Gravitational waves in f(R) gravity power law model

We investigate the different polarization modes of gravitational waves in f ( R ) gravity power law model in de Sitter space. It is seen that the massive scalar field polarization mode exists in this model. The mass of the scalar field depends highly on the background curvature and the power term n...

Full description

Saved in:
Bibliographic Details
Published inIndian journal of physics Vol. 96; no. 2; pp. 637 - 646
Main Authors Gogoi, Dhruba Jyoti, Dev Goswami, Umananda
Format Journal Article
LanguageEnglish
Published New Delhi Springer India 01.02.2022
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract We investigate the different polarization modes of gravitational waves in f ( R ) gravity power law model in de Sitter space. It is seen that the massive scalar field polarization mode exists in this model. The mass of the scalar field depends highly on the background curvature and the power term n . However, we found that the model does not exhibit a massive scalar mode for n = 2 and instead, it shows a breathing mode in addition to the tensor plus and cross modes. Thus, mass of the scalar field is found to vary with n within the range 1 ≤ n ≤ 2 .
AbstractList We investigate the different polarization modes of gravitational waves in f(R) gravity power law model in de Sitter space. It is seen that the massive scalar field polarization mode exists in this model. The mass of the scalar field depends highly on the background curvature and the power term n. However, we found that the model does not exhibit a massive scalar mode for n=2 and instead, it shows a breathing mode in addition to the tensor plus and cross modes. Thus, mass of the scalar field is found to vary with n within the range 1≤n≤2.
We investigate the different polarization modes of gravitational waves in f ( R ) gravity power law model in de Sitter space. It is seen that the massive scalar field polarization mode exists in this model. The mass of the scalar field depends highly on the background curvature and the power term n . However, we found that the model does not exhibit a massive scalar mode for n = 2 and instead, it shows a breathing mode in addition to the tensor plus and cross modes. Thus, mass of the scalar field is found to vary with n within the range 1 ≤ n ≤ 2 .
Author Dev Goswami, Umananda
Gogoi, Dhruba Jyoti
Author_xml – sequence: 1
  givenname: Dhruba Jyoti
  orcidid: 0000-0002-4776-8506
  surname: Gogoi
  fullname: Gogoi, Dhruba Jyoti
  organization: Department of Physics, Dibrugarh University
– sequence: 2
  givenname: Umananda
  orcidid: 0000-0003-0012-7549
  surname: Dev Goswami
  fullname: Dev Goswami, Umananda
  email: umananda2@gmail.com
  organization: Department of Physics, Dibrugarh University
BookMark eNpFkE1Lw0AQhhepYFv9A54WvOhhdb8_jlJsFQqC6HmZbDYlJSYxmzb4742p4GkG5mF432eBZnVTR4SuGb1nlJqHxLiWllBOCWXOWWLP0Jw6I4mzUs2mXRAmlb1Ai5T2lGrHjJojsengWPbQl00NFR7gGBMua1zcvt3h3XT7xm0zxA5XMODPJo_VJTovoErx6m8u0cf66X31TLavm5fV45a0nJueQF4YGYFLHrWJSupcUh0sZFqJHHLLAsRCBxEUY1nMnIEggWXGBSksBCqW6Ob0t-2ar0NMvd83h26MmTzXnFM39lMjJU5Uaruy3sXun2LU_9rxJzt-tOMnO96KHzKjWTY
ContentType Journal Article
Copyright Indian Association for the Cultivation of Science 2021
Indian Association for the Cultivation of Science 2021.
Copyright_xml – notice: Indian Association for the Cultivation of Science 2021
– notice: Indian Association for the Cultivation of Science 2021.
DBID 7U5
8FD
H8D
L7M
DOI 10.1007/s12648-020-01998-8
DatabaseName Solid State and Superconductivity Abstracts
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitle Aerospace Database
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitleList Aerospace Database

DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 0974-9845
EndPage 646
ExternalDocumentID 10_1007_s12648_020_01998_8
GroupedDBID -EM
04Q
04W
06D
0R~
0VY
203
29I
29~
2JN
2KG
2VQ
30V
3V.
406
408
5GY
5VS
67Z
8FE
8FG
8G5
95.
96X
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
AAZMS
ABAKF
ABDZT
ABECU
ABFTV
ABJNI
ABJOX
ABKCH
ABMQK
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABXPI
ACAOD
ACCUX
ACGFS
ACHSB
ACKNC
ACMDZ
ACMLO
ACOKC
ACPIV
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGNC
AEJHL
AEJRE
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETCA
AEVLU
AEXYK
AFBBN
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALFXC
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMXSW
AMYLF
AMYQR
ANMIH
AOCGG
ARAPS
ARMRJ
AXYYD
AYJHY
AZQEC
BENPR
BGLVJ
BGNMA
BPHCQ
CAG
CCPQU
COF
CSCUP
C~6
DDRTE
DNIVK
DPUIP
DWQXO
EBLON
EBS
EIOEI
EJD
ESBYG
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GUQSH
H13
HCIFZ
HG6
HMJXF
HRMNR
HZ~
I0C
IKXTQ
IWAJR
IXC
IXD
J-C
J0Z
JBSCW
JZLTJ
KOV
LLZTM
M2O
M4Y
MA-
NPVJJ
NQJWS
NU0
O9-
O93
O9J
P62
P9T
PQQKQ
PROAC
PT4
R9I
RLLFE
ROL
RSV
S1Z
S27
S3B
SDH
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPH
SPISZ
SRMVM
SSLCW
STPWE
T13
TSG
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W48
Z45
Z7X
Z7Y
ZMTXR
~A9
7U5
8FD
AAPKM
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
H8D
L7M
ID FETCH-LOGICAL-p227t-adf74ea242e67e546d406c8ab653dad81caef6c3c511beb97ac4a1b79c438ac03
IEDL.DBID U2A
ISSN 0973-1458
IngestDate Fri Jul 25 01:07:59 EDT 2025
Fri Feb 21 02:46:21 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Modified gravity
Power law model
Gravitational waves
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-p227t-adf74ea242e67e546d406c8ab653dad81caef6c3c511beb97ac4a1b79c438ac03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-4776-8506
0000-0003-0012-7549
PQID 2622099745
PQPubID 2034531
PageCount 10
ParticipantIDs proquest_journals_2622099745
springer_journals_10_1007_s12648_020_01998_8
PublicationCentury 2000
PublicationDate 2022-02-01
PublicationDateYYYYMMDD 2022-02-01
PublicationDate_xml – month: 02
  year: 2022
  text: 2022-02-01
  day: 01
PublicationDecade 2020
PublicationPlace New Delhi
PublicationPlace_xml – name: New Delhi
– name: West Bengal
PublicationTitle Indian journal of physics
PublicationTitleAbbrev Indian J Phys
PublicationYear 2022
Publisher Springer India
Springer Nature B.V
Publisher_xml – name: Springer India
– name: Springer Nature B.V
References A F Zakharov, A A Nucita, F De Paolis and G Ingrosso Phys. Rev. D74 107101 (2006). arXiv:astro-ph/0611051
AbbottBPAbbottRAbbottTDAcerneseFAckleyKAdamsCAdamsTAddessoPAdhikariRXAdyaVBAffeldtCAfroughMAgarwalBAgathosMAgatsumaKAggarwalNAguiarODAielloLAinAPhys. Rev. Lett.20171191611012017PhRvL.119p1101A10.1103/PhysRevLett.119.161101
NojiriSOdintsovSDInt. J. Geom. Meth. Mod. Phys.2007411510.1142/S0219887807001928[arXiv:hep-th/0601213]
H R Kausar, L Philippoz and P Jetzer Phys. Rev. D93 124071 (2016). arXiv:1606.07000
FaraoniVNadeauSPhys. Rev. D2005721240052005PhRvD..72l4005F10.1103/PhysRevD.72.124005[arXiv:gr-qc/0511094]
NojiriSOdintsovSDPhys. Rev. D2003681235122003PhRvD..68l3512N10.1103/PhysRevD.68.123512[arXiv:hep-th/0307288]
PereiraJGSampsonACGen. Relativ. Gravit.20124412992012GReGr..44.1299P10.1007/s10714-012-1338-3
NojiriSOdintsovSDPhys. Lett. B20187794252018PhLB..779..425N10.1016/j.physletb.2018.01.078[arXiv:1711.00492]
T Katsuragawa, T Nakamura, T Ikeda and S Capozziello Phys. Rev. D99 124050 (2019)
AbbottBPAbbottRAbbottTDAbernathyMRAcerneseFAckleyKAdamsCAdamsTAddessoPAdhikariRXAdyaVBAffeldtCAgathosMAgatsumaKAggarwalNAguiarODAielloLAinAAjithPPhys. Rev. Lett.20161160611022016PhRvL.116f1102A370775810.1103/PhysRevLett.116.061102
BarrowJDOttewillACJ. Phys. A: Math. Gen.19831627571983JPhA...16.2757B10.1088/0305-4470/16/12/022
LeeKJF A Jenet and R H Price Astrophys. J.200868513042008ApJ...685.1304L10.1086/591080
Y S Myung (2018).arXiv:1608.01764[gr-qc]
J Canosa J. Comput. Phys.7 255 (1971)
D M Eardley, D L Lee and A P Lightman Phys. Rev. D8 3308 (1973)
SotiriouTPFaraoniVRev. Mod. Phys.2010824512010RvMP...82..451S10.1103/RevModPhys.82.451[arXiv:0805.1726]
UtiyamaRDeWittBSJ. Math. Phys.196236081962JMP.....3..608U10.1063/1.1724264
AbbottBPAbbottRAbbottTDAbernathyMRAcerneseFAckleyKAdamsCAdamsTAddessoPAdhikariRXAdyaVBAffeldtCAgathosMAgatsumaKAggarwalNAguiarODAielloLAinAAjithPPhys. Rev. Lett.20161162411032016PhRvL.116x1103A10.1103/PhysRevLett.116.241103
PodolskýJŠvarcRPhys. Rev. D.2012850440572012PhRvD..85d4057P10.1103/PhysRevD.85.044057
F A Jenet and J D Romano (2014). arXiv:1412.1142[gr-qc]
NojiriSOdintsovSDPhys. Rev. D2008770260072008PhRvD..77b6007N10.1103/PhysRevD.77.026007[arXiv:0710.1738]
A F Zakharov, D Borka, V B Jovanović and P Jovanović Adv. in Space Research54 1108 (2014). arXiv:1407.0366
T Chiba Phys. Lett. B575 1 (2003)
NojiriSOdintsovSDPhys. Lett. B20076572382007PhLB..657..238N10.1016/j.physletb.2007.10.027[arXiv:0707.1941]
S W Hawking and G F R Ellis The Large Scale Structure of Space-Time (Cambridge University Press) (1973)
NojiriSOdintsovSDPhys. Rev. D2006740860052006PhRvD..74h6005N10.1103/PhysRevD.74.086005[arXiv:hep-th/0608008]
JanaSMohantySPhys. Rev. D2019990440562019PhRvD..99d4056J398774110.1103/PhysRevD.99.044056
H Weyl Annalen der Physik364 101 (1919)
A S Eddington The mathematical theory of relativity (Cambridge Univ. Press, Cambridge) (1924)
GoswamiUDDekaKIJMP D20132213500832013IJMPD..2250083G[arXiv:1303.5868]
S Capozziello Phys. Rev. D73 104019 (2006). arXiv:astro-ph/0604435
HellingsRWDownsGSAstrophys. J.1983265L391983ApJ...265L..39H10.1086/183954
D Liang, Y Gong, S Hou and Y Liu Phys. Rev. D95 104034. arXiv:1701.05998
S Carloni, P K S Dunsby, S Capozziello and A Troisi Class. Quant. Grav.22 4839 (2005). arXiv:gr-qc/0410046
V N Gheorghe and G Werth Charged particle traps: Physics and techniques of charged particle field confinement (Physica-Verlag NetLibrary, Inc. distributor, Heidelberg; Boulder) (2005)
AbbottBPAbbottRAbbottTDAcerneseFAckleyKAdamsCAdamsTAddessoPAdhikariRXAdyaVBAffeldtCAfroughMAgarwalBAgathosMAgatsumaKAggarwalNAguiarODAielloLAinAPhys. Rev. Lett.20171182211012017PhRvL.118v1101A10.1103/PhysRevLett.118.221101
NewmanEPenroseRJ. Math. Phys.196235661962JMP.....3..566N10.1063/1.1724257
G Cognola, E Elizalde, S Nojiri, S D Odintsov, L Sebastiani and S Zerbini Phys. Rev. D77 046009 (2008). arXiv:0712.4017
NojiriSOdintsovSDPhys. Rept.2011505592011PhR...505...59N10.1016/j.physrep.2011.04.001[arXiv:1011.0544]
L Yang, C C Lee and C Q Geng JCAP08 029 (2011)
AbbottBPAbbottRAbbottTDAcerneseFAckleyKAdamsCAdamsTAddessoPAdhikariRXAdyaVBAffeldtCAfroughMAgarwalBAgathosMAgatsumaKAggarwalNAguiarODAielloLAinAPhys. Rev. Lett.20171191411012017PhRvL.119n1101A10.1103/PhysRevLett.119.141101
C Corda Int. J. Mod. Phys. A23 (10) 1521 (2008)
K Lee, F A Jenet, R H Price, N Wex and M Kramer The Astrophysical Journal722 1589 (2010). arXiv:1008.2561
S Capozziello, M De Laurentis, S Nojiri and S D Odintsov Phys. Rev. D95 083524 (2017)
S Nojiri, S D Odintsov and V K Oikonomou Phys. Rept.692 1 (2017). arXiv:1705.11098
D Borka, P Jovanović, V B Jovanović and A F Zakharov Phys. Rev. D85 124004 (2012). arXiv:1206.0851
C Corda JCAP0704 009 (2007)
S Capozziello, S Carloni and A Troisi (2003). arXiv:astro-ph/0303041
L G Jaime, L Patio and M Salgado Phys. Rev. D87 024029 (2013). arXiv:1212.2604
C M F Mingarelli, T Sidery, I Mandel and A Vecchio Phys. Rev. D88 062005 (2013). arXiv:1306.5394
S Capozziello, M Capriolo and L Caso Eur. Phys. J. C80 156 (2020)
V Faraoni Phys. Rev. D83 124044 (2011)
AraujoAPereiraJGInt. J. Mod. Phys. D.20152415500992015IJMPD..2450099A10.1142/S0218271815500996
CapozzielloSM De Laurentis M Francaviglia Astropart. Phys.2008291252008APh....29..125C10.1016/j.astropartphys.2007.12.001
S Capozziello, C Corda and M F De Laurentis Phys. Lett. B669 255 (2008)
S Hou, Y Gong and Y Liu Eur. Phys. J. C78 378 (2018)
References_xml – reference: AraujoAPereiraJGInt. J. Mod. Phys. D.20152415500992015IJMPD..2450099A10.1142/S0218271815500996
– reference: NojiriSOdintsovSDPhys. Lett. B20187794252018PhLB..779..425N10.1016/j.physletb.2018.01.078[arXiv:1711.00492]
– reference: Y S Myung (2018).arXiv:1608.01764[gr-qc]
– reference: G Cognola, E Elizalde, S Nojiri, S D Odintsov, L Sebastiani and S Zerbini Phys. Rev. D77 046009 (2008). arXiv:0712.4017
– reference: HellingsRWDownsGSAstrophys. J.1983265L391983ApJ...265L..39H10.1086/183954
– reference: AbbottBPAbbottRAbbottTDAcerneseFAckleyKAdamsCAdamsTAddessoPAdhikariRXAdyaVBAffeldtCAfroughMAgarwalBAgathosMAgatsumaKAggarwalNAguiarODAielloLAinAPhys. Rev. Lett.20171182211012017PhRvL.118v1101A10.1103/PhysRevLett.118.221101
– reference: S Carloni, P K S Dunsby, S Capozziello and A Troisi Class. Quant. Grav.22 4839 (2005). arXiv:gr-qc/0410046
– reference: GoswamiUDDekaKIJMP D20132213500832013IJMPD..2250083G[arXiv:1303.5868]
– reference: PodolskýJŠvarcRPhys. Rev. D.2012850440572012PhRvD..85d4057P10.1103/PhysRevD.85.044057
– reference: C Corda Int. J. Mod. Phys. A23 (10) 1521 (2008)
– reference: S W Hawking and G F R Ellis The Large Scale Structure of Space-Time (Cambridge University Press) (1973)
– reference: T Katsuragawa, T Nakamura, T Ikeda and S Capozziello Phys. Rev. D99 124050 (2019)
– reference: AbbottBPAbbottRAbbottTDAbernathyMRAcerneseFAckleyKAdamsCAdamsTAddessoPAdhikariRXAdyaVBAffeldtCAgathosMAgatsumaKAggarwalNAguiarODAielloLAinAAjithPPhys. Rev. Lett.20161162411032016PhRvL.116x1103A10.1103/PhysRevLett.116.241103
– reference: S Nojiri, S D Odintsov and V K Oikonomou Phys. Rept.692 1 (2017). arXiv:1705.11098
– reference: NojiriSOdintsovSDInt. J. Geom. Meth. Mod. Phys.2007411510.1142/S0219887807001928[arXiv:hep-th/0601213]
– reference: D M Eardley, D L Lee and A P Lightman Phys. Rev. D8 3308 (1973)
– reference: UtiyamaRDeWittBSJ. Math. Phys.196236081962JMP.....3..608U10.1063/1.1724264
– reference: L Yang, C C Lee and C Q Geng JCAP08 029 (2011)
– reference: NewmanEPenroseRJ. Math. Phys.196235661962JMP.....3..566N10.1063/1.1724257
– reference: H R Kausar, L Philippoz and P Jetzer Phys. Rev. D93 124071 (2016). arXiv:1606.07000
– reference: LeeKJF A Jenet and R H Price Astrophys. J.200868513042008ApJ...685.1304L10.1086/591080
– reference: A S Eddington The mathematical theory of relativity (Cambridge Univ. Press, Cambridge) (1924)
– reference: AbbottBPAbbottRAbbottTDAcerneseFAckleyKAdamsCAdamsTAddessoPAdhikariRXAdyaVBAffeldtCAfroughMAgarwalBAgathosMAgatsumaKAggarwalNAguiarODAielloLAinAPhys. Rev. Lett.20171191411012017PhRvL.119n1101A10.1103/PhysRevLett.119.141101
– reference: D Borka, P Jovanović, V B Jovanović and A F Zakharov Phys. Rev. D85 124004 (2012). arXiv:1206.0851
– reference: S Capozziello, C Corda and M F De Laurentis Phys. Lett. B669 255 (2008)
– reference: J Canosa J. Comput. Phys.7 255 (1971)
– reference: T Chiba Phys. Lett. B575 1 (2003)
– reference: PereiraJGSampsonACGen. Relativ. Gravit.20124412992012GReGr..44.1299P10.1007/s10714-012-1338-3
– reference: S Capozziello, S Carloni and A Troisi (2003). arXiv:astro-ph/0303041
– reference: CapozzielloSM De Laurentis M Francaviglia Astropart. Phys.2008291252008APh....29..125C10.1016/j.astropartphys.2007.12.001
– reference: AbbottBPAbbottRAbbottTDAcerneseFAckleyKAdamsCAdamsTAddessoPAdhikariRXAdyaVBAffeldtCAfroughMAgarwalBAgathosMAgatsumaKAggarwalNAguiarODAielloLAinAPhys. Rev. Lett.20171191611012017PhRvL.119p1101A10.1103/PhysRevLett.119.161101
– reference: K Lee, F A Jenet, R H Price, N Wex and M Kramer The Astrophysical Journal722 1589 (2010). arXiv:1008.2561
– reference: V N Gheorghe and G Werth Charged particle traps: Physics and techniques of charged particle field confinement (Physica-Verlag NetLibrary, Inc. distributor, Heidelberg; Boulder) (2005)
– reference: AbbottBPAbbottRAbbottTDAbernathyMRAcerneseFAckleyKAdamsCAdamsTAddessoPAdhikariRXAdyaVBAffeldtCAgathosMAgatsumaKAggarwalNAguiarODAielloLAinAAjithPPhys. Rev. Lett.20161160611022016PhRvL.116f1102A370775810.1103/PhysRevLett.116.061102
– reference: NojiriSOdintsovSDPhys. Lett. B20076572382007PhLB..657..238N10.1016/j.physletb.2007.10.027[arXiv:0707.1941]
– reference: F A Jenet and J D Romano (2014). arXiv:1412.1142[gr-qc]
– reference: C M F Mingarelli, T Sidery, I Mandel and A Vecchio Phys. Rev. D88 062005 (2013). arXiv:1306.5394
– reference: BarrowJDOttewillACJ. Phys. A: Math. Gen.19831627571983JPhA...16.2757B10.1088/0305-4470/16/12/022
– reference: NojiriSOdintsovSDPhys. Rev. D2006740860052006PhRvD..74h6005N10.1103/PhysRevD.74.086005[arXiv:hep-th/0608008]
– reference: A F Zakharov, A A Nucita, F De Paolis and G Ingrosso Phys. Rev. D74 107101 (2006). arXiv:astro-ph/0611051
– reference: H Weyl Annalen der Physik364 101 (1919)
– reference: V Faraoni Phys. Rev. D83 124044 (2011)
– reference: JanaSMohantySPhys. Rev. D2019990440562019PhRvD..99d4056J398774110.1103/PhysRevD.99.044056
– reference: S Capozziello Phys. Rev. D73 104019 (2006). arXiv:astro-ph/0604435
– reference: FaraoniVNadeauSPhys. Rev. D2005721240052005PhRvD..72l4005F10.1103/PhysRevD.72.124005[arXiv:gr-qc/0511094]
– reference: S Capozziello, M Capriolo and L Caso Eur. Phys. J. C80 156 (2020)
– reference: D Liang, Y Gong, S Hou and Y Liu Phys. Rev. D95 104034. arXiv:1701.05998
– reference: L G Jaime, L Patio and M Salgado Phys. Rev. D87 024029 (2013). arXiv:1212.2604
– reference: NojiriSOdintsovSDPhys. Rept.2011505592011PhR...505...59N10.1016/j.physrep.2011.04.001[arXiv:1011.0544]
– reference: C Corda JCAP0704 009 (2007)
– reference: S Hou, Y Gong and Y Liu Eur. Phys. J. C78 378 (2018)
– reference: SotiriouTPFaraoniVRev. Mod. Phys.2010824512010RvMP...82..451S10.1103/RevModPhys.82.451[arXiv:0805.1726]
– reference: NojiriSOdintsovSDPhys. Rev. D2003681235122003PhRvD..68l3512N10.1103/PhysRevD.68.123512[arXiv:hep-th/0307288]
– reference: A F Zakharov, D Borka, V B Jovanović and P Jovanović Adv. in Space Research54 1108 (2014). arXiv:1407.0366
– reference: S Capozziello, M De Laurentis, S Nojiri and S D Odintsov Phys. Rev. D95 083524 (2017)
– reference: NojiriSOdintsovSDPhys. Rev. D2008770260072008PhRvD..77b6007N10.1103/PhysRevD.77.026007[arXiv:0710.1738]
SSID ssj0069175
Score 2.4442081
Snippet We investigate the different polarization modes of gravitational waves in f ( R ) gravity power law model in de Sitter space. It is seen that the massive...
We investigate the different polarization modes of gravitational waves in f(R) gravity power law model in de Sitter space. It is seen that the massive scalar...
SourceID proquest
springer
SourceType Aggregation Database
Publisher
StartPage 637
SubjectTerms Astrophysics and Astroparticles
Gravitational waves
Original Paper
Physics
Physics and Astronomy
Polarization
Power law
Scalars
Tensors
Title Gravitational waves in f(R) gravity power law model
URI https://link.springer.com/article/10.1007/s12648-020-01998-8
https://www.proquest.com/docview/2622099745
Volume 96
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB60RfAiPrFaSw4eFAx0s3nsHlvpA8UexEI9Ldk8RJC1dGuL_94k7lIUL55ySEjIJOSbMN83A3CZeifWwRC2inJMU6uxuzcxJlYzSawS1Hrt8MOEj6f0bsZmlSisrNnudUgyvNQbsZsnY2H_3ekGYViyDU3m_u6eyDUlvfr9dSuH9Lo-Dw2OKEsqqczfc_xwLH_FQgPEDPdhr_INUe_7MA9gyxSHsBM4mqo8gni0kKsqpbYbtpYrU6LXAtmrx2v0Evo-0dxXPUNvco1CjZtjmA4HT7djXNU8wHNCxBJLbQU10gGn4cIwyrVDXJXInLNYS51EShrLVayco5SbPBVSURnlIlU0TqTqxifQKN4LcwqIWqUE8fvUjNqIpymxhkormfCxvLwF7XrrWXVxy4xwEsS0lLXgpjbHpnuT5NgbMnOGzIIhs-Tsf8PPYZd4IUHgP7ehsVx8mAsH78u8A83esN-f-Hb0fD_ohNP9Ajk_ny0
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LSwMxEB5qRfQiPrFaNQcFBQPdbLLZPXgoam3t4yAt9LZms4kIUqVbW_p__KEmcZeiePHQc0LITCaZL8x8MwBnkQWxxg1hLWmAaaRTbOzGx0SnTBAtOdWWO9ztBc0BfRiyYQk-Cy6My3YvQpLupV6Q3WwyFrbfnZojhoV5KmVbzWfmo5Zdt27NqZ4T0rjr3zRx3ksAvxPCJ1ikmlMljENSAVeMBqnxZDIUScD8VKShJ4XSgfSlASCJSiIuJBVewiNJ_VDImm_WXYFVAz5Ce3cGpF6890ZSV87X1r3BHmVhTs35e88_gOyv2KtzaY0t2MyxKKp_G882lNRoB9ZcTqjMdsG_H4tpXsLbTJuJqcrQywjpi8dL9OzG5ujddllDr2KGXE-dPRgsRS_7UB69jdQBIKql5MTKmTKqvSCKiFZUaMG4jR0mFagWosf5RcliEhBH3qWsAleFOhbDi6LKVpGxUWTsFBmHh_-bfgrrzX63E3davfYRbBBLYnC511UoT8Yf6thAi0ly4k4WwdOyTekLaG_bIg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LSwMxEB5qRfEiPrFaNQcFBUO72ezr4KFYa2u1iFjobc3mIYKspVtb-q_8iSbpLkXx4sFzQsh8mWQmzHwzACeRcWK1GcKKUx_TSAms9cbFRAmPEcUDqgx3-L7nt_v0duANSvBZcGFstnsRkpxzGkyVpnRcGwpVWxDfTGIWNl-fuiWJhXlaZVfOpvrTll12mvqETwlpXT9dtXHeVwAPCQnGmAkVUMm0cZJ-ID3qC23VeMgS33MFE6HDmVQ-d7l2RhKZRAHjlDlJEHHqhozXXb3uEixTwz7WN6hPGsXbr6W2pX1NDRzsUC_MaTq_7_mbU_sjDmvNW2sD1nO_FDXmirQJJZluwYrND-XZNrg3IzbJy3nraVM2kRl6TZE6ezxHL3Zshoam4xp6Y1Nk--vsQP9fcNmFcvqeyj1AVHEeECOn8Khy_CgiSlKmmBeYOGJSgWohepxfmiwmPrFEXupV4KKAYzG8KLBsgIw1kLEFMg73_zb9GFYfmq34rtPrHsAaMXwGm4ZdhfJ49CEPtZcxTo7swSJ4_m9N-gKedt9V
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Gravitational+waves+in+f%28R%29+gravity+power+law+model&rft.jtitle=Indian+journal+of+physics&rft.au=Gogoi%2C+Dhruba+Jyoti&rft.au=Dev+Goswami%2C+Umananda&rft.date=2022-02-01&rft.pub=Springer+India&rft.issn=0973-1458&rft.eissn=0974-9845&rft.volume=96&rft.issue=2&rft.spage=637&rft.epage=646&rft_id=info:doi/10.1007%2Fs12648-020-01998-8&rft.externalDocID=10_1007_s12648_020_01998_8
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0973-1458&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0973-1458&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0973-1458&client=summon