On some properties of partial quotients of the continued fraction expansion of d with even period

Let d be a non-square positive integer such that the period of the continued fraction expansion of d is even. We give some relations between some properties of partial quotients of the continued fraction expansion of d , which emerge from numerical experiments.

Saved in:
Bibliographic Details
Published inArchiv der Mathematik Vol. 114; no. 6; pp. 649 - 660
Main Authors Kawamoto, Fuminori, Kishi, Yasuhiro, Tomita, Koshi
Format Journal Article
LanguageEnglish
Published Cham Springer International Publishing 01.06.2020
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Let d be a non-square positive integer such that the period of the continued fraction expansion of d is even. We give some relations between some properties of partial quotients of the continued fraction expansion of d , which emerge from numerical experiments.
AbstractList Let d be a non-square positive integer such that the period of the continued fraction expansion of d is even. We give some relations between some properties of partial quotients of the continued fraction expansion of d, which emerge from numerical experiments.
Let d be a non-square positive integer such that the period of the continued fraction expansion of d is even. We give some relations between some properties of partial quotients of the continued fraction expansion of d , which emerge from numerical experiments.
Author Tomita, Koshi
Kawamoto, Fuminori
Kishi, Yasuhiro
Author_xml – sequence: 1
  givenname: Fuminori
  surname: Kawamoto
  fullname: Kawamoto, Fuminori
  organization: Gakushuin University
– sequence: 2
  givenname: Yasuhiro
  surname: Kishi
  fullname: Kishi, Yasuhiro
  email: ykishi@auecc.aichi-edu.ac.jp
  organization: Aichi University of Education
– sequence: 3
  givenname: Koshi
  surname: Tomita
  fullname: Tomita, Koshi
  organization: Meijo University
BookMark eNpFkE9LAzEQxYNUsK1-AU8Bz9FJsrvJHqX4Dwq9KHgL6e7EbqnJdpNVP75pK3iamTc_3jBvRiY-eCTkmsMtB1B3EQC4ZCCAAS9kwdQZmfIij7qWekKmeS-Z1vX7BZnFuM200KqeErvyNIZPpP0QehxSh5EGR3ubW7uj-zFkyaejmDZIm-BT50dsqRtsk7rgKf701sdDl5mWfndpQ_ELPc1-XWgvybmzu4hXf3VO3h4fXhfPbLl6elncL1kvhEpMQwFKguaOl6oRZeNQaiycbrniotJrYS2vhV2rsqpUs5aiQVdqW1lZNnWLck5uTr75k_2IMZltGAefTxpRQJVdNYdMyRMV-6HzHzj8UxzMIUtzytLkLM0xS6PkL7-eaaM
ContentType Journal Article
Copyright Springer Nature Switzerland AG 2020
Springer Nature Switzerland AG 2020.
Copyright_xml – notice: Springer Nature Switzerland AG 2020
– notice: Springer Nature Switzerland AG 2020.
DOI 10.1007/s00013-020-01434-7
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1420-8938
EndPage 660
ExternalDocumentID 10_1007_s00013_020_01434_7
GroupedDBID --Z
-52
-5D
-5G
-BR
-EM
-Y2
-~C
-~X
.86
.VR
06D
0R~
0VY
199
1N0
1SB
2.D
203
23M
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
78A
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABEFU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFDYV
AFEXP
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AI.
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BAPOH
BBWZM
BDATZ
BGNMA
BSONS
CAG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
H~9
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAS
LLZTM
M4Y
MA-
MBV
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P9R
PF0
PKN
PT4
PT5
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SDD
SDH
SDM
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VH1
W23
W48
WK8
YLTOR
Z45
Z7U
Z7X
Z83
Z87
Z88
Z8O
Z8R
Z8W
Z91
ZCG
ZMTXR
ZWQNP
~EX
AAPKM
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
AMVHM
ATHPR
AYFIA
ID FETCH-LOGICAL-p227t-804073081f157c25cfe38e4f8d171268b2aa192ab75667cb32cef58a6a35c9de3
IEDL.DBID U2A
ISSN 0003-889X
IngestDate Fri Jul 25 11:03:50 EDT 2025
Fri Feb 21 02:37:32 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords Secondary 11R11
11R29
Primary 11A55
Class numbers
Real quadratic fields
Continued fractions
11R27
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-p227t-804073081f157c25cfe38e4f8d171268b2aa192ab75667cb32cef58a6a35c9de3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2406157810
PQPubID 2043594
PageCount 12
ParticipantIDs proquest_journals_2406157810
springer_journals_10_1007_s00013_020_01434_7
PublicationCentury 2000
PublicationDate 2020-06-01
PublicationDateYYYYMMDD 2020-06-01
PublicationDate_xml – month: 06
  year: 2020
  text: 2020-06-01
  day: 01
PublicationDecade 2020
PublicationPlace Cham
PublicationPlace_xml – name: Cham
– name: Heidelberg
PublicationTitle Archiv der Mathematik
PublicationTitleAbbrev Arch. Math
PublicationYear 2020
Publisher Springer International Publishing
Springer Nature B.V
Publisher_xml – name: Springer International Publishing
– name: Springer Nature B.V
References Kubo, K.: Relations between the primary symmetric parts and positive integers of minimal type in continued fraction expansions. Tokyo University of Science, Master thesis (2019) (in Japanese)
LouboutinSContinued fractions and real quadratic fieldsJ. Number Theory19883016717696191410.1016/0022-314X(88)90015-7
Perron, O.: Die Lehre von den Kettenbrüchen, Band I: Elementare Kettenbrüche, 3te Aufl. B.G. Teubner Verlagsgesellschaft, Stuttgart (1954)
KawamotoFTomitaKContinued fractions and certain real quadratic fields of minimal typeJ. Math. Soc. Japan2008603865903244041610.2969/jmsj/06030865
Golubeva, E.P.: Quadratic irrationalities with a fixed length of the period of continued fraction expansion, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 196 (1991), Modul. Funktsii Kvadrat. Formy. 2, 5–30, 172; translation in J. Math. Sci. 70(6), 2059–2076 (1994)
LouboutinSChakrabortyKHoqueAPandeyPOn the continued fraction expansions of p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sqrt{p}$$\end{document} and 2p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sqrt{2p}$$\end{document} for primes p≡3(mod4)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p\equiv 3\ (\text{mod}\ 4)$$\end{document}Class Groups of Number Fields and Related Topics2020SingaporeSpringer17517810.1007/978-981-15-1514-9_16
Halter-KochFQuadratic Irrationals: An Introduction to Classical Number Theory2013Boca Raton, FLCRC Press10.1201/b14968
KawamotoFKishiYTomitaKContinued fraction expansions with even period and priary symmetric parts with extremely large endComm. Math. Univ. Sancti Pauli20156421311551415.11161
KawamotoFTomitaKContinued fractions with even period and an infinite family of real quadratic fields of minimal typeOsaka J. Math.200946494999326049171247.11140
References_xml – reference: LouboutinSChakrabortyKHoqueAPandeyPOn the continued fraction expansions of p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sqrt{p}$$\end{document} and 2p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sqrt{2p}$$\end{document} for primes p≡3(mod4)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p\equiv 3\ (\text{mod}\ 4)$$\end{document}Class Groups of Number Fields and Related Topics2020SingaporeSpringer17517810.1007/978-981-15-1514-9_16
– reference: Golubeva, E.P.: Quadratic irrationalities with a fixed length of the period of continued fraction expansion, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 196 (1991), Modul. Funktsii Kvadrat. Formy. 2, 5–30, 172; translation in J. Math. Sci. 70(6), 2059–2076 (1994)
– reference: KawamotoFTomitaKContinued fractions with even period and an infinite family of real quadratic fields of minimal typeOsaka J. Math.200946494999326049171247.11140
– reference: LouboutinSContinued fractions and real quadratic fieldsJ. Number Theory19883016717696191410.1016/0022-314X(88)90015-7
– reference: Halter-KochFQuadratic Irrationals: An Introduction to Classical Number Theory2013Boca Raton, FLCRC Press10.1201/b14968
– reference: Kubo, K.: Relations between the primary symmetric parts and positive integers of minimal type in continued fraction expansions. Tokyo University of Science, Master thesis (2019) (in Japanese)
– reference: KawamotoFKishiYTomitaKContinued fraction expansions with even period and priary symmetric parts with extremely large endComm. Math. Univ. Sancti Pauli20156421311551415.11161
– reference: KawamotoFTomitaKContinued fractions and certain real quadratic fields of minimal typeJ. Math. Soc. Japan2008603865903244041610.2969/jmsj/06030865
– reference: Perron, O.: Die Lehre von den Kettenbrüchen, Band I: Elementare Kettenbrüche, 3te Aufl. B.G. Teubner Verlagsgesellschaft, Stuttgart (1954)
SSID ssj0012879
Score 2.1931522
Snippet Let d be a non-square positive integer such that the period of the continued fraction expansion of d is even. We give some relations between some properties of...
Let d be a non-square positive integer such that the period of the continued fraction expansion of d is even. We give some relations between some properties of...
SourceID proquest
springer
SourceType Aggregation Database
Publisher
StartPage 649
SubjectTerms Mathematics
Mathematics and Statistics
Quotients
Title On some properties of partial quotients of the continued fraction expansion of d with even period
URI https://link.springer.com/article/10.1007/s00013-020-01434-7
https://www.proquest.com/docview/2406157810
Volume 114
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED5Bu8CAeIryqDwwEqnxo7bHCrVUoMJCpTJFdmxLDCSlaSV-PrabBIFYWBPbw_l89_l89x3AjaNi4L2wSSRVPKHpQCbSqTwh0nmDKZ22NlQjz56G0zl9WLBFXRRWNdnuzZNktNRtsdtg24kAh0QqSmjCd6HL_N09JHLN8ah9O_B3ANn0yRNCLupSmb_X-AEsf72FRhczOYSDGhui0XYzj2DHFsewP2uJVasTUM8Fqsp3i5YhiL4KbKiodGgZFMBP_diUkSY1fvTTUMhEfys21iC32pYwIPvpDUCIkYUxBoVALAo0TihwHpfmFOaT8cvdNKm7JCRLjPnauxgajqlIXcp4jlnuLBGWOmFSnuKh0FgpD-OU5h658VwTnFvHhBoqwnJpLDmDTlEW9hwQ58o7bGuIk4IqahXOmdKYEa2Nwdz04KoRVlarepVFSODPfTrowW0jwO_fLS1yFH3mRZ9F0Wf84n_DL2EPx40LEZAr6KxXG3vtAcFa96E7un99HPejHnwB46iwQw
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED5BGYAB8RSFAh4YiZTYTm2PFQIVaMvSSt0iO7YlBpLStBI_H9tNgkAsrImd4Xy--3KP7wBuLeWx88I6ElSyiCaxiISVeUSEdQZTWGWM70YeT_rDGX2ep_O6Kaxqqt2blGSw1G2zW7yZRIB9IRUlNGLbsOPAAPe6PMODNnfg_gFEMyePczGvW2X-_sYPYPkrFxpczOMhHNTYEA02h3kEW6Y4hv1xS6xanYB8LVBVvhu08EH0pWdDRaVFC68AbuvHugw0qeGh24Z8JfpbsTYa2eWmhQGZT2cAfIzMr9HIB2KRp3FCnvO41Kcwe3yY3g-jekpCtMCYrZyLof6a8sQmKctxmltDuKGW64QluM8VltLBOKmYQ24sVwTnxqZc9iVJc6ENOYNOURbmHBBj0jlso4kVnEpqJM5TqXBKlNIaM92FXiOsrFb1KguQwN37JO7CXSPA79ctLXIQfeZEnwXRZ-zif8tvYHc4HY-y0dPk5RL2cDhEHw3pQWe1XJsrBw5W6jrowhfLvbGi
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELagSAgGxFMUCnhgJGpiO7U9VkBVHi0MVOoW2bEtMZCENpX4-djOg4dYWBM7Us6Xuy93_j4DcGkIC20WVgEnggYkCnnAjUgDzI0NmNxIrR0beTIdjGfkfh7Pv7H4_W73piVZcRqcSlNW9gtl-i3xLaxOJUBuUxXBJKDrYIM4NrD16Bkatn0E-z_AmzPzGOPzmjbz9zN-gMxffVGfbka7YKfGiXBYLeweWNPZPtietCKrywMgnjK4zN80LFxBfeGUUWFuYOGcwU59X-VeMtVftNOge8XXbKUVNIuKzgD1hw0Grl7mxijoirLQSTpBp3-cq0MwG92-XI-D-sSEoECIljbdEPfJsshEMU1RnBqNmSaGqYhGaMAkEsJCOiGpRXE0lRil2sRMDASOU640PgKdLM_0MYCUCpu8tcKGMyKIFiiNhUQxllIpRFUX9BpjJbXbLxMPD2wMiMIuuGoM-HW7lUj2pk-s6RNv-oSe_G_4Bdh8vhklj3fTh1OwhfwausJID3TKxUqfWZxQynPvCp9LvbXV
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+some+properties+of+partial+quotients+of+the+continued+fraction+expansion+of+d+with+even+period&rft.jtitle=Archiv+der+Mathematik&rft.au=Kawamoto+Fuminori&rft.au=Kishi+Yasuhiro&rft.au=Tomita+Koshi&rft.date=2020-06-01&rft.pub=Springer+Nature+B.V&rft.issn=0003-889X&rft.eissn=1420-8938&rft.volume=114&rft.issue=6&rft.spage=649&rft.epage=660&rft_id=info:doi/10.1007%2Fs00013-020-01434-7&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0003-889X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0003-889X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0003-889X&client=summon