Gravitational waves in f(R) gravity power law model
We investigate the different polarization modes of gravitational waves in f ( R ) gravity power law model in de Sitter space. It is seen that the massive scalar field polarization mode exists in this model. The mass of the scalar field depends highly on the background curvature and the power term n...
Saved in:
Published in | Indian journal of physics Vol. 96; no. 2; pp. 637 - 646 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
New Delhi
Springer India
01.02.2022
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | We investigate the different polarization modes of gravitational waves in
f
(
R
) gravity power law model in de Sitter space. It is seen that the massive scalar field polarization mode exists in this model. The mass of the scalar field depends highly on the background curvature and the power term
n
. However, we found that the model does not exhibit a massive scalar mode for
n
=
2
and instead, it shows a breathing mode in addition to the tensor plus and cross modes. Thus, mass of the scalar field is found to vary with
n
within the range
1
≤
n
≤
2
. |
---|---|
AbstractList | We investigate the different polarization modes of gravitational waves in f(R) gravity power law model in de Sitter space. It is seen that the massive scalar field polarization mode exists in this model. The mass of the scalar field depends highly on the background curvature and the power term n. However, we found that the model does not exhibit a massive scalar mode for n=2 and instead, it shows a breathing mode in addition to the tensor plus and cross modes. Thus, mass of the scalar field is found to vary with n within the range 1≤n≤2. We investigate the different polarization modes of gravitational waves in f ( R ) gravity power law model in de Sitter space. It is seen that the massive scalar field polarization mode exists in this model. The mass of the scalar field depends highly on the background curvature and the power term n . However, we found that the model does not exhibit a massive scalar mode for n = 2 and instead, it shows a breathing mode in addition to the tensor plus and cross modes. Thus, mass of the scalar field is found to vary with n within the range 1 ≤ n ≤ 2 . |
Author | Dev Goswami, Umananda Gogoi, Dhruba Jyoti |
Author_xml | – sequence: 1 givenname: Dhruba Jyoti orcidid: 0000-0002-4776-8506 surname: Gogoi fullname: Gogoi, Dhruba Jyoti organization: Department of Physics, Dibrugarh University – sequence: 2 givenname: Umananda orcidid: 0000-0003-0012-7549 surname: Dev Goswami fullname: Dev Goswami, Umananda email: umananda2@gmail.com organization: Department of Physics, Dibrugarh University |
BookMark | eNpFkE1Lw0AQhhepYFv9A54WvOhhdb8_jlJsFQqC6HmZbDYlJSYxmzb4742p4GkG5mF432eBZnVTR4SuGb1nlJqHxLiWllBOCWXOWWLP0Jw6I4mzUs2mXRAmlb1Ai5T2lGrHjJojsengWPbQl00NFR7gGBMua1zcvt3h3XT7xm0zxA5XMODPJo_VJTovoErx6m8u0cf66X31TLavm5fV45a0nJueQF4YGYFLHrWJSupcUh0sZFqJHHLLAsRCBxEUY1nMnIEggWXGBSksBCqW6Ob0t-2ar0NMvd83h26MmTzXnFM39lMjJU5Uaruy3sXun2LU_9rxJzt-tOMnO96KHzKjWTY |
ContentType | Journal Article |
Copyright | Indian Association for the Cultivation of Science 2021 Indian Association for the Cultivation of Science 2021. |
Copyright_xml | – notice: Indian Association for the Cultivation of Science 2021 – notice: Indian Association for the Cultivation of Science 2021. |
DBID | 7U5 8FD H8D L7M |
DOI | 10.1007/s12648-020-01998-8 |
DatabaseName | Solid State and Superconductivity Abstracts Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitle | Aerospace Database Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
DatabaseTitleList | Aerospace Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 0974-9845 |
EndPage | 646 |
ExternalDocumentID | 10_1007_s12648_020_01998_8 |
GroupedDBID | -EM 04Q 04W 06D 0R~ 0VY 203 29I 29~ 2JN 2KG 2VQ 30V 3V. 406 408 5GY 5VS 67Z 8FE 8FG 8G5 95. 96X AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH AAZMS ABAKF ABDZT ABECU ABFTV ABJNI ABJOX ABKCH ABMQK ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABXPI ACAOD ACCUX ACGFS ACHSB ACKNC ACMDZ ACMLO ACOKC ACPIV ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGNC AEJHL AEJRE AEMSY AENEX AEOHA AEPYU AESKC AETCA AEVLU AEXYK AFBBN AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALFXC ALMA_UNASSIGNED_HOLDINGS AMKLP AMXSW AMYLF AMYQR ANMIH AOCGG ARAPS ARMRJ AXYYD AYJHY AZQEC BENPR BGLVJ BGNMA BPHCQ CAG CCPQU COF CSCUP C~6 DDRTE DNIVK DPUIP DWQXO EBLON EBS EIOEI EJD ESBYG FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GUQSH H13 HCIFZ HG6 HMJXF HRMNR HZ~ I0C IKXTQ IWAJR IXC IXD J-C J0Z JBSCW JZLTJ KOV LLZTM M2O M4Y MA- NPVJJ NQJWS NU0 O9- O93 O9J P62 P9T PQQKQ PROAC PT4 R9I RLLFE ROL RSV S1Z S27 S3B SDH SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPH SPISZ SRMVM SSLCW STPWE T13 TSG U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W48 Z45 Z7X Z7Y ZMTXR ~A9 7U5 8FD AAPKM ABBRH ABDBE ABFSG ABRTQ ACSTC AEZWR AFDZB AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR AYFIA H8D L7M |
ID | FETCH-LOGICAL-p227t-adf74ea242e67e546d406c8ab653dad81caef6c3c511beb97ac4a1b79c438ac03 |
IEDL.DBID | U2A |
ISSN | 0973-1458 |
IngestDate | Fri Jul 25 01:07:59 EDT 2025 Fri Feb 21 02:46:21 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | Modified gravity Power law model Gravitational waves |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-p227t-adf74ea242e67e546d406c8ab653dad81caef6c3c511beb97ac4a1b79c438ac03 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-4776-8506 0000-0003-0012-7549 |
PQID | 2622099745 |
PQPubID | 2034531 |
PageCount | 10 |
ParticipantIDs | proquest_journals_2622099745 springer_journals_10_1007_s12648_020_01998_8 |
PublicationCentury | 2000 |
PublicationDate | 2022-02-01 |
PublicationDateYYYYMMDD | 2022-02-01 |
PublicationDate_xml | – month: 02 year: 2022 text: 2022-02-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New Delhi |
PublicationPlace_xml | – name: New Delhi – name: West Bengal |
PublicationTitle | Indian journal of physics |
PublicationTitleAbbrev | Indian J Phys |
PublicationYear | 2022 |
Publisher | Springer India Springer Nature B.V |
Publisher_xml | – name: Springer India – name: Springer Nature B.V |
References | A F Zakharov, A A Nucita, F De Paolis and G Ingrosso Phys. Rev. D74 107101 (2006). arXiv:astro-ph/0611051 AbbottBPAbbottRAbbottTDAcerneseFAckleyKAdamsCAdamsTAddessoPAdhikariRXAdyaVBAffeldtCAfroughMAgarwalBAgathosMAgatsumaKAggarwalNAguiarODAielloLAinAPhys. Rev. Lett.20171191611012017PhRvL.119p1101A10.1103/PhysRevLett.119.161101 NojiriSOdintsovSDInt. J. Geom. Meth. Mod. Phys.2007411510.1142/S0219887807001928[arXiv:hep-th/0601213] H R Kausar, L Philippoz and P Jetzer Phys. Rev. D93 124071 (2016). arXiv:1606.07000 FaraoniVNadeauSPhys. Rev. D2005721240052005PhRvD..72l4005F10.1103/PhysRevD.72.124005[arXiv:gr-qc/0511094] NojiriSOdintsovSDPhys. Rev. D2003681235122003PhRvD..68l3512N10.1103/PhysRevD.68.123512[arXiv:hep-th/0307288] PereiraJGSampsonACGen. Relativ. Gravit.20124412992012GReGr..44.1299P10.1007/s10714-012-1338-3 NojiriSOdintsovSDPhys. Lett. B20187794252018PhLB..779..425N10.1016/j.physletb.2018.01.078[arXiv:1711.00492] T Katsuragawa, T Nakamura, T Ikeda and S Capozziello Phys. Rev. D99 124050 (2019) AbbottBPAbbottRAbbottTDAbernathyMRAcerneseFAckleyKAdamsCAdamsTAddessoPAdhikariRXAdyaVBAffeldtCAgathosMAgatsumaKAggarwalNAguiarODAielloLAinAAjithPPhys. Rev. Lett.20161160611022016PhRvL.116f1102A370775810.1103/PhysRevLett.116.061102 BarrowJDOttewillACJ. Phys. A: Math. Gen.19831627571983JPhA...16.2757B10.1088/0305-4470/16/12/022 LeeKJF A Jenet and R H Price Astrophys. J.200868513042008ApJ...685.1304L10.1086/591080 Y S Myung (2018).arXiv:1608.01764[gr-qc] J Canosa J. Comput. Phys.7 255 (1971) D M Eardley, D L Lee and A P Lightman Phys. Rev. D8 3308 (1973) SotiriouTPFaraoniVRev. Mod. Phys.2010824512010RvMP...82..451S10.1103/RevModPhys.82.451[arXiv:0805.1726] UtiyamaRDeWittBSJ. Math. Phys.196236081962JMP.....3..608U10.1063/1.1724264 AbbottBPAbbottRAbbottTDAbernathyMRAcerneseFAckleyKAdamsCAdamsTAddessoPAdhikariRXAdyaVBAffeldtCAgathosMAgatsumaKAggarwalNAguiarODAielloLAinAAjithPPhys. Rev. Lett.20161162411032016PhRvL.116x1103A10.1103/PhysRevLett.116.241103 PodolskýJŠvarcRPhys. Rev. D.2012850440572012PhRvD..85d4057P10.1103/PhysRevD.85.044057 F A Jenet and J D Romano (2014). arXiv:1412.1142[gr-qc] NojiriSOdintsovSDPhys. Rev. D2008770260072008PhRvD..77b6007N10.1103/PhysRevD.77.026007[arXiv:0710.1738] A F Zakharov, D Borka, V B Jovanović and P Jovanović Adv. in Space Research54 1108 (2014). arXiv:1407.0366 T Chiba Phys. Lett. B575 1 (2003) NojiriSOdintsovSDPhys. Lett. B20076572382007PhLB..657..238N10.1016/j.physletb.2007.10.027[arXiv:0707.1941] S W Hawking and G F R Ellis The Large Scale Structure of Space-Time (Cambridge University Press) (1973) NojiriSOdintsovSDPhys. Rev. D2006740860052006PhRvD..74h6005N10.1103/PhysRevD.74.086005[arXiv:hep-th/0608008] JanaSMohantySPhys. Rev. D2019990440562019PhRvD..99d4056J398774110.1103/PhysRevD.99.044056 H Weyl Annalen der Physik364 101 (1919) A S Eddington The mathematical theory of relativity (Cambridge Univ. Press, Cambridge) (1924) GoswamiUDDekaKIJMP D20132213500832013IJMPD..2250083G[arXiv:1303.5868] S Capozziello Phys. Rev. D73 104019 (2006). arXiv:astro-ph/0604435 HellingsRWDownsGSAstrophys. J.1983265L391983ApJ...265L..39H10.1086/183954 D Liang, Y Gong, S Hou and Y Liu Phys. Rev. D95 104034. arXiv:1701.05998 S Carloni, P K S Dunsby, S Capozziello and A Troisi Class. Quant. Grav.22 4839 (2005). arXiv:gr-qc/0410046 V N Gheorghe and G Werth Charged particle traps: Physics and techniques of charged particle field confinement (Physica-Verlag NetLibrary, Inc. distributor, Heidelberg; Boulder) (2005) AbbottBPAbbottRAbbottTDAcerneseFAckleyKAdamsCAdamsTAddessoPAdhikariRXAdyaVBAffeldtCAfroughMAgarwalBAgathosMAgatsumaKAggarwalNAguiarODAielloLAinAPhys. Rev. Lett.20171182211012017PhRvL.118v1101A10.1103/PhysRevLett.118.221101 NewmanEPenroseRJ. Math. Phys.196235661962JMP.....3..566N10.1063/1.1724257 G Cognola, E Elizalde, S Nojiri, S D Odintsov, L Sebastiani and S Zerbini Phys. Rev. D77 046009 (2008). arXiv:0712.4017 NojiriSOdintsovSDPhys. Rept.2011505592011PhR...505...59N10.1016/j.physrep.2011.04.001[arXiv:1011.0544] L Yang, C C Lee and C Q Geng JCAP08 029 (2011) AbbottBPAbbottRAbbottTDAcerneseFAckleyKAdamsCAdamsTAddessoPAdhikariRXAdyaVBAffeldtCAfroughMAgarwalBAgathosMAgatsumaKAggarwalNAguiarODAielloLAinAPhys. Rev. Lett.20171191411012017PhRvL.119n1101A10.1103/PhysRevLett.119.141101 C Corda Int. J. Mod. Phys. A23 (10) 1521 (2008) K Lee, F A Jenet, R H Price, N Wex and M Kramer The Astrophysical Journal722 1589 (2010). arXiv:1008.2561 S Capozziello, M De Laurentis, S Nojiri and S D Odintsov Phys. Rev. D95 083524 (2017) S Nojiri, S D Odintsov and V K Oikonomou Phys. Rept.692 1 (2017). arXiv:1705.11098 D Borka, P Jovanović, V B Jovanović and A F Zakharov Phys. Rev. D85 124004 (2012). arXiv:1206.0851 C Corda JCAP0704 009 (2007) S Capozziello, S Carloni and A Troisi (2003). arXiv:astro-ph/0303041 L G Jaime, L Patio and M Salgado Phys. Rev. D87 024029 (2013). arXiv:1212.2604 C M F Mingarelli, T Sidery, I Mandel and A Vecchio Phys. Rev. D88 062005 (2013). arXiv:1306.5394 S Capozziello, M Capriolo and L Caso Eur. Phys. J. C80 156 (2020) V Faraoni Phys. Rev. D83 124044 (2011) AraujoAPereiraJGInt. J. Mod. Phys. D.20152415500992015IJMPD..2450099A10.1142/S0218271815500996 CapozzielloSM De Laurentis M Francaviglia Astropart. Phys.2008291252008APh....29..125C10.1016/j.astropartphys.2007.12.001 S Capozziello, C Corda and M F De Laurentis Phys. Lett. B669 255 (2008) S Hou, Y Gong and Y Liu Eur. Phys. J. C78 378 (2018) |
References_xml | – reference: AraujoAPereiraJGInt. J. Mod. Phys. D.20152415500992015IJMPD..2450099A10.1142/S0218271815500996 – reference: NojiriSOdintsovSDPhys. Lett. B20187794252018PhLB..779..425N10.1016/j.physletb.2018.01.078[arXiv:1711.00492] – reference: Y S Myung (2018).arXiv:1608.01764[gr-qc] – reference: G Cognola, E Elizalde, S Nojiri, S D Odintsov, L Sebastiani and S Zerbini Phys. Rev. D77 046009 (2008). arXiv:0712.4017 – reference: HellingsRWDownsGSAstrophys. J.1983265L391983ApJ...265L..39H10.1086/183954 – reference: AbbottBPAbbottRAbbottTDAcerneseFAckleyKAdamsCAdamsTAddessoPAdhikariRXAdyaVBAffeldtCAfroughMAgarwalBAgathosMAgatsumaKAggarwalNAguiarODAielloLAinAPhys. Rev. Lett.20171182211012017PhRvL.118v1101A10.1103/PhysRevLett.118.221101 – reference: S Carloni, P K S Dunsby, S Capozziello and A Troisi Class. Quant. Grav.22 4839 (2005). arXiv:gr-qc/0410046 – reference: GoswamiUDDekaKIJMP D20132213500832013IJMPD..2250083G[arXiv:1303.5868] – reference: PodolskýJŠvarcRPhys. Rev. D.2012850440572012PhRvD..85d4057P10.1103/PhysRevD.85.044057 – reference: C Corda Int. J. Mod. Phys. A23 (10) 1521 (2008) – reference: S W Hawking and G F R Ellis The Large Scale Structure of Space-Time (Cambridge University Press) (1973) – reference: T Katsuragawa, T Nakamura, T Ikeda and S Capozziello Phys. Rev. D99 124050 (2019) – reference: AbbottBPAbbottRAbbottTDAbernathyMRAcerneseFAckleyKAdamsCAdamsTAddessoPAdhikariRXAdyaVBAffeldtCAgathosMAgatsumaKAggarwalNAguiarODAielloLAinAAjithPPhys. Rev. Lett.20161162411032016PhRvL.116x1103A10.1103/PhysRevLett.116.241103 – reference: S Nojiri, S D Odintsov and V K Oikonomou Phys. Rept.692 1 (2017). arXiv:1705.11098 – reference: NojiriSOdintsovSDInt. J. Geom. Meth. Mod. Phys.2007411510.1142/S0219887807001928[arXiv:hep-th/0601213] – reference: D M Eardley, D L Lee and A P Lightman Phys. Rev. D8 3308 (1973) – reference: UtiyamaRDeWittBSJ. Math. Phys.196236081962JMP.....3..608U10.1063/1.1724264 – reference: L Yang, C C Lee and C Q Geng JCAP08 029 (2011) – reference: NewmanEPenroseRJ. Math. Phys.196235661962JMP.....3..566N10.1063/1.1724257 – reference: H R Kausar, L Philippoz and P Jetzer Phys. Rev. D93 124071 (2016). arXiv:1606.07000 – reference: LeeKJF A Jenet and R H Price Astrophys. J.200868513042008ApJ...685.1304L10.1086/591080 – reference: A S Eddington The mathematical theory of relativity (Cambridge Univ. Press, Cambridge) (1924) – reference: AbbottBPAbbottRAbbottTDAcerneseFAckleyKAdamsCAdamsTAddessoPAdhikariRXAdyaVBAffeldtCAfroughMAgarwalBAgathosMAgatsumaKAggarwalNAguiarODAielloLAinAPhys. Rev. Lett.20171191411012017PhRvL.119n1101A10.1103/PhysRevLett.119.141101 – reference: D Borka, P Jovanović, V B Jovanović and A F Zakharov Phys. Rev. D85 124004 (2012). arXiv:1206.0851 – reference: S Capozziello, C Corda and M F De Laurentis Phys. Lett. B669 255 (2008) – reference: J Canosa J. Comput. Phys.7 255 (1971) – reference: T Chiba Phys. Lett. B575 1 (2003) – reference: PereiraJGSampsonACGen. Relativ. Gravit.20124412992012GReGr..44.1299P10.1007/s10714-012-1338-3 – reference: S Capozziello, S Carloni and A Troisi (2003). arXiv:astro-ph/0303041 – reference: CapozzielloSM De Laurentis M Francaviglia Astropart. Phys.2008291252008APh....29..125C10.1016/j.astropartphys.2007.12.001 – reference: AbbottBPAbbottRAbbottTDAcerneseFAckleyKAdamsCAdamsTAddessoPAdhikariRXAdyaVBAffeldtCAfroughMAgarwalBAgathosMAgatsumaKAggarwalNAguiarODAielloLAinAPhys. Rev. Lett.20171191611012017PhRvL.119p1101A10.1103/PhysRevLett.119.161101 – reference: K Lee, F A Jenet, R H Price, N Wex and M Kramer The Astrophysical Journal722 1589 (2010). arXiv:1008.2561 – reference: V N Gheorghe and G Werth Charged particle traps: Physics and techniques of charged particle field confinement (Physica-Verlag NetLibrary, Inc. distributor, Heidelberg; Boulder) (2005) – reference: AbbottBPAbbottRAbbottTDAbernathyMRAcerneseFAckleyKAdamsCAdamsTAddessoPAdhikariRXAdyaVBAffeldtCAgathosMAgatsumaKAggarwalNAguiarODAielloLAinAAjithPPhys. Rev. Lett.20161160611022016PhRvL.116f1102A370775810.1103/PhysRevLett.116.061102 – reference: NojiriSOdintsovSDPhys. Lett. B20076572382007PhLB..657..238N10.1016/j.physletb.2007.10.027[arXiv:0707.1941] – reference: F A Jenet and J D Romano (2014). arXiv:1412.1142[gr-qc] – reference: C M F Mingarelli, T Sidery, I Mandel and A Vecchio Phys. Rev. D88 062005 (2013). arXiv:1306.5394 – reference: BarrowJDOttewillACJ. Phys. A: Math. Gen.19831627571983JPhA...16.2757B10.1088/0305-4470/16/12/022 – reference: NojiriSOdintsovSDPhys. Rev. D2006740860052006PhRvD..74h6005N10.1103/PhysRevD.74.086005[arXiv:hep-th/0608008] – reference: A F Zakharov, A A Nucita, F De Paolis and G Ingrosso Phys. Rev. D74 107101 (2006). arXiv:astro-ph/0611051 – reference: H Weyl Annalen der Physik364 101 (1919) – reference: V Faraoni Phys. Rev. D83 124044 (2011) – reference: JanaSMohantySPhys. Rev. D2019990440562019PhRvD..99d4056J398774110.1103/PhysRevD.99.044056 – reference: S Capozziello Phys. Rev. D73 104019 (2006). arXiv:astro-ph/0604435 – reference: FaraoniVNadeauSPhys. Rev. D2005721240052005PhRvD..72l4005F10.1103/PhysRevD.72.124005[arXiv:gr-qc/0511094] – reference: S Capozziello, M Capriolo and L Caso Eur. Phys. J. C80 156 (2020) – reference: D Liang, Y Gong, S Hou and Y Liu Phys. Rev. D95 104034. arXiv:1701.05998 – reference: L G Jaime, L Patio and M Salgado Phys. Rev. D87 024029 (2013). arXiv:1212.2604 – reference: NojiriSOdintsovSDPhys. Rept.2011505592011PhR...505...59N10.1016/j.physrep.2011.04.001[arXiv:1011.0544] – reference: C Corda JCAP0704 009 (2007) – reference: S Hou, Y Gong and Y Liu Eur. Phys. J. C78 378 (2018) – reference: SotiriouTPFaraoniVRev. Mod. Phys.2010824512010RvMP...82..451S10.1103/RevModPhys.82.451[arXiv:0805.1726] – reference: NojiriSOdintsovSDPhys. Rev. D2003681235122003PhRvD..68l3512N10.1103/PhysRevD.68.123512[arXiv:hep-th/0307288] – reference: A F Zakharov, D Borka, V B Jovanović and P Jovanović Adv. in Space Research54 1108 (2014). arXiv:1407.0366 – reference: S Capozziello, M De Laurentis, S Nojiri and S D Odintsov Phys. Rev. D95 083524 (2017) – reference: NojiriSOdintsovSDPhys. Rev. D2008770260072008PhRvD..77b6007N10.1103/PhysRevD.77.026007[arXiv:0710.1738] |
SSID | ssj0069175 |
Score | 2.4442081 |
Snippet | We investigate the different polarization modes of gravitational waves in
f
(
R
) gravity power law model in de Sitter space. It is seen that the massive... We investigate the different polarization modes of gravitational waves in f(R) gravity power law model in de Sitter space. It is seen that the massive scalar... |
SourceID | proquest springer |
SourceType | Aggregation Database Publisher |
StartPage | 637 |
SubjectTerms | Astrophysics and Astroparticles Gravitational waves Original Paper Physics Physics and Astronomy Polarization Power law Scalars Tensors |
Title | Gravitational waves in f(R) gravity power law model |
URI | https://link.springer.com/article/10.1007/s12648-020-01998-8 https://www.proquest.com/docview/2622099745 |
Volume | 96 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB60RfAiPrFaSw4eFAx0s3nsHlvpA8UexEI9Ldk8RJC1dGuL_94k7lIUL55ySEjIJOSbMN83A3CZeifWwRC2inJMU6uxuzcxJlYzSawS1Hrt8MOEj6f0bsZmlSisrNnudUgyvNQbsZsnY2H_3ekGYViyDU3m_u6eyDUlvfr9dSuH9Lo-Dw2OKEsqqczfc_xwLH_FQgPEDPdhr_INUe_7MA9gyxSHsBM4mqo8gni0kKsqpbYbtpYrU6LXAtmrx2v0Evo-0dxXPUNvco1CjZtjmA4HT7djXNU8wHNCxBJLbQU10gGn4cIwyrVDXJXInLNYS51EShrLVayco5SbPBVSURnlIlU0TqTqxifQKN4LcwqIWqUE8fvUjNqIpymxhkormfCxvLwF7XrrWXVxy4xwEsS0lLXgpjbHpnuT5NgbMnOGzIIhs-Tsf8PPYZd4IUHgP7ehsVx8mAsH78u8A83esN-f-Hb0fD_ohNP9Ajk_ny0 |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LSwMxEB5qRfQiPrFaNQcFBQPdbLLZPXgoam3t4yAt9LZms4kIUqVbW_p__KEmcZeiePHQc0LITCaZL8x8MwBnkQWxxg1hLWmAaaRTbOzGx0SnTBAtOdWWO9ztBc0BfRiyYQk-Cy6My3YvQpLupV6Q3WwyFrbfnZojhoV5KmVbzWfmo5Zdt27NqZ4T0rjr3zRx3ksAvxPCJ1ikmlMljENSAVeMBqnxZDIUScD8VKShJ4XSgfSlASCJSiIuJBVewiNJ_VDImm_WXYFVAz5Ce3cGpF6890ZSV87X1r3BHmVhTs35e88_gOyv2KtzaY0t2MyxKKp_G882lNRoB9ZcTqjMdsG_H4tpXsLbTJuJqcrQywjpi8dL9OzG5ujddllDr2KGXE-dPRgsRS_7UB69jdQBIKql5MTKmTKqvSCKiFZUaMG4jR0mFagWosf5RcliEhBH3qWsAleFOhbDi6LKVpGxUWTsFBmHh_-bfgrrzX63E3davfYRbBBLYnC511UoT8Yf6thAi0ly4k4WwdOyTekLaG_bIg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LSwMxEB5qRfEiPrFaNQcFBUO72ezr4KFYa2u1iFjobc3mIYKspVtb-q_8iSbpLkXx4sFzQsh8mWQmzHwzACeRcWK1GcKKUx_TSAms9cbFRAmPEcUDqgx3-L7nt_v0duANSvBZcGFstnsRkpxzGkyVpnRcGwpVWxDfTGIWNl-fuiWJhXlaZVfOpvrTll12mvqETwlpXT9dtXHeVwAPCQnGmAkVUMm0cZJ-ID3qC23VeMgS33MFE6HDmVQ-d7l2RhKZRAHjlDlJEHHqhozXXb3uEixTwz7WN6hPGsXbr6W2pX1NDRzsUC_MaTq_7_mbU_sjDmvNW2sD1nO_FDXmirQJJZluwYrND-XZNrg3IzbJy3nraVM2kRl6TZE6ezxHL3Zshoam4xp6Y1Nk--vsQP9fcNmFcvqeyj1AVHEeECOn8Khy_CgiSlKmmBeYOGJSgWohepxfmiwmPrFEXupV4KKAYzG8KLBsgIw1kLEFMg73_zb9GFYfmq34rtPrHsAaMXwGm4ZdhfJ49CEPtZcxTo7swSJ4_m9N-gKedt9V |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Gravitational+waves+in+f%28R%29+gravity+power+law+model&rft.jtitle=Indian+journal+of+physics&rft.au=Gogoi%2C+Dhruba+Jyoti&rft.au=Dev+Goswami%2C+Umananda&rft.date=2022-02-01&rft.pub=Springer+India&rft.issn=0973-1458&rft.eissn=0974-9845&rft.volume=96&rft.issue=2&rft.spage=637&rft.epage=646&rft_id=info:doi/10.1007%2Fs12648-020-01998-8&rft.externalDocID=10_1007_s12648_020_01998_8 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0973-1458&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0973-1458&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0973-1458&client=summon |