGAL AEGNC AEJHL AEJRE AEKMD AENEX AEOHA AEPYU AESKC AESTI AETLH AEVLU AEVTX AEXYK AEYGD AFEXP AFGCZ AFGFF AFKRA AFLOW AFNRJ AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGGBP AGGDS AGJBK AGMZJ AGQMX AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIIXL AILAN AIMYW AITGF AJBLW AJDOV AJRNO AJZVZ AKQUC ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARAPS ARMRJ AXYYD AYJHY AZFZN AZQEC B-. BA0 BBWZM BDATZ BENPR BGLVJ BGNMA BPHCQ CAG CCPQU COF CS3 CSCUP D1K DDRTE DL5 DNIVK DPUIP DU5 DWQXO E3Z EBD EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GPTSA GQ6 GQ7 GQ8 GXS HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ IWAJR IXC IXD IXE IZIGR IZQ I~X J-C J0Z JBSCW JCJTX JZLTJ K6- KDC KOV KOW LAK LK5 LLZTM M2P M4Y M7R MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OK1 OVD P19 P62 P9T PF0 PQQKQ PROAC PT4 PT5 Q2X QOK QOS R89 R9I RHV RIG RNI RNP RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCLPG SDH SDM SGB SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPH SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TN5 TSG TSK TSV TUC TUS U2A UG4 UNUBA UOJIU UQL UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z7R Z7Z Z86 Z8M Z8T Z92 ZMTXR ~02 ~A9 ~EX 7TG AACDK AAJBT AASML AAYZH ABAKF ACAOD ACDTI ACZOJ AEFQL AEMSY AFBBN AGQEE AGRTI AIGIU H13 KL. |
ID | FETCH-LOGICAL-p231t-6f5459e9783e5c53a9e85cbd4fab539148136757ac3a6f3b875b540ab7ce0ebd3 |
IEDL.DBID | AGYKE |
ISSN | 0923-2958 |
IngestDate | Fri Oct 25 09:37:03 EDT 2024 Sat Dec 16 12:00:17 EST 2023 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Smale’s Newton’s method Optimal starter Kepler’s equation theory |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-p231t-6f5459e9783e5c53a9e85cbd4fab539148136757ac3a6f3b875b540ab7ce0ebd3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 1544012010 |
PQPubID | 23462 |
PageCount | 18 |
ParticipantIDs | proquest_miscellaneous_1544012010 springer_journals_10_1007_s10569_014_9545_8 |
PublicationCentury | 2000 |
PublicationDate | 2014-05-01 |
PublicationDateYYYYMMDD | 2014-05-01 |
PublicationDate_xml | – month: 05 year: 2014 text: 2014-05-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Dordrecht |
PublicationPlace_xml | – name: Dordrecht |
PublicationSubtitle | An International Journal of Space Dynamics |
PublicationTitle | Celestial mechanics and dynamical astronomy |
PublicationTitleAbbrev | Celest Mech Dyn Astr |
PublicationYear | 2014 |
Publisher | Springer Netherlands |
Publisher_xml | – name: Springer Netherlands |
References | CalvoM.ElipeA.MontijanoJ.I.RándezL.Optimal starters for solving the elliptic Kepler’s equationCelest. Mech. Dyn. Astron.2013115143160 TaffL.G.BrennanT.A.On solving Kepler’s equationCelest. Mech. Dyn. Astron.198946163176 OdellA.W.GoodingR.H.Procedures for solving Kepler’s equationCelest. Mech.198638307334 Smale, S.: Newton’s method estimates from data at one point. In Ewing, R., Gross, K., Martin, C. (eds.) The Merging of Disciplines: New Directions in Pure, Applied, and Computational Mathematics. Springer, New York (1986) WangXHanDOn dominating sequence method in the point estimate and Smale’s theoremSci. China Ser. A19903321351440699.650461055318 MortariD.ElipeA.Solving Kepler’s equations using implicit functionsCelest. Mech. Dyn. Astron.2014118111 PalaciosMKepler equation and accelerated Newton methodJ. Comput. App. Math.20021383353462002JCoAm.138..335P10.1016/S0377-0427(01)00369-70998.650541876240 MortariD.ClochiattiA.Solving Kepler’s equation using Bézier curvesCelest. Mech. Dyn. Astron.2007994557 BattinRHAn Introduction to the Mathematics and Methods of Astrodynamics1987New YorkAmerican Institute of Aeronautics and Astronautics0892.00015 NgE.W.A general algorithm for the solution of Kepler’s equation for elliptic orbitsCelest. Mech.197910243249 MikkolaS.A cubic approximation for Kepler’s equationCelest. Mech.198740329334 DanbyJ.M.A.BurkardtT.M.The solution of Kepler’s equation ICelest. Mech.19833195107 DanbyJ.M.A.The solution of Kepler’s equation IIICelest. Mech.198740303312 MarkleyF.L.Kepler equation solverCelest. Mech. Dyn. Astron.199563101111 NijenhuisA.Solving Kepler’s equation with high efficiency and accuracyCelest. Mech. Dyn. Astron.199151319330 ColwellPSolving Kepler’s Equation Over Three Centuries1993Richmond, VAWillmann-Bell0821.70001 |
References_xml | |
SSID | ssj0005095 |
Score | 2.087247 |
Snippet | We obtain an approximate solution
E
~
=
E
~
(
e
,
M
)
of Kepler’s equation
E
-
e
sin
(
E
)
=
M
for any
e
∈
[
0
,
1
)
and
M
∈
[
0
,
π
]
. Our solution is... We obtain an approximate solution E = E(e,M) of Kepler's equation E - esin(E) = M for any e member of [0,1) and M member of [0, pi ]. Our solution is... |
SourceID | proquest springer |
SourceType | Aggregation Database Publisher |
StartPage | 27 |
SubjectTerms | Aerospace Technology and Astronautics Astrophysics and Astroparticles Classical Mechanics Dynamical Systems and Ergodic Theory Geophysics/Geodesy Original Article Physics Physics and Astronomy |
Title | Solving Kepler’s equation via Smale’s α-theory |
URI | https://link.springer.com/article/10.1007/s10569-014-9545-8 https://search.proquest.com/docview/1544012010 |
Volume | 119 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3bTsJAEJ1wiYkvXlADXkhNjC9mSW9buo9ouEQiISIJPjW77TYxQEEKJvjkb_gZ_ogf4Ze4uwW8vvDUzfaSzXTaOTszZwbgrIx9neplgphlcGT7RoiYHZgosE0uLBZhusrNuWk5ja593cO9FJgr10XULy0jkupH_Y3rhh2Z2mMjIqw-ctOQlbxTnIFspX7frH4lduiq14ouoAsyCXaXscz_HvIDV_4KhSoLU9tOWH-xKkwoE0v6pdmUlfznv2Ub11j8DmwtAKdWSTRkF1I8ykG-EksX-Gg41841NU48HHEONtrJaA-szmgg3Q1ak48HfPLx8hpr_DEpDa49PVCtMxTWRU2_vyHFiJzvQ7dWvbtqoEWPBTQWyG6KnFCsh3DpAOLYxxYl3MU-C-yQMmwRsVmSNd1wmfoWdUKLie0NEyCPsrLPdc4C6wAy0SjiedC4ERLbobLXuiSw6oywkAQWtR1xh-GQApwuZe0JHZaBCRrx0Sz2ZEUgSeI19AJcLAXoLT4mcXpVWVlK0RNS9KQUPfdwrauPYNOUb0BlKx5DZjqZ8ROBKKasCGm3Vi8uFEkcL6ut9q2Y7ZqVT9OZx4I |
link.rule.ids | 315,783,787,27938,27939,33388,33759,41095,41537,42164,42606,52125,52248 |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dSsMwFA46Eb0RncrmbwTxRgJpk3TN5RDH1G0I22B3JWlTELZ2rpuwO1_Dx_BFfAifxCRt_cMb70KblnLOoefLOd85B4DzBguxwA2OJHEUoqETI0kjF0XUVdpjcYktN6fb89pDejtio6KOOyvZ7mVK0v6pvxW7Mc9weyji2u0jfxWsmfbqxqyHbvOL14HtqBWskQtyOfPLVOZfr_gBK39lQq2DaW2DrQIZwmauyh2wopIqqDUzE6tOJ0t4Ae06D0VkVbB-n692AemnYxMXgHdqOlaz9-eXDKrHvIc3fHoQsD_RbsBefntFtnRxuQeGrevBVRsVwxDQVEOwOfJi_cVcmUiNYiEjgiufhTKisZCMcH2qMc3XWEOERHgxkfocIjUaE7IRKqxkRPZBJUkTVQNQOTGnnjBD0U2lKZZcxjwignr6CcfjdXBWSiXQxmYyCCJR6SILTOseU23r4Dq4LMUVFFavb3-2QDZyDrScAyPnwD_41-5TsNEedDtB56Z3dwg2XaMvSzE8ApX5bKGONQyYyxOr9g_vK6sd |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwEB1BKxAXdsSOkRAX5JLUdlofK6AUCqhSQSqnYCeOhGjTQlIkOPEbfAY_wkfwJdhZ2MQFcbOyyZlM5OeZN28AtirMs4RV4VgSW2Hq2QGW1C9jn5aVXrG4tBJuzumZ07igxx3WyfqcRjnbPU9JpjUNRqUpjHcHfrD7pfCNOYbnQzHXEABXR6FIbY0WClCsHV42Dz5ZHlbSeMXSOAaXOavmic3fHvINZP7IiybLTX0KrvKJpiyTm9IwliXv8YeG4z_eZBomMyiKaqnvzMCICmdhsRaZ4Hi_94C2UTJOYx_RLIy10tEckHa_awIRqKkGXXX39vQcIXWbioaj-2uB2j297iSHX19wUiv5MA8X9YPzvQbOui_ggcZ8MXYCPR-uTGhIMY8RwVWVedKngZCMcL2NMmpvrCI8IpyASL3xkRr-CVnxlKWkTxagEPZDtQhI2QGnjjBd2E1pqyW5DLhPBHX0HbbDl2AzN7yrvdukLESo-sPINVpBprzXtpZgJzemm_1m-vSH5rKxoqut6BorutXlP129AeOt_bp7cnTWXIGJsvkYCaVxFQrx3VCtadgRy_XMtd4BaN3Q0Q |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Solving+Kepler%E2%80%99s+equation+via+Smale%E2%80%99s+%CE%B1-theory&rft.jtitle=Celestial+mechanics+and+dynamical+astronomy&rft.au=Avendano%2C+Mart%C3%ADn&rft.au=Mart%C3%ADn-Molina%2C+Ver%C3%B3nica&rft.au=Ortigas-Galindo%2C+Jorge&rft.date=2014-05-01&rft.pub=Springer+Netherlands&rft.issn=0923-2958&rft.eissn=1572-9478&rft.volume=119&rft.issue=1&rft.spage=27&rft.epage=44&rft_id=info:doi/10.1007%2Fs10569-014-9545-8&rft.externalDocID=10_1007_s10569_014_9545_8 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0923-2958&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0923-2958&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0923-2958&client=summon |