Solving Kepler’s equation via Smale’s α-theory

We obtain an approximate solution E ~ = E ~ ( e , M ) of Kepler’s equation E - e sin ( E ) = M for any e ∈ [ 0 , 1 ) and M ∈ [ 0 , π ] . Our solution is guaranteed, via Smale’s α -theory, to converge to the actual solution E through Newton’s method at quadratic speed, i.e. the n -th iteration produc...

Full description

Saved in:
Bibliographic Details
Published inCelestial mechanics and dynamical astronomy Vol. 119; no. 1; pp. 27 - 44
Main Authors Avendano, Martín, Martín-Molina, Verónica, Ortigas-Galindo, Jorge
Format Journal Article
LanguageEnglish
Published Dordrecht Springer Netherlands 01.05.2014
Subjects
Online AccessGet full text

Cover

Loading…
Abstract We obtain an approximate solution E ~ = E ~ ( e , M ) of Kepler’s equation E - e sin ( E ) = M for any e ∈ [ 0 , 1 ) and M ∈ [ 0 , π ] . Our solution is guaranteed, via Smale’s α -theory, to converge to the actual solution E through Newton’s method at quadratic speed, i.e. the n -th iteration produces a value E n such that | E n - E | ≤ ( 1 2 ) 2 n - 1 | E ~ - E | . The formula provided for E ~ is a piecewise rational function with conditions defined by polynomial inequalities, except for a small region near e = 1 and M = 0 , where a single cubic root is used. We also show that the root operation is unavoidable, by proving that no approximate solution can be computed in the entire region [ 0 , 1 ) × [ 0 , π ] if only rational functions are allowed in each branch.
AbstractList We obtain an approximate solution E = E(e,M) of Kepler's equation E - esin(E) = M for any e member of [0,1) and M member of [0, pi ]. Our solution is guaranteed, via Smale's alpha -theory, to converge to the actual solution E through Newton's method at quadratic speed, i.e. the n-th iteration produces a value E sub(n) such that |E sub(n) - E| less than or equal to (1/2) super(2n-1) |E - E|. The formula provided for E is a piecewise rational function with conditions defined by polynomial inequalities, except for a small region near e = 1 and M = 0, where a single cubic root is used. We also show that the root operation is unavoidable, by proving that no approximate solution can be computed in the entire region [0,1) x [0, pi ] if only rational functions are allowed in each branch.
We obtain an approximate solution E ~ = E ~ ( e , M ) of Kepler’s equation E - e sin ( E ) = M for any e ∈ [ 0 , 1 ) and M ∈ [ 0 , π ] . Our solution is guaranteed, via Smale’s α -theory, to converge to the actual solution E through Newton’s method at quadratic speed, i.e. the n -th iteration produces a value E n such that | E n - E | ≤ ( 1 2 ) 2 n - 1 | E ~ - E | . The formula provided for E ~ is a piecewise rational function with conditions defined by polynomial inequalities, except for a small region near e = 1 and M = 0 , where a single cubic root is used. We also show that the root operation is unavoidable, by proving that no approximate solution can be computed in the entire region [ 0 , 1 ) × [ 0 , π ] if only rational functions are allowed in each branch.
Author Ortigas-Galindo, Jorge
Martín-Molina, Verónica
Avendano, Martín
Author_xml – sequence: 1
  givenname: Martín
  surname: Avendano
  fullname: Avendano, Martín
  organization: Centro Universitario de la Defensa, IUMA, Universidad de Zaragoza
– sequence: 2
  givenname: Verónica
  surname: Martín-Molina
  fullname: Martín-Molina, Verónica
  email: vmartin@unizar.es
  organization: Centro Universitario de la Defensa, IUMA, Universidad de Zaragoza
– sequence: 3
  givenname: Jorge
  surname: Ortigas-Galindo
  fullname: Ortigas-Galindo, Jorge
  organization: Centro Universitario de la Defensa, IUMA, Universidad de Zaragoza
BookMark eNotkE1OwzAUhC1UJNLCAdhlycbwHPvF9hJV_IlKLApry0lfIFWapHFSiR3X4BhchENwElLKaqTRaDTzTdmkbmpi7FzApQDQV0EAppaDUNyiQm6OWCRQJ9wqbSYsAptInlg0J2wawhoAECxGTC6balfWr_EjtRV1Px-fIabt4PuyqeNd6ePlxlf0Z39_8f6Nmu79lB0Xvgp09q8z9nJ78zy_54unu4f59YK3iRQ9T4txiCWrjSTMUXpLBvNspQqfobRCGSFTjdrn0qeFzIzGDBX4TOcElK3kjF0cetuu2Q4UercpQ05V5WtqhuAEKgUiAQFjNDlEQ9uNb6hz62bo6nGdE-D2hNyBkBsJuT0hZ-Qvbihcwg
ContentType Journal Article
Copyright Springer Science+Business Media Dordrecht 2014
Copyright_xml – notice: Springer Science+Business Media Dordrecht 2014
DBID 7TG
KL.
DOI 10.1007/s10569-014-9545-8
DatabaseName Meteorological & Geoastrophysical Abstracts
Meteorological & Geoastrophysical Abstracts - Academic
DatabaseTitle Meteorological & Geoastrophysical Abstracts - Academic
Meteorological & Geoastrophysical Abstracts
DatabaseTitleList Meteorological & Geoastrophysical Abstracts - Academic

DeliveryMethod fulltext_linktorsrc
Discipline Astronomy & Astrophysics
Physics
EISSN 1572-9478
EndPage 44
ExternalDocumentID 10_1007_s10569_014_9545_8
GroupedDBID -54
-5F
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06D
0R~
0VY
1N0
1SB
2.D
203
28-
29B
29~
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2WC
2~H
30V
3V.
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6J9
6NX
88I
8FE
8FG
8FH
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AABYN
AAFGU
AAHNG
AAIAL
AAJKR
AANZL
AAPBV
AARHV
AARTL
AATNV
AATVU
AAUYE
AAWCG
AAYFA
AAYIU
AAYQN
AAYTO
ABBBX
ABBXA
ABDZT
ABECU
ABFGW
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKAS
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABPTK
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACBMV
ACBRV
ACBXY
ACBYP
ACGFO
ACGFS
ACGOD
ACHSB
ACHXU
ACIGE
ACIPQ
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACREN
ACSNA
ACTTH
ACVWB
ACWMK
ADHHG
ADHIR
ADINQ
ADJSZ
ADKNI
ADKPE
ADMDM
ADOXG
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEEQQ
AEFIE
AEFTE
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AENEX
AEOHA
AEPYU
AESKC
AESTI
AETLH
AEVLU
AEVTX
AEXYK
AEYGD
AFEXP
AFGCZ
AFGFF
AFKRA
AFLOW
AFNRJ
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGBP
AGGDS
AGJBK
AGMZJ
AGQMX
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIIXL
AILAN
AIMYW
AITGF
AJBLW
AJDOV
AJRNO
AJZVZ
AKQUC
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BPHCQ
CAG
CCPQU
COF
CS3
CSCUP
D1K
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
E3Z
EBD
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GPTSA
GQ6
GQ7
GQ8
GXS
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K6-
KDC
KOV
KOW
LAK
LK5
LLZTM
M2P
M4Y
M7R
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OK1
OVD
P19
P62
P9T
PF0
PQQKQ
PROAC
PT4
PT5
Q2X
QOK
QOS
R89
R9I
RHV
RIG
RNI
RNP
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SDH
SDM
SGB
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPH
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TN5
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UNUBA
UOJIU
UQL
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7Z
Z86
Z8M
Z8T
Z92
ZMTXR
~02
~A9
~EX
7TG
AACDK
AAJBT
AASML
AAYZH
ABAKF
ACAOD
ACDTI
ACZOJ
AEFQL
AEMSY
AFBBN
AGQEE
AGRTI
AIGIU
H13
KL.
ID FETCH-LOGICAL-p231t-6f5459e9783e5c53a9e85cbd4fab539148136757ac3a6f3b875b540ab7ce0ebd3
IEDL.DBID AGYKE
ISSN 0923-2958
IngestDate Fri Oct 25 09:37:03 EDT 2024
Sat Dec 16 12:00:17 EST 2023
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Smale’s
Newton’s method
Optimal starter
Kepler’s equation
theory
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-p231t-6f5459e9783e5c53a9e85cbd4fab539148136757ac3a6f3b875b540ab7ce0ebd3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1544012010
PQPubID 23462
PageCount 18
ParticipantIDs proquest_miscellaneous_1544012010
springer_journals_10_1007_s10569_014_9545_8
PublicationCentury 2000
PublicationDate 2014-05-01
PublicationDateYYYYMMDD 2014-05-01
PublicationDate_xml – month: 05
  year: 2014
  text: 2014-05-01
  day: 01
PublicationDecade 2010
PublicationPlace Dordrecht
PublicationPlace_xml – name: Dordrecht
PublicationSubtitle An International Journal of Space Dynamics
PublicationTitle Celestial mechanics and dynamical astronomy
PublicationTitleAbbrev Celest Mech Dyn Astr
PublicationYear 2014
Publisher Springer Netherlands
Publisher_xml – name: Springer Netherlands
References CalvoM.ElipeA.MontijanoJ.I.RándezL.Optimal starters for solving the elliptic Kepler’s equationCelest. Mech. Dyn. Astron.2013115143160
TaffL.G.BrennanT.A.On solving Kepler’s equationCelest. Mech. Dyn. Astron.198946163176
OdellA.W.GoodingR.H.Procedures for solving Kepler’s equationCelest. Mech.198638307334
Smale, S.: Newton’s method estimates from data at one point. In Ewing, R., Gross, K., Martin, C. (eds.) The Merging of Disciplines: New Directions in Pure, Applied, and Computational Mathematics. Springer, New York (1986)
WangXHanDOn dominating sequence method in the point estimate and Smale’s theoremSci. China Ser. A19903321351440699.650461055318
MortariD.ElipeA.Solving Kepler’s equations using implicit functionsCelest. Mech. Dyn. Astron.2014118111
PalaciosMKepler equation and accelerated Newton methodJ. Comput. App. Math.20021383353462002JCoAm.138..335P10.1016/S0377-0427(01)00369-70998.650541876240
MortariD.ClochiattiA.Solving Kepler’s equation using Bézier curvesCelest. Mech. Dyn. Astron.2007994557
BattinRHAn Introduction to the Mathematics and Methods of Astrodynamics1987New YorkAmerican Institute of Aeronautics and Astronautics0892.00015
NgE.W.A general algorithm for the solution of Kepler’s equation for elliptic orbitsCelest. Mech.197910243249
MikkolaS.A cubic approximation for Kepler’s equationCelest. Mech.198740329334
DanbyJ.M.A.BurkardtT.M.The solution of Kepler’s equation ICelest. Mech.19833195107
DanbyJ.M.A.The solution of Kepler’s equation IIICelest. Mech.198740303312
MarkleyF.L.Kepler equation solverCelest. Mech. Dyn. Astron.199563101111
NijenhuisA.Solving Kepler’s equation with high efficiency and accuracyCelest. Mech. Dyn. Astron.199151319330
ColwellPSolving Kepler’s Equation Over Three Centuries1993Richmond, VAWillmann-Bell0821.70001
References_xml
SSID ssj0005095
Score 2.087247
Snippet We obtain an approximate solution E ~ = E ~ ( e , M ) of Kepler’s equation E - e sin ( E ) = M for any e ∈ [ 0 , 1 ) and M ∈ [ 0 , π ] . Our solution is...
We obtain an approximate solution E = E(e,M) of Kepler's equation E - esin(E) = M for any e member of [0,1) and M member of [0, pi ]. Our solution is...
SourceID proquest
springer
SourceType Aggregation Database
Publisher
StartPage 27
SubjectTerms Aerospace Technology and Astronautics
Astrophysics and Astroparticles
Classical Mechanics
Dynamical Systems and Ergodic Theory
Geophysics/Geodesy
Original Article
Physics
Physics and Astronomy
Title Solving Kepler’s equation via Smale’s α-theory
URI https://link.springer.com/article/10.1007/s10569-014-9545-8
https://search.proquest.com/docview/1544012010
Volume 119
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3bTsJAEJ1wiYkvXlADXkhNjC9mSW9buo9ouEQiISIJPjW77TYxQEEKJvjkb_gZ_ogf4Ze4uwW8vvDUzfaSzXTaOTszZwbgrIx9neplgphlcGT7RoiYHZgosE0uLBZhusrNuWk5ja593cO9FJgr10XULy0jkupH_Y3rhh2Z2mMjIqw-ctOQlbxTnIFspX7frH4lduiq14ouoAsyCXaXscz_HvIDV_4KhSoLU9tOWH-xKkwoE0v6pdmUlfznv2Ub11j8DmwtAKdWSTRkF1I8ykG-EksX-Gg41841NU48HHEONtrJaA-szmgg3Q1ak48HfPLx8hpr_DEpDa49PVCtMxTWRU2_vyHFiJzvQ7dWvbtqoEWPBTQWyG6KnFCsh3DpAOLYxxYl3MU-C-yQMmwRsVmSNd1wmfoWdUKLie0NEyCPsrLPdc4C6wAy0SjiedC4ERLbobLXuiSw6oywkAQWtR1xh-GQApwuZe0JHZaBCRrx0Sz2ZEUgSeI19AJcLAXoLT4mcXpVWVlK0RNS9KQUPfdwrauPYNOUb0BlKx5DZjqZ8ROBKKasCGm3Vi8uFEkcL6ut9q2Y7ZqVT9OZx4I
link.rule.ids 315,783,787,27938,27939,33388,33759,41095,41537,42164,42606,52125,52248
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dSsMwFA46Eb0RncrmbwTxRgJpk3TN5RDH1G0I22B3JWlTELZ2rpuwO1_Dx_BFfAifxCRt_cMb70KblnLOoefLOd85B4DzBguxwA2OJHEUoqETI0kjF0XUVdpjcYktN6fb89pDejtio6KOOyvZ7mVK0v6pvxW7Mc9weyji2u0jfxWsmfbqxqyHbvOL14HtqBWskQtyOfPLVOZfr_gBK39lQq2DaW2DrQIZwmauyh2wopIqqDUzE6tOJ0t4Ae06D0VkVbB-n692AemnYxMXgHdqOlaz9-eXDKrHvIc3fHoQsD_RbsBefntFtnRxuQeGrevBVRsVwxDQVEOwOfJi_cVcmUiNYiEjgiufhTKisZCMcH2qMc3XWEOERHgxkfocIjUaE7IRKqxkRPZBJUkTVQNQOTGnnjBD0U2lKZZcxjwignr6CcfjdXBWSiXQxmYyCCJR6SILTOseU23r4Dq4LMUVFFavb3-2QDZyDrScAyPnwD_41-5TsNEedDtB56Z3dwg2XaMvSzE8ApX5bKGONQyYyxOr9g_vK6sd
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwEB1BKxAXdsSOkRAX5JLUdlofK6AUCqhSQSqnYCeOhGjTQlIkOPEbfAY_wkfwJdhZ2MQFcbOyyZlM5OeZN28AtirMs4RV4VgSW2Hq2QGW1C9jn5aVXrG4tBJuzumZ07igxx3WyfqcRjnbPU9JpjUNRqUpjHcHfrD7pfCNOYbnQzHXEABXR6FIbY0WClCsHV42Dz5ZHlbSeMXSOAaXOavmic3fHvINZP7IiybLTX0KrvKJpiyTm9IwliXv8YeG4z_eZBomMyiKaqnvzMCICmdhsRaZ4Hi_94C2UTJOYx_RLIy10tEckHa_awIRqKkGXXX39vQcIXWbioaj-2uB2j297iSHX19wUiv5MA8X9YPzvQbOui_ggcZ8MXYCPR-uTGhIMY8RwVWVedKngZCMcL2NMmpvrCI8IpyASL3xkRr-CVnxlKWkTxagEPZDtQhI2QGnjjBd2E1pqyW5DLhPBHX0HbbDl2AzN7yrvdukLESo-sPINVpBprzXtpZgJzemm_1m-vSH5rKxoqut6BorutXlP129AeOt_bp7cnTWXIGJsvkYCaVxFQrx3VCtadgRy_XMtd4BaN3Q0Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Solving+Kepler%E2%80%99s+equation+via+Smale%E2%80%99s+%CE%B1-theory&rft.jtitle=Celestial+mechanics+and+dynamical+astronomy&rft.au=Avendano%2C+Mart%C3%ADn&rft.au=Mart%C3%ADn-Molina%2C+Ver%C3%B3nica&rft.au=Ortigas-Galindo%2C+Jorge&rft.date=2014-05-01&rft.pub=Springer+Netherlands&rft.issn=0923-2958&rft.eissn=1572-9478&rft.volume=119&rft.issue=1&rft.spage=27&rft.epage=44&rft_id=info:doi/10.1007%2Fs10569-014-9545-8&rft.externalDocID=10_1007_s10569_014_9545_8
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0923-2958&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0923-2958&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0923-2958&client=summon