Robust design optimization under dependent random variables by a generalized polynomial chaos expansion
New computational methods are proposed for robust design optimization (RDO) of complex engineering systems subject to input random variables with arbitrary, dependent probability distributions. The methods are built on a generalized polynomial chaos expansion (GPCE) for determining the second-moment...
Saved in:
Published in | Structural and multidisciplinary optimization Vol. 63; no. 5; pp. 2425 - 2457 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.05.2021
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | New computational methods are proposed for robust design optimization (RDO) of complex engineering systems subject to input random variables with arbitrary, dependent probability distributions. The methods are built on a generalized polynomial chaos expansion (GPCE) for determining the second-moment statistics of a general output function of dependent input random variables, an innovative coupling between GPCE and score functions for calculating the second-moment sensitivities with respect to the design variables, and a standard gradient-based optimization algorithm, establishing direct GPCE, single-step GPCE, and multi-point single-step GPCE design processes. New analytical formulae are unveiled for design sensitivity analysis that is synchronously performed with statistical moment analysis. Numerical results confirm that the proposed methods yield not only accurate but also computationally efficient optimal solutions of several mathematical and simple RDO problems. Finally, the success of conducting stochastic shape optimization of a steering knuckle demonstrates the power of the multi-point single-step GPCE method in solving industrial-scale engineering problems. |
---|---|
AbstractList | New computational methods are proposed for robust design optimization (RDO) of complex engineering systems subject to input random variables with arbitrary, dependent probability distributions. The methods are built on a generalized polynomial chaos expansion (GPCE) for determining the second-moment statistics of a general output function of dependent input random variables, an innovative coupling between GPCE and score functions for calculating the second-moment sensitivities with respect to the design variables, and a standard gradient-based optimization algorithm, establishing direct GPCE, single-step GPCE, and multi-point single-step GPCE design processes. New analytical formulae are unveiled for design sensitivity analysis that is synchronously performed with statistical moment analysis. Numerical results confirm that the proposed methods yield not only accurate but also computationally efficient optimal solutions of several mathematical and simple RDO problems. Finally, the success of conducting stochastic shape optimization of a steering knuckle demonstrates the power of the multi-point single-step GPCE method in solving industrial-scale engineering problems. |
Author | Lee, Dongjin Rahman, Sharif |
Author_xml | – sequence: 1 givenname: Dongjin orcidid: 0000-0003-3346-8059 surname: Lee fullname: Lee, Dongjin email: dongjin-lee@uiowa.edu organization: Department of Mechanical Engineering, The University of Iowa – sequence: 2 givenname: Sharif surname: Rahman fullname: Rahman, Sharif organization: Department of Mechanical Engineering, The University of Iowa |
BookMark | eNpFkN1LwzAUxYNMcJv-Az4FfK7mc00fZfgFA0EUfCtpe1szuiQmrbj-9UYn-nDvPXAP58BvgWbWWUDonJJLSkh-FQmhUmWEkTQq7ekIzemKyowKpWZ_On89QYsYt4QQRUQxR92Tq8Y44Aai6Sx2fjA7M-nBOItH20BIHw9J2AEHbRu3wx86GF31EHG1xxp3YCHo3kzQYO_6vXU7o3tcv2kXMXx6bWMKO0XHre4jnP3eJXq5vXle32ebx7uH9fUm84zlQ8ZFUYHkcgWqyinPZaNaLmlNVw2TmoAQwLVgMgdeMykElTVlUilBW664JHyJLg65Prj3EeJQbt0YbKosmUyBtFAFSy5-cEUfjO0g_LsoKb-JlgeiZSJa_hAtJ_4FayNsEQ |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer-Verlag GmbH, DE part of Springer Nature 2021 The Author(s), under exclusive licence to Springer-Verlag GmbH, DE part of Springer Nature 2021. |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH, DE part of Springer Nature 2021 – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH, DE part of Springer Nature 2021. |
DBID | 8FE 8FG ABJCF AFKRA BENPR BGLVJ CCPQU DWQXO HCIFZ L6V M7S PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS |
DOI | 10.1007/s00158-020-02820-z |
DatabaseName | ProQuest SciTech Collection ProQuest Technology Collection ProQuest Materials Science & Engineering ProQuest Central UK/Ireland ProQuest Databases Technology Collection ProQuest One Community College ProQuest Central Korea SciTech Premium Collection ProQuest Engineering Collection Engineering Database ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering collection |
DatabaseTitle | Engineering Database Technology Collection ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest One Academic UKI Edition ProQuest Central Korea Materials Science & Engineering Collection ProQuest One Academic ProQuest Central (New) Engineering Collection ProQuest One Academic (New) |
DatabaseTitleList | Engineering Database |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1615-1488 |
EndPage | 2457 |
ExternalDocumentID | 10_1007_s00158_020_02820_z |
GrantInformation_xml | – fundername: U.S. National Science Foundation grantid: CMMI-1462385 – fundername: U.S. National Science Foundation grantid: CMMI-1933114 |
GroupedDBID | -5B -5G -BR -EM -Y2 -~C .86 .VR 06D 0R~ 0VY 123 199 1N0 2.D 203 29Q 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5QI 5VS 67Z 6NX 78A 8FE 8FG 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHIR ADINQ ADKNI ADKPE ADPHR ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AOCGG ARCEE ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BDATZ BENPR BGLVJ BGNMA BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV L6V LAS LLZTM M4Y M7S MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P9P PF0 PT4 PT5 PTHSS QOK QOS R89 R9I RHV RIG RNI RNS ROL RPX RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCLPG SDH SDM SEG SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z5O Z7R Z7S Z7V Z7X Z7Y Z7Z Z81 Z83 Z85 Z86 Z88 Z8M Z8N Z8P Z8R Z8S Z8T Z8U Z8W Z8Z Z92 ZMTXR _50 ~02 AAPKM ABBRH ABDBE ABFSG ABRTQ ACSTC AEZWR AFDZB AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR AYFIA DWQXO PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PUEGO |
ID | FETCH-LOGICAL-p227t-349be5356e8b71375d8f351c16d25a0e44e3a4257e3c254415c1258841f383503 |
IEDL.DBID | BENPR |
ISSN | 1615-147X |
IngestDate | Sat Aug 23 13:19:53 EDT 2025 Fri Feb 21 02:48:34 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | Design sensitivity analysis Second-moment analysis GPCE RDO Stochastic optimization Score functions |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-p227t-349be5356e8b71375d8f351c16d25a0e44e3a4257e3c254415c1258841f383503 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-3346-8059 |
PQID | 2513719892 |
PQPubID | 2043658 |
PageCount | 33 |
ParticipantIDs | proquest_journals_2513719892 springer_journals_10_1007_s00158_020_02820_z |
PublicationCentury | 2000 |
PublicationDate | 20210500 20210501 |
PublicationDateYYYYMMDD | 2021-05-01 |
PublicationDate_xml | – month: 5 year: 2021 text: 20210500 |
PublicationDecade | 2020 |
PublicationPlace | Berlin/Heidelberg |
PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg |
PublicationTitle | Structural and multidisciplinary optimization |
PublicationTitleAbbrev | Struct Multidisc Optim |
PublicationYear | 2021 |
Publisher | Springer Berlin Heidelberg Springer Nature B.V |
Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
References | NatafADetermination des distributions de probabilités dont les marges sont donnéeśC R Acad Sci, Paris196225542431391870109.11904 OnoSYoshitakeYNakayamaSRobust optimization using multi-objective particle swarm optimizationArtificial Life Robot200914217410.1007/s10015-009-0647-4 BusbridgeISome integrals involving hermite polynomialsJ Lond Math Soc1948231351412738010.1112/jlms/s1-23.2.135 YaoWChenXLuoWVan ToorenMGuoJReview of uncertainty-based multidisciplinary design optimization methods for aerospace vehiclesProg Aerosp Sci201147645047910.1016/j.paerosci.2011.05.001 CramerAMSudhoffSDZiviELEvolutionary algorithms for minimax problems in robust designIEEE Trans Evol Comput200813244445310.1109/TEVC.2008.2004422 RahmanSExtended polynomial dimensional decomposition for arbitrary probability distributionsJ Eng Mechan-ASCE2009135121439145110.1061/(ASCE)EM.1943-7889.0000047 ChenWWiecekMMZhangJQuality utility—a compromise programming approach to robust designJ Mech Des1999121217918710.1115/1.2829440 WienerNThe homogeneous chaosAm J Math1938604897936150735610.2307/2371268 Stephens R, Fatemi A, Stephens RR, Fuchs H (2000) Metal fatigue in engineering. Wiley-Interscience MATLAB (2019) Version 9.7.0 (R2019b). The MathWorks Inc., Natick, Massachusetts HuangBDuXAnalytical robustness assessment for robust designStruct Multidiscip Optim200734212313710.1007/s00158-006-0068-0 LeeDRahmanSPractical uncertainty quantification analysis involving statistically dependent random variablesAppl Math Model202084324356409121010.1016/j.apm.2020.03.041 ABAQUS (2019) version 2019. Dassault Systèmes Simulia Corp RahmanSA polynomial chaos expansion in dependent random variablesJ Math Anal Appl20184641749775379411410.1016/j.jmaa.2018.04.032 RenXRahmanSRobust design optimization by polynomial dimensional decompositionStruct Multidiscip Optim2013481127148307242410.1007/s00158-013-0883-z BrowderAMathematical analysis: an introduction. Undergraduate texts in mathematics1996BerlinSpringer10.1007/978-1-4612-0715-3 ChenWAllenJTsuiKMistreeFProcedure for robust design: minimizing variations caused by noise factors and control factorsJ Mechan Design Trans ASME1996118447848510.1115/1.2826915 Lee I, Choi KK, Noh Y, Zhao L, Gorsich D (2011) Sampling-based stochastic sensitivity analysis using score functions for rbdo problems with correlated random variables. J Mech Des 133(2) ChatterjeeTChakrabortySChowdhuryRA critical review of surrogate assisted robust design optimizationArchiv Comput Methods Eng2019261245274389517510.1007/s11831-017-9240-5 MiettinenKNonlinear multiobjective optimization, vol 122012BerlinSpringer Science & Business Media JinRDuXChenWThe use of metamodeling techniques for optimization under uncertaintyStruct Multidiscip Optim20032529911610.1007/s00158-002-0277-0 NohYChoiKDuLReliability-based design optimization of problems with correlated input variables using a gaussian copulaStruct Multidiscip Opt200938111610.1007/s00158-008-0277-9 LeeSChenWKwakBRobust design with arbitrary distributions using gauss-type quadrature formulaStruct Multidiscip Optim2009393227243252506210.1007/s00158-008-0328-2 ParkGLeeTKwonHHwangKRobust design: an overviewAIAA J200644118119110.2514/1.13639 DuXChenWTowards a better understanding of modeling feasibility robustness in engineering designJ Mechan Design2000122438539410.1115/1.1290247 SundaresanSIshiiKHouserDRA robust optimization procedure with variations on design variables and constraintsEng Opt+ A35199524210111710.1080/03052159508941185 XiuDKarniadakisGEThe Wiener-Askey polynomial chaos for stochastic differential equationsSIAM J Sci Comput200224619644195105810.1137/S1064827501387826 ShenDEBraatzRDPolynomial chaos-based robust design of systems with probabilistic uncertaintiesAIChE J20166293310331810.1002/aic.15373 ZamanKMcDonaldMMahadevanSGreenLRobustness-based design optimization under data uncertaintyStruct Multidiscip Optim201144218319710.1007/s00158-011-0622-2 BashiriMMoslemiAAkhavan NiakiSTRobust multi-response surface optimization: a posterior preference approachInt Trans Oper Res202027317511770405806610.1111/itor.12450 CREO (2016) version 4.0. PTC Taguchi G (1993) Taguchi on robust technology development: bringing quality engineering upstream. ASME Press series on international advances in design productivity, ASME Press BhushanMNarasimhanSRengaswamyRRobust sensor network design for fault diagnosisComput Chem Eng2008324-51067108410.1016/j.compchemeng.2007.06.020 RamakrishnanBRaoSA general loss function based optimization procedure for robust designEng Optim199625425527610.1080/03052159608941266 LiGRabitzHD-MORPH regression: application to modeling with unknown parameters more than observation dataJ Math Chem20104810101035272633910.1007/s10910-010-9722-2 RahmanSStochastic sensitivity analysis by dimensional decomposition and score functionsProbab Eng Mechan200924327828710.1016/j.probengmech.2008.07.004 RahmanSRenXNovel computational methods for high-dimensional stochastic sensitivity analysisInt J Numer Methods Eng20149812881916321433810.1002/nme.4659 RubinsteinRShapiroADiscrete event systems: sensitivity analysis and stochastic optimization by the score function method. Wiley series in probability and mathematical statistics1993New YorkWiley ShinSChoBRDevelopment of a sequential optimization procedure for robust design and tolerance design within a bi-objective paradigmEng Optim20084011989100910.1080/03052150802148910 ToropovVFilatovAPolynkinAMultiparameter structural optimization using FEM and multipoint explicit approximationsStruct Multidiscip Optim19936171410.1007/BF01743169 MourelatosZLiangJA methodology for trading-off performance and robustness under uncertaintyJ Mechan Design2006128485686310.1115/1.2202883 RosenblattMRemarks on a multivariate transformationAnn Math Statist1952234704724952510.1214/aoms/1177729394 ElishakoffIHaftkaRFangJStructural design under bounded uncertainty—optimization with anti-optimizationComput Struct19945361401140510.1016/0045-7949(94)90405-7 MarlerRTAroraJSThe weighted sum method for multi-objective optimization: new insightsStruct Multidiscip Opt2010416853862261084410.1007/s00158-009-0460-7 NhaVTShinSJeongSHLexicographical dynamic goal programming approach to a robust design optimization within the pharmaceutical environmentEur J Oper Res20132292505517305424910.1016/j.ejor.2013.02.017 |
References_xml | – reference: NhaVTShinSJeongSHLexicographical dynamic goal programming approach to a robust design optimization within the pharmaceutical environmentEur J Oper Res20132292505517305424910.1016/j.ejor.2013.02.017 – reference: MiettinenKNonlinear multiobjective optimization, vol 122012BerlinSpringer Science & Business Media – reference: ParkGLeeTKwonHHwangKRobust design: an overviewAIAA J200644118119110.2514/1.13639 – reference: RahmanSA polynomial chaos expansion in dependent random variablesJ Math Anal Appl20184641749775379411410.1016/j.jmaa.2018.04.032 – reference: BashiriMMoslemiAAkhavan NiakiSTRobust multi-response surface optimization: a posterior preference approachInt Trans Oper Res202027317511770405806610.1111/itor.12450 – reference: ChenWAllenJTsuiKMistreeFProcedure for robust design: minimizing variations caused by noise factors and control factorsJ Mechan Design Trans ASME1996118447848510.1115/1.2826915 – reference: LeeDRahmanSPractical uncertainty quantification analysis involving statistically dependent random variablesAppl Math Model202084324356409121010.1016/j.apm.2020.03.041 – reference: RahmanSStochastic sensitivity analysis by dimensional decomposition and score functionsProbab Eng Mechan200924327828710.1016/j.probengmech.2008.07.004 – reference: LeeSChenWKwakBRobust design with arbitrary distributions using gauss-type quadrature formulaStruct Multidiscip Optim2009393227243252506210.1007/s00158-008-0328-2 – reference: BrowderAMathematical analysis: an introduction. Undergraduate texts in mathematics1996BerlinSpringer10.1007/978-1-4612-0715-3 – reference: OnoSYoshitakeYNakayamaSRobust optimization using multi-objective particle swarm optimizationArtificial Life Robot200914217410.1007/s10015-009-0647-4 – reference: NatafADetermination des distributions de probabilités dont les marges sont donnéeśC R Acad Sci, Paris196225542431391870109.11904 – reference: RosenblattMRemarks on a multivariate transformationAnn Math Statist1952234704724952510.1214/aoms/1177729394 – reference: DuXChenWTowards a better understanding of modeling feasibility robustness in engineering designJ Mechan Design2000122438539410.1115/1.1290247 – reference: MarlerRTAroraJSThe weighted sum method for multi-objective optimization: new insightsStruct Multidiscip Opt2010416853862261084410.1007/s00158-009-0460-7 – reference: ShinSChoBRDevelopment of a sequential optimization procedure for robust design and tolerance design within a bi-objective paradigmEng Optim20084011989100910.1080/03052150802148910 – reference: RamakrishnanBRaoSA general loss function based optimization procedure for robust designEng Optim199625425527610.1080/03052159608941266 – reference: SundaresanSIshiiKHouserDRA robust optimization procedure with variations on design variables and constraintsEng Opt+ A35199524210111710.1080/03052159508941185 – reference: HuangBDuXAnalytical robustness assessment for robust designStruct Multidiscip Optim200734212313710.1007/s00158-006-0068-0 – reference: Taguchi G (1993) Taguchi on robust technology development: bringing quality engineering upstream. ASME Press series on international advances in design productivity, ASME Press – reference: RenXRahmanSRobust design optimization by polynomial dimensional decompositionStruct Multidiscip Optim2013481127148307242410.1007/s00158-013-0883-z – reference: Stephens R, Fatemi A, Stephens RR, Fuchs H (2000) Metal fatigue in engineering. Wiley-Interscience – reference: YaoWChenXLuoWVan ToorenMGuoJReview of uncertainty-based multidisciplinary design optimization methods for aerospace vehiclesProg Aerosp Sci201147645047910.1016/j.paerosci.2011.05.001 – reference: JinRDuXChenWThe use of metamodeling techniques for optimization under uncertaintyStruct Multidiscip Optim20032529911610.1007/s00158-002-0277-0 – reference: MourelatosZLiangJA methodology for trading-off performance and robustness under uncertaintyJ Mechan Design2006128485686310.1115/1.2202883 – reference: XiuDKarniadakisGEThe Wiener-Askey polynomial chaos for stochastic differential equationsSIAM J Sci Comput200224619644195105810.1137/S1064827501387826 – reference: RubinsteinRShapiroADiscrete event systems: sensitivity analysis and stochastic optimization by the score function method. Wiley series in probability and mathematical statistics1993New YorkWiley – reference: Lee I, Choi KK, Noh Y, Zhao L, Gorsich D (2011) Sampling-based stochastic sensitivity analysis using score functions for rbdo problems with correlated random variables. J Mech Des 133(2) – reference: WienerNThe homogeneous chaosAm J Math1938604897936150735610.2307/2371268 – reference: MATLAB (2019) Version 9.7.0 (R2019b). The MathWorks Inc., Natick, Massachusetts – reference: BhushanMNarasimhanSRengaswamyRRobust sensor network design for fault diagnosisComput Chem Eng2008324-51067108410.1016/j.compchemeng.2007.06.020 – reference: ABAQUS (2019) version 2019. Dassault Systèmes Simulia Corp – reference: ChatterjeeTChakrabortySChowdhuryRA critical review of surrogate assisted robust design optimizationArchiv Comput Methods Eng2019261245274389517510.1007/s11831-017-9240-5 – reference: BusbridgeISome integrals involving hermite polynomialsJ Lond Math Soc1948231351412738010.1112/jlms/s1-23.2.135 – reference: CramerAMSudhoffSDZiviELEvolutionary algorithms for minimax problems in robust designIEEE Trans Evol Comput200813244445310.1109/TEVC.2008.2004422 – reference: ChenWWiecekMMZhangJQuality utility—a compromise programming approach to robust designJ Mech Des1999121217918710.1115/1.2829440 – reference: RahmanSRenXNovel computational methods for high-dimensional stochastic sensitivity analysisInt J Numer Methods Eng20149812881916321433810.1002/nme.4659 – reference: ToropovVFilatovAPolynkinAMultiparameter structural optimization using FEM and multipoint explicit approximationsStruct Multidiscip Optim19936171410.1007/BF01743169 – reference: RahmanSExtended polynomial dimensional decomposition for arbitrary probability distributionsJ Eng Mechan-ASCE2009135121439145110.1061/(ASCE)EM.1943-7889.0000047 – reference: NohYChoiKDuLReliability-based design optimization of problems with correlated input variables using a gaussian copulaStruct Multidiscip Opt200938111610.1007/s00158-008-0277-9 – reference: CREO (2016) version 4.0. PTC – reference: LiGRabitzHD-MORPH regression: application to modeling with unknown parameters more than observation dataJ Math Chem20104810101035272633910.1007/s10910-010-9722-2 – reference: ShenDEBraatzRDPolynomial chaos-based robust design of systems with probabilistic uncertaintiesAIChE J20166293310331810.1002/aic.15373 – reference: ZamanKMcDonaldMMahadevanSGreenLRobustness-based design optimization under data uncertaintyStruct Multidiscip Optim201144218319710.1007/s00158-011-0622-2 – reference: ElishakoffIHaftkaRFangJStructural design under bounded uncertainty—optimization with anti-optimizationComput Struct19945361401140510.1016/0045-7949(94)90405-7 |
SSID | ssj0008049 |
Score | 2.3945875 |
Snippet | New computational methods are proposed for robust design optimization (RDO) of complex engineering systems subject to input random variables with arbitrary,... |
SourceID | proquest springer |
SourceType | Aggregation Database Publisher |
StartPage | 2425 |
SubjectTerms | Algorithms Computational Mathematics and Numerical Analysis Dependent variables Design analysis Design optimization Design standards Engineering Engineering Design Polynomials Random variables Research Paper Robust design Sensitivity analysis Shape optimization Statistical analysis Steering Theoretical and Applied Mechanics |
SummonAdditionalLinks | – databaseName: SpringerLink Journals (ICM) dbid: U2A link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwELWgLDAgPkWhIA-MWEpiO3HGClFVSDAgKnWLYvtSkGhTNSmi-fWc06R8iIU5kSPd2Xfv5e6dCbn2DPKt1AjGwTNMQGhYbDSwOACrMgT8QjqB88NjOByJ-7EcN6Kwou12b0uSdaTeiN1celfM0R3HEzxWbZMdidzdNXKNgv4m_qo16HVQhvkiGjdSmb_X-AEsf9VC6xQzOCD7DTak_bUzD8kWzI7I3reJgcdk8pTrZVFSWzde0BwP_LRRUlInB1vQ9lbbkmIWsvmUviMbdvqoguoVTelkPWf6tQJL5_nbysmS8aPmJc0LCh8YHNz_sxMyGtw93w5Zc1cCmwdBVDIuYg2SyxCURt4ZSbQ0l77xQxvI1AMhgKfufAI3biqZLw1CG6WEnyFHlR4_JZ1ZPoMzQrMMrGcRx1mEGlxp5Wp32otiXFHHNuuSXmuypNnwRYIwiUeu_yrokpvWjF-PN8ORawck6ICkdkBSnf_v9QuyG7iukrrlsEc65WIJlwgLSn1V74JPKSuxkg priority: 102 providerName: Springer Nature |
Title | Robust design optimization under dependent random variables by a generalized polynomial chaos expansion |
URI | https://link.springer.com/article/10.1007/s00158-020-02820-z https://www.proquest.com/docview/2513719892 |
Volume | 63 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT9tAEB6V5AIHVFoQoRDtoceuant34_UJhSoBgYoq1EjpyfI-TJEgDtigkl_PjLPh0QNXW9qVZnZnvpmdbwbga2Qx3iqs5MJHlks_sDyzxvMs8U6XCPilIoLzz_PByUSeTtU0JNzqUFa5somtoXaVpRz5d_TDIqUCn-RwfstpahS9roYRGmvQRROsdQe6R6PzXxfPtlgvATDBGh7LdBpoMy15juCC5hQ-UdwR8cUbkPnfu2jrbsYfYTPgRDZcKnYLPvjZJ9h41T3wM1xeVOa-bphrizBYhZf_JrAqGVHD7thqwm3D0CO56oY9YGRMXKmamUdWsMtlz-mrhXdsXl0_EkUZN7V_i6pm_h8aCsqlbcNkPPr944SHuQl8niRpw4XMjFdCDbw2GIOmCqUuVGzjgUtUEXkpvSjornphqUNZrCzCHK1lXGK8qiKxA51ZNfO7wMrSu8ghpnMIO4Q2mt7xTJRmuKLJXNmD_ZXI8nD46_xFVT34thLjy-_nRsmtAnJUQN4qIF_svb_aF1hPqKKkLTfch05zd-8PEBI0pg9renzch-7w-M_ZqB9OAX6dJMMnLTu5CA |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9tAEB5ROLQcEPQhKBT20N66qu3dje1DVVWFEBrgUCVSbq73YUCCOI0daPKj-hs74wehHHrjbGlt7Yxnvm93vhmA955BvpUayYXzDJeuY3hstONx4GyUIeCXigTOZ-ed3lB-H6nRCvxptTBUVtnGxCpQ29zQGfknzMMipAKf4MvkF6epUXS72o7QqN2i7-Z3SNmKzyeHaN8PQdA9Gnzr8WaqAJ8EQVhyIWPtlFAdF2lkaKHCbxLKN37HBir1nJROpOTJThjq3-UrgyAgiqSfIZtTnsB1n8GaFJjJSZnePb6P_FENtwlEcV-Go0akU0n1CJxEnMgasRyPL_6BtI9uYavk1t2EjQaVsq-1G23Bihu_hPUHvQpfwcWPXM-Kktmq5IPlGGpuGg0nIyHalLXzdEuG-c_mN-wWeTgpswqm5yxlF3WH66uFs2ySX89JEI0vNZdpXjD3G8MSndy9huGT7OcbWB3nY7cNLMuc9SwiSIsgR0Q6oltD7YUxrqhjm-3AXrtlSfOrFcnSMXbgY7uNy8f3bZkrAyRogKQyQLJ4-__VDuB5b3B2mpyenPd34UVAtSxVoeMerJbTmXuHYKTU-5UHMPj51C73F57L7f0 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9tAEB7xkCp6QNCCCIWyh_bGKvY-YvvAAUEjwkuoIlJurvfhgNTEUexQkl_FT2TWsUOLeuHA2dZ6NTO7-32e-WYBvnka-VaiBeXW01TYlqaRVpZGzJowRcAvpBM4X123zrrivCd7S_BUa2HKavc6JTnXNLguTcOiOTJpcyF8c0d9SB31cZzBo7OqrPLCTv8gacuPOqfo4e-MtX_cnpzR6l4BOmIsKCgXkbKSy5YNFXK0QOKsuPS13zJMJp4VwvLExbLl2nXw8qVGGBCGwk-Rz0mP47jLsCqc-hhXUJcdL_b-cA64HYyivgh6lUzn_3P-B9S-ysOWx1t7A9YrXEqO54G0CUt2-Ak-_tWt8DP0f2ZqkhfElEUfJMPNZlCpOImToo1JfaNuQfAENNmAPCATd9qsnKgpSUh_3uP6fmYNGWW_p04SjR_Vd0mWE_uIG5P7d7cF3Xex5zasDLOh3QGSptZ4BjGkQZjDQxW6vKHygghHVJFJG7BXmyyuFlseI0Tjgav9Yg04rM348njRmLl0QIwOiEsHxLPdt71-AB9uTtvxZef64gusMVfcUlY-7sFKMZ7YfUQnhfpaBgSBX-8dgc8hie-i |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Robust+design+optimization+under+dependent+random+variables+by+a+generalized+polynomial+chaos+expansion&rft.jtitle=Structural+and+multidisciplinary+optimization&rft.au=Lee%2C+Dongjin&rft.au=Rahman%2C+Sharif&rft.date=2021-05-01&rft.pub=Springer+Nature+B.V&rft.issn=1615-147X&rft.eissn=1615-1488&rft.volume=63&rft.issue=5&rft.spage=2425&rft.epage=2457&rft_id=info:doi/10.1007%2Fs00158-020-02820-z |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1615-147X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1615-147X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1615-147X&client=summon |