On some properties of partial quotients of the continued fraction expansion of d with even period
Let d be a non-square positive integer such that the period of the continued fraction expansion of d is even. We give some relations between some properties of partial quotients of the continued fraction expansion of d , which emerge from numerical experiments.
Saved in:
Published in | Archiv der Mathematik Vol. 114; no. 6; pp. 649 - 660 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Cham
Springer International Publishing
01.06.2020
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Let
d
be a non-square positive integer such that the period of the continued fraction expansion of
d
is even. We give some relations between some properties of partial quotients of the continued fraction expansion of
d
, which emerge from numerical experiments. |
---|---|
AbstractList | Let d be a non-square positive integer such that the period of the continued fraction expansion of d is even. We give some relations between some properties of partial quotients of the continued fraction expansion of d, which emerge from numerical experiments. Let d be a non-square positive integer such that the period of the continued fraction expansion of d is even. We give some relations between some properties of partial quotients of the continued fraction expansion of d , which emerge from numerical experiments. |
Author | Tomita, Koshi Kawamoto, Fuminori Kishi, Yasuhiro |
Author_xml | – sequence: 1 givenname: Fuminori surname: Kawamoto fullname: Kawamoto, Fuminori organization: Gakushuin University – sequence: 2 givenname: Yasuhiro surname: Kishi fullname: Kishi, Yasuhiro email: ykishi@auecc.aichi-edu.ac.jp organization: Aichi University of Education – sequence: 3 givenname: Koshi surname: Tomita fullname: Tomita, Koshi organization: Meijo University |
BookMark | eNpFkE9LAzEQxYNUsK1-AU8Bz9FJsrvJHqX4Dwq9KHgL6e7EbqnJdpNVP75pK3iamTc_3jBvRiY-eCTkmsMtB1B3EQC4ZCCAAS9kwdQZmfIij7qWekKmeS-Z1vX7BZnFuM200KqeErvyNIZPpP0QehxSh5EGR3ubW7uj-zFkyaejmDZIm-BT50dsqRtsk7rgKf701sdDl5mWfndpQ_ELPc1-XWgvybmzu4hXf3VO3h4fXhfPbLl6elncL1kvhEpMQwFKguaOl6oRZeNQaiycbrniotJrYS2vhV2rsqpUs5aiQVdqW1lZNnWLck5uTr75k_2IMZltGAefTxpRQJVdNYdMyRMV-6HzHzj8UxzMIUtzytLkLM0xS6PkL7-eaaM |
ContentType | Journal Article |
Copyright | Springer Nature Switzerland AG 2020 Springer Nature Switzerland AG 2020. |
Copyright_xml | – notice: Springer Nature Switzerland AG 2020 – notice: Springer Nature Switzerland AG 2020. |
DOI | 10.1007/s00013-020-01434-7 |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 1420-8938 |
EndPage | 660 |
ExternalDocumentID | 10_1007_s00013_020_01434_7 |
GroupedDBID | --Z -52 -5D -5G -BR -EM -Y2 -~C -~X .86 .VR 06D 0R~ 0VY 199 1N0 1SB 2.D 203 23M 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 78A 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABEFU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABLJU ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFDYV AFEXP AFGCZ AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AI. AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BAPOH BBWZM BDATZ BGNMA BSONS CAG COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ H~9 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW LAS LLZTM M4Y MA- MBV N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P2P P9R PF0 PKN PT4 PT5 QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCLPG SDD SDH SDM SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW VH1 W23 W48 WK8 YLTOR Z45 Z7U Z7X Z83 Z87 Z88 Z8O Z8R Z8W Z91 ZCG ZMTXR ZWQNP ~EX AAPKM ABBRH ABDBE ABFSG ABRTQ ACSTC AEZWR AFDZB AFHIU AFOHR AHPBZ AHWEU AIXLP AMVHM ATHPR AYFIA |
ID | FETCH-LOGICAL-p227t-804073081f157c25cfe38e4f8d171268b2aa192ab75667cb32cef58a6a35c9de3 |
IEDL.DBID | U2A |
ISSN | 0003-889X |
IngestDate | Fri Jul 25 11:03:50 EDT 2025 Fri Feb 21 02:37:32 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | Secondary 11R11 11R29 Primary 11A55 Class numbers Real quadratic fields Continued fractions 11R27 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-p227t-804073081f157c25cfe38e4f8d171268b2aa192ab75667cb32cef58a6a35c9de3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2406157810 |
PQPubID | 2043594 |
PageCount | 12 |
ParticipantIDs | proquest_journals_2406157810 springer_journals_10_1007_s00013_020_01434_7 |
PublicationCentury | 2000 |
PublicationDate | 2020-06-01 |
PublicationDateYYYYMMDD | 2020-06-01 |
PublicationDate_xml | – month: 06 year: 2020 text: 2020-06-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Cham |
PublicationPlace_xml | – name: Cham – name: Heidelberg |
PublicationTitle | Archiv der Mathematik |
PublicationTitleAbbrev | Arch. Math |
PublicationYear | 2020 |
Publisher | Springer International Publishing Springer Nature B.V |
Publisher_xml | – name: Springer International Publishing – name: Springer Nature B.V |
References | Kubo, K.: Relations between the primary symmetric parts and positive integers of minimal type in continued fraction expansions. Tokyo University of Science, Master thesis (2019) (in Japanese) LouboutinSContinued fractions and real quadratic fieldsJ. Number Theory19883016717696191410.1016/0022-314X(88)90015-7 Perron, O.: Die Lehre von den Kettenbrüchen, Band I: Elementare Kettenbrüche, 3te Aufl. B.G. Teubner Verlagsgesellschaft, Stuttgart (1954) KawamotoFTomitaKContinued fractions and certain real quadratic fields of minimal typeJ. Math. Soc. Japan2008603865903244041610.2969/jmsj/06030865 Golubeva, E.P.: Quadratic irrationalities with a fixed length of the period of continued fraction expansion, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 196 (1991), Modul. Funktsii Kvadrat. Formy. 2, 5–30, 172; translation in J. Math. Sci. 70(6), 2059–2076 (1994) LouboutinSChakrabortyKHoqueAPandeyPOn the continued fraction expansions of p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sqrt{p}$$\end{document} and 2p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sqrt{2p}$$\end{document} for primes p≡3(mod4)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p\equiv 3\ (\text{mod}\ 4)$$\end{document}Class Groups of Number Fields and Related Topics2020SingaporeSpringer17517810.1007/978-981-15-1514-9_16 Halter-KochFQuadratic Irrationals: An Introduction to Classical Number Theory2013Boca Raton, FLCRC Press10.1201/b14968 KawamotoFKishiYTomitaKContinued fraction expansions with even period and priary symmetric parts with extremely large endComm. Math. Univ. Sancti Pauli20156421311551415.11161 KawamotoFTomitaKContinued fractions with even period and an infinite family of real quadratic fields of minimal typeOsaka J. Math.200946494999326049171247.11140 |
References_xml | – reference: LouboutinSChakrabortyKHoqueAPandeyPOn the continued fraction expansions of p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sqrt{p}$$\end{document} and 2p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sqrt{2p}$$\end{document} for primes p≡3(mod4)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p\equiv 3\ (\text{mod}\ 4)$$\end{document}Class Groups of Number Fields and Related Topics2020SingaporeSpringer17517810.1007/978-981-15-1514-9_16 – reference: Golubeva, E.P.: Quadratic irrationalities with a fixed length of the period of continued fraction expansion, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 196 (1991), Modul. Funktsii Kvadrat. Formy. 2, 5–30, 172; translation in J. Math. Sci. 70(6), 2059–2076 (1994) – reference: KawamotoFTomitaKContinued fractions with even period and an infinite family of real quadratic fields of minimal typeOsaka J. Math.200946494999326049171247.11140 – reference: LouboutinSContinued fractions and real quadratic fieldsJ. Number Theory19883016717696191410.1016/0022-314X(88)90015-7 – reference: Halter-KochFQuadratic Irrationals: An Introduction to Classical Number Theory2013Boca Raton, FLCRC Press10.1201/b14968 – reference: Kubo, K.: Relations between the primary symmetric parts and positive integers of minimal type in continued fraction expansions. Tokyo University of Science, Master thesis (2019) (in Japanese) – reference: KawamotoFKishiYTomitaKContinued fraction expansions with even period and priary symmetric parts with extremely large endComm. Math. Univ. Sancti Pauli20156421311551415.11161 – reference: KawamotoFTomitaKContinued fractions and certain real quadratic fields of minimal typeJ. Math. Soc. Japan2008603865903244041610.2969/jmsj/06030865 – reference: Perron, O.: Die Lehre von den Kettenbrüchen, Band I: Elementare Kettenbrüche, 3te Aufl. B.G. Teubner Verlagsgesellschaft, Stuttgart (1954) |
SSID | ssj0012879 |
Score | 2.1931522 |
Snippet | Let
d
be a non-square positive integer such that the period of the continued fraction expansion of
d
is even. We give some relations between some properties of... Let d be a non-square positive integer such that the period of the continued fraction expansion of d is even. We give some relations between some properties of... |
SourceID | proquest springer |
SourceType | Aggregation Database Publisher |
StartPage | 649 |
SubjectTerms | Mathematics Mathematics and Statistics Quotients |
Title | On some properties of partial quotients of the continued fraction expansion of d with even period |
URI | https://link.springer.com/article/10.1007/s00013-020-01434-7 https://www.proquest.com/docview/2406157810 |
Volume | 114 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED5Bu8CAeIryqDwwEqnxo7bHCrVUoMJCpTJFdmxLDCSlaSV-PrabBIFYWBPbw_l89_l89x3AjaNi4L2wSSRVPKHpQCbSqTwh0nmDKZ22NlQjz56G0zl9WLBFXRRWNdnuzZNktNRtsdtg24kAh0QqSmjCd6HL_N09JHLN8ah9O_B3ANn0yRNCLupSmb_X-AEsf72FRhczOYSDGhui0XYzj2DHFsewP2uJVasTUM8Fqsp3i5YhiL4KbKiodGgZFMBP_diUkSY1fvTTUMhEfys21iC32pYwIPvpDUCIkYUxBoVALAo0TihwHpfmFOaT8cvdNKm7JCRLjPnauxgajqlIXcp4jlnuLBGWOmFSnuKh0FgpD-OU5h658VwTnFvHhBoqwnJpLDmDTlEW9hwQ58o7bGuIk4IqahXOmdKYEa2Nwdz04KoRVlarepVFSODPfTrowW0jwO_fLS1yFH3mRZ9F0Wf84n_DL2EPx40LEZAr6KxXG3vtAcFa96E7un99HPejHnwB46iwQw |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED5BGYAB8RSFAh4YiZTYTm2PFQIVaMvSSt0iO7YlBpLStBI_H9tNgkAsrImd4Xy--3KP7wBuLeWx88I6ElSyiCaxiISVeUSEdQZTWGWM70YeT_rDGX2ep_O6Kaxqqt2blGSw1G2zW7yZRIB9IRUlNGLbsOPAAPe6PMODNnfg_gFEMyePczGvW2X-_sYPYPkrFxpczOMhHNTYEA02h3kEW6Y4hv1xS6xanYB8LVBVvhu08EH0pWdDRaVFC68AbuvHugw0qeGh24Z8JfpbsTYa2eWmhQGZT2cAfIzMr9HIB2KRp3FCnvO41Kcwe3yY3g-jekpCtMCYrZyLof6a8sQmKctxmltDuKGW64QluM8VltLBOKmYQ24sVwTnxqZc9iVJc6ENOYNOURbmHBBj0jlso4kVnEpqJM5TqXBKlNIaM92FXiOsrFb1KguQwN37JO7CXSPA79ctLXIQfeZEnwXRZ-zif8tvYHc4HY-y0dPk5RL2cDhEHw3pQWe1XJsrBw5W6jrowhfLvbGi |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELagSAgGxFMUCnhgJGpiO7U9VkBVHi0MVOoW2bEtMZCENpX4-djOg4dYWBM7Us6Xuy93_j4DcGkIC20WVgEnggYkCnnAjUgDzI0NmNxIrR0beTIdjGfkfh7Pv7H4_W73piVZcRqcSlNW9gtl-i3xLaxOJUBuUxXBJKDrYIM4NrD16Bkatn0E-z_AmzPzGOPzmjbz9zN-gMxffVGfbka7YKfGiXBYLeweWNPZPtietCKrywMgnjK4zN80LFxBfeGUUWFuYOGcwU59X-VeMtVftNOge8XXbKUVNIuKzgD1hw0Grl7mxijoirLQSTpBp3-cq0MwG92-XI-D-sSEoECIljbdEPfJsshEMU1RnBqNmSaGqYhGaMAkEsJCOiGpRXE0lRil2sRMDASOU640PgKdLM_0MYCUCpu8tcKGMyKIFiiNhUQxllIpRFUX9BpjJbXbLxMPD2wMiMIuuGoM-HW7lUj2pk-s6RNv-oSe_G_4Bdh8vhklj3fTh1OwhfwausJID3TKxUqfWZxQynPvCp9LvbXV |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+some+properties+of+partial+quotients+of+the+continued+fraction+expansion+of+d+with+even+period&rft.jtitle=Archiv+der+Mathematik&rft.au=Kawamoto+Fuminori&rft.au=Kishi+Yasuhiro&rft.au=Tomita+Koshi&rft.date=2020-06-01&rft.pub=Springer+Nature+B.V&rft.issn=0003-889X&rft.eissn=1420-8938&rft.volume=114&rft.issue=6&rft.spage=649&rft.epage=660&rft_id=info:doi/10.1007%2Fs00013-020-01434-7&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0003-889X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0003-889X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0003-889X&client=summon |