Robust design optimization under dependent random variables by a generalized polynomial chaos expansion

New computational methods are proposed for robust design optimization (RDO) of complex engineering systems subject to input random variables with arbitrary, dependent probability distributions. The methods are built on a generalized polynomial chaos expansion (GPCE) for determining the second-moment...

Full description

Saved in:
Bibliographic Details
Published inStructural and multidisciplinary optimization Vol. 63; no. 5; pp. 2425 - 2457
Main Authors Lee, Dongjin, Rahman, Sharif
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.05.2021
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract New computational methods are proposed for robust design optimization (RDO) of complex engineering systems subject to input random variables with arbitrary, dependent probability distributions. The methods are built on a generalized polynomial chaos expansion (GPCE) for determining the second-moment statistics of a general output function of dependent input random variables, an innovative coupling between GPCE and score functions for calculating the second-moment sensitivities with respect to the design variables, and a standard gradient-based optimization algorithm, establishing direct GPCE, single-step GPCE, and multi-point single-step GPCE design processes. New analytical formulae are unveiled for design sensitivity analysis that is synchronously performed with statistical moment analysis. Numerical results confirm that the proposed methods yield not only accurate but also computationally efficient optimal solutions of several mathematical and simple RDO problems. Finally, the success of conducting stochastic shape optimization of a steering knuckle demonstrates the power of the multi-point single-step GPCE method in solving industrial-scale engineering problems.
AbstractList New computational methods are proposed for robust design optimization (RDO) of complex engineering systems subject to input random variables with arbitrary, dependent probability distributions. The methods are built on a generalized polynomial chaos expansion (GPCE) for determining the second-moment statistics of a general output function of dependent input random variables, an innovative coupling between GPCE and score functions for calculating the second-moment sensitivities with respect to the design variables, and a standard gradient-based optimization algorithm, establishing direct GPCE, single-step GPCE, and multi-point single-step GPCE design processes. New analytical formulae are unveiled for design sensitivity analysis that is synchronously performed with statistical moment analysis. Numerical results confirm that the proposed methods yield not only accurate but also computationally efficient optimal solutions of several mathematical and simple RDO problems. Finally, the success of conducting stochastic shape optimization of a steering knuckle demonstrates the power of the multi-point single-step GPCE method in solving industrial-scale engineering problems.
Author Lee, Dongjin
Rahman, Sharif
Author_xml – sequence: 1
  givenname: Dongjin
  orcidid: 0000-0003-3346-8059
  surname: Lee
  fullname: Lee, Dongjin
  email: dongjin-lee@uiowa.edu
  organization: Department of Mechanical Engineering, The University of Iowa
– sequence: 2
  givenname: Sharif
  surname: Rahman
  fullname: Rahman, Sharif
  organization: Department of Mechanical Engineering, The University of Iowa
BookMark eNpFkN1LwzAUxYNMcJv-Az4FfK7mc00fZfgFA0EUfCtpe1szuiQmrbj-9UYn-nDvPXAP58BvgWbWWUDonJJLSkh-FQmhUmWEkTQq7ekIzemKyowKpWZ_On89QYsYt4QQRUQxR92Tq8Y44Aai6Sx2fjA7M-nBOItH20BIHw9J2AEHbRu3wx86GF31EHG1xxp3YCHo3kzQYO_6vXU7o3tcv2kXMXx6bWMKO0XHre4jnP3eJXq5vXle32ebx7uH9fUm84zlQ8ZFUYHkcgWqyinPZaNaLmlNVw2TmoAQwLVgMgdeMykElTVlUilBW664JHyJLg65Prj3EeJQbt0YbKosmUyBtFAFSy5-cEUfjO0g_LsoKb-JlgeiZSJa_hAtJ_4FayNsEQ
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer-Verlag GmbH, DE part of Springer Nature 2021
The Author(s), under exclusive licence to Springer-Verlag GmbH, DE part of Springer Nature 2021.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH, DE part of Springer Nature 2021
– notice: The Author(s), under exclusive licence to Springer-Verlag GmbH, DE part of Springer Nature 2021.
DBID 8FE
8FG
ABJCF
AFKRA
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L6V
M7S
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
DOI 10.1007/s00158-020-02820-z
DatabaseName ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Materials Science & Engineering
ProQuest Central UK/Ireland
ProQuest Databases
Technology Collection
ProQuest One Community College
ProQuest Central Korea
SciTech Premium Collection
ProQuest Engineering Collection
Engineering Database
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering collection
DatabaseTitle Engineering Database
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest Central (New)
Engineering Collection
ProQuest One Academic (New)
DatabaseTitleList Engineering Database

Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1615-1488
EndPage 2457
ExternalDocumentID 10_1007_s00158_020_02820_z
GrantInformation_xml – fundername: U.S. National Science Foundation
  grantid: CMMI-1462385
– fundername: U.S. National Science Foundation
  grantid: CMMI-1933114
GroupedDBID -5B
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06D
0R~
0VY
123
199
1N0
2.D
203
29Q
29~
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5QI
5VS
67Z
6NX
78A
8FE
8FG
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHIR
ADINQ
ADKNI
ADKPE
ADPHR
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AOCGG
ARCEE
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
L6V
LAS
LLZTM
M4Y
M7S
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P9P
PF0
PT4
PT5
PTHSS
QOK
QOS
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SDH
SDM
SEG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z5O
Z7R
Z7S
Z7V
Z7X
Z7Y
Z7Z
Z81
Z83
Z85
Z86
Z88
Z8M
Z8N
Z8P
Z8R
Z8S
Z8T
Z8U
Z8W
Z8Z
Z92
ZMTXR
_50
~02
AAPKM
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
DWQXO
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PUEGO
ID FETCH-LOGICAL-p227t-349be5356e8b71375d8f351c16d25a0e44e3a4257e3c254415c1258841f383503
IEDL.DBID BENPR
ISSN 1615-147X
IngestDate Sat Aug 23 13:19:53 EDT 2025
Fri Feb 21 02:48:34 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords Design sensitivity analysis
Second-moment analysis
GPCE
RDO
Stochastic optimization
Score functions
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-p227t-349be5356e8b71375d8f351c16d25a0e44e3a4257e3c254415c1258841f383503
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-3346-8059
PQID 2513719892
PQPubID 2043658
PageCount 33
ParticipantIDs proquest_journals_2513719892
springer_journals_10_1007_s00158_020_02820_z
PublicationCentury 2000
PublicationDate 20210500
20210501
PublicationDateYYYYMMDD 2021-05-01
PublicationDate_xml – month: 5
  year: 2021
  text: 20210500
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationTitle Structural and multidisciplinary optimization
PublicationTitleAbbrev Struct Multidisc Optim
PublicationYear 2021
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References NatafADetermination des distributions de probabilités dont les marges sont donnéeśC R Acad Sci, Paris196225542431391870109.11904
OnoSYoshitakeYNakayamaSRobust optimization using multi-objective particle swarm optimizationArtificial Life Robot200914217410.1007/s10015-009-0647-4
BusbridgeISome integrals involving hermite polynomialsJ Lond Math Soc1948231351412738010.1112/jlms/s1-23.2.135
YaoWChenXLuoWVan ToorenMGuoJReview of uncertainty-based multidisciplinary design optimization methods for aerospace vehiclesProg Aerosp Sci201147645047910.1016/j.paerosci.2011.05.001
CramerAMSudhoffSDZiviELEvolutionary algorithms for minimax problems in robust designIEEE Trans Evol Comput200813244445310.1109/TEVC.2008.2004422
RahmanSExtended polynomial dimensional decomposition for arbitrary probability distributionsJ Eng Mechan-ASCE2009135121439145110.1061/(ASCE)EM.1943-7889.0000047
ChenWWiecekMMZhangJQuality utility—a compromise programming approach to robust designJ Mech Des1999121217918710.1115/1.2829440
WienerNThe homogeneous chaosAm J Math1938604897936150735610.2307/2371268
Stephens R, Fatemi A, Stephens RR, Fuchs H (2000) Metal fatigue in engineering. Wiley-Interscience
MATLAB (2019) Version 9.7.0 (R2019b). The MathWorks Inc., Natick, Massachusetts
HuangBDuXAnalytical robustness assessment for robust designStruct Multidiscip Optim200734212313710.1007/s00158-006-0068-0
LeeDRahmanSPractical uncertainty quantification analysis involving statistically dependent random variablesAppl Math Model202084324356409121010.1016/j.apm.2020.03.041
ABAQUS (2019) version 2019. Dassault Systèmes Simulia Corp
RahmanSA polynomial chaos expansion in dependent random variablesJ Math Anal Appl20184641749775379411410.1016/j.jmaa.2018.04.032
RenXRahmanSRobust design optimization by polynomial dimensional decompositionStruct Multidiscip Optim2013481127148307242410.1007/s00158-013-0883-z
BrowderAMathematical analysis: an introduction. Undergraduate texts in mathematics1996BerlinSpringer10.1007/978-1-4612-0715-3
ChenWAllenJTsuiKMistreeFProcedure for robust design: minimizing variations caused by noise factors and control factorsJ Mechan Design Trans ASME1996118447848510.1115/1.2826915
Lee I, Choi KK, Noh Y, Zhao L, Gorsich D (2011) Sampling-based stochastic sensitivity analysis using score functions for rbdo problems with correlated random variables. J Mech Des 133(2)
ChatterjeeTChakrabortySChowdhuryRA critical review of surrogate assisted robust design optimizationArchiv Comput Methods Eng2019261245274389517510.1007/s11831-017-9240-5
MiettinenKNonlinear multiobjective optimization, vol 122012BerlinSpringer Science & Business Media
JinRDuXChenWThe use of metamodeling techniques for optimization under uncertaintyStruct Multidiscip Optim20032529911610.1007/s00158-002-0277-0
NohYChoiKDuLReliability-based design optimization of problems with correlated input variables using a gaussian copulaStruct Multidiscip Opt200938111610.1007/s00158-008-0277-9
LeeSChenWKwakBRobust design with arbitrary distributions using gauss-type quadrature formulaStruct Multidiscip Optim2009393227243252506210.1007/s00158-008-0328-2
ParkGLeeTKwonHHwangKRobust design: an overviewAIAA J200644118119110.2514/1.13639
DuXChenWTowards a better understanding of modeling feasibility robustness in engineering designJ Mechan Design2000122438539410.1115/1.1290247
SundaresanSIshiiKHouserDRA robust optimization procedure with variations on design variables and constraintsEng Opt+ A35199524210111710.1080/03052159508941185
XiuDKarniadakisGEThe Wiener-Askey polynomial chaos for stochastic differential equationsSIAM J Sci Comput200224619644195105810.1137/S1064827501387826
ShenDEBraatzRDPolynomial chaos-based robust design of systems with probabilistic uncertaintiesAIChE J20166293310331810.1002/aic.15373
ZamanKMcDonaldMMahadevanSGreenLRobustness-based design optimization under data uncertaintyStruct Multidiscip Optim201144218319710.1007/s00158-011-0622-2
BashiriMMoslemiAAkhavan NiakiSTRobust multi-response surface optimization: a posterior preference approachInt Trans Oper Res202027317511770405806610.1111/itor.12450
CREO (2016) version 4.0. PTC
Taguchi G (1993) Taguchi on robust technology development: bringing quality engineering upstream. ASME Press series on international advances in design productivity, ASME Press
BhushanMNarasimhanSRengaswamyRRobust sensor network design for fault diagnosisComput Chem Eng2008324-51067108410.1016/j.compchemeng.2007.06.020
RamakrishnanBRaoSA general loss function based optimization procedure for robust designEng Optim199625425527610.1080/03052159608941266
LiGRabitzHD-MORPH regression: application to modeling with unknown parameters more than observation dataJ Math Chem20104810101035272633910.1007/s10910-010-9722-2
RahmanSStochastic sensitivity analysis by dimensional decomposition and score functionsProbab Eng Mechan200924327828710.1016/j.probengmech.2008.07.004
RahmanSRenXNovel computational methods for high-dimensional stochastic sensitivity analysisInt J Numer Methods Eng20149812881916321433810.1002/nme.4659
RubinsteinRShapiroADiscrete event systems: sensitivity analysis and stochastic optimization by the score function method. Wiley series in probability and mathematical statistics1993New YorkWiley
ShinSChoBRDevelopment of a sequential optimization procedure for robust design and tolerance design within a bi-objective paradigmEng Optim20084011989100910.1080/03052150802148910
ToropovVFilatovAPolynkinAMultiparameter structural optimization using FEM and multipoint explicit approximationsStruct Multidiscip Optim19936171410.1007/BF01743169
MourelatosZLiangJA methodology for trading-off performance and robustness under uncertaintyJ Mechan Design2006128485686310.1115/1.2202883
RosenblattMRemarks on a multivariate transformationAnn Math Statist1952234704724952510.1214/aoms/1177729394
ElishakoffIHaftkaRFangJStructural design under bounded uncertainty—optimization with anti-optimizationComput Struct19945361401140510.1016/0045-7949(94)90405-7
MarlerRTAroraJSThe weighted sum method for multi-objective optimization: new insightsStruct Multidiscip Opt2010416853862261084410.1007/s00158-009-0460-7
NhaVTShinSJeongSHLexicographical dynamic goal programming approach to a robust design optimization within the pharmaceutical environmentEur J Oper Res20132292505517305424910.1016/j.ejor.2013.02.017
References_xml – reference: NhaVTShinSJeongSHLexicographical dynamic goal programming approach to a robust design optimization within the pharmaceutical environmentEur J Oper Res20132292505517305424910.1016/j.ejor.2013.02.017
– reference: MiettinenKNonlinear multiobjective optimization, vol 122012BerlinSpringer Science & Business Media
– reference: ParkGLeeTKwonHHwangKRobust design: an overviewAIAA J200644118119110.2514/1.13639
– reference: RahmanSA polynomial chaos expansion in dependent random variablesJ Math Anal Appl20184641749775379411410.1016/j.jmaa.2018.04.032
– reference: BashiriMMoslemiAAkhavan NiakiSTRobust multi-response surface optimization: a posterior preference approachInt Trans Oper Res202027317511770405806610.1111/itor.12450
– reference: ChenWAllenJTsuiKMistreeFProcedure for robust design: minimizing variations caused by noise factors and control factorsJ Mechan Design Trans ASME1996118447848510.1115/1.2826915
– reference: LeeDRahmanSPractical uncertainty quantification analysis involving statistically dependent random variablesAppl Math Model202084324356409121010.1016/j.apm.2020.03.041
– reference: RahmanSStochastic sensitivity analysis by dimensional decomposition and score functionsProbab Eng Mechan200924327828710.1016/j.probengmech.2008.07.004
– reference: LeeSChenWKwakBRobust design with arbitrary distributions using gauss-type quadrature formulaStruct Multidiscip Optim2009393227243252506210.1007/s00158-008-0328-2
– reference: BrowderAMathematical analysis: an introduction. Undergraduate texts in mathematics1996BerlinSpringer10.1007/978-1-4612-0715-3
– reference: OnoSYoshitakeYNakayamaSRobust optimization using multi-objective particle swarm optimizationArtificial Life Robot200914217410.1007/s10015-009-0647-4
– reference: NatafADetermination des distributions de probabilités dont les marges sont donnéeśC R Acad Sci, Paris196225542431391870109.11904
– reference: RosenblattMRemarks on a multivariate transformationAnn Math Statist1952234704724952510.1214/aoms/1177729394
– reference: DuXChenWTowards a better understanding of modeling feasibility robustness in engineering designJ Mechan Design2000122438539410.1115/1.1290247
– reference: MarlerRTAroraJSThe weighted sum method for multi-objective optimization: new insightsStruct Multidiscip Opt2010416853862261084410.1007/s00158-009-0460-7
– reference: ShinSChoBRDevelopment of a sequential optimization procedure for robust design and tolerance design within a bi-objective paradigmEng Optim20084011989100910.1080/03052150802148910
– reference: RamakrishnanBRaoSA general loss function based optimization procedure for robust designEng Optim199625425527610.1080/03052159608941266
– reference: SundaresanSIshiiKHouserDRA robust optimization procedure with variations on design variables and constraintsEng Opt+ A35199524210111710.1080/03052159508941185
– reference: HuangBDuXAnalytical robustness assessment for robust designStruct Multidiscip Optim200734212313710.1007/s00158-006-0068-0
– reference: Taguchi G (1993) Taguchi on robust technology development: bringing quality engineering upstream. ASME Press series on international advances in design productivity, ASME Press
– reference: RenXRahmanSRobust design optimization by polynomial dimensional decompositionStruct Multidiscip Optim2013481127148307242410.1007/s00158-013-0883-z
– reference: Stephens R, Fatemi A, Stephens RR, Fuchs H (2000) Metal fatigue in engineering. Wiley-Interscience
– reference: YaoWChenXLuoWVan ToorenMGuoJReview of uncertainty-based multidisciplinary design optimization methods for aerospace vehiclesProg Aerosp Sci201147645047910.1016/j.paerosci.2011.05.001
– reference: JinRDuXChenWThe use of metamodeling techniques for optimization under uncertaintyStruct Multidiscip Optim20032529911610.1007/s00158-002-0277-0
– reference: MourelatosZLiangJA methodology for trading-off performance and robustness under uncertaintyJ Mechan Design2006128485686310.1115/1.2202883
– reference: XiuDKarniadakisGEThe Wiener-Askey polynomial chaos for stochastic differential equationsSIAM J Sci Comput200224619644195105810.1137/S1064827501387826
– reference: RubinsteinRShapiroADiscrete event systems: sensitivity analysis and stochastic optimization by the score function method. Wiley series in probability and mathematical statistics1993New YorkWiley
– reference: Lee I, Choi KK, Noh Y, Zhao L, Gorsich D (2011) Sampling-based stochastic sensitivity analysis using score functions for rbdo problems with correlated random variables. J Mech Des 133(2)
– reference: WienerNThe homogeneous chaosAm J Math1938604897936150735610.2307/2371268
– reference: MATLAB (2019) Version 9.7.0 (R2019b). The MathWorks Inc., Natick, Massachusetts
– reference: BhushanMNarasimhanSRengaswamyRRobust sensor network design for fault diagnosisComput Chem Eng2008324-51067108410.1016/j.compchemeng.2007.06.020
– reference: ABAQUS (2019) version 2019. Dassault Systèmes Simulia Corp
– reference: ChatterjeeTChakrabortySChowdhuryRA critical review of surrogate assisted robust design optimizationArchiv Comput Methods Eng2019261245274389517510.1007/s11831-017-9240-5
– reference: BusbridgeISome integrals involving hermite polynomialsJ Lond Math Soc1948231351412738010.1112/jlms/s1-23.2.135
– reference: CramerAMSudhoffSDZiviELEvolutionary algorithms for minimax problems in robust designIEEE Trans Evol Comput200813244445310.1109/TEVC.2008.2004422
– reference: ChenWWiecekMMZhangJQuality utility—a compromise programming approach to robust designJ Mech Des1999121217918710.1115/1.2829440
– reference: RahmanSRenXNovel computational methods for high-dimensional stochastic sensitivity analysisInt J Numer Methods Eng20149812881916321433810.1002/nme.4659
– reference: ToropovVFilatovAPolynkinAMultiparameter structural optimization using FEM and multipoint explicit approximationsStruct Multidiscip Optim19936171410.1007/BF01743169
– reference: RahmanSExtended polynomial dimensional decomposition for arbitrary probability distributionsJ Eng Mechan-ASCE2009135121439145110.1061/(ASCE)EM.1943-7889.0000047
– reference: NohYChoiKDuLReliability-based design optimization of problems with correlated input variables using a gaussian copulaStruct Multidiscip Opt200938111610.1007/s00158-008-0277-9
– reference: CREO (2016) version 4.0. PTC
– reference: LiGRabitzHD-MORPH regression: application to modeling with unknown parameters more than observation dataJ Math Chem20104810101035272633910.1007/s10910-010-9722-2
– reference: ShenDEBraatzRDPolynomial chaos-based robust design of systems with probabilistic uncertaintiesAIChE J20166293310331810.1002/aic.15373
– reference: ZamanKMcDonaldMMahadevanSGreenLRobustness-based design optimization under data uncertaintyStruct Multidiscip Optim201144218319710.1007/s00158-011-0622-2
– reference: ElishakoffIHaftkaRFangJStructural design under bounded uncertainty—optimization with anti-optimizationComput Struct19945361401140510.1016/0045-7949(94)90405-7
SSID ssj0008049
Score 2.3945875
Snippet New computational methods are proposed for robust design optimization (RDO) of complex engineering systems subject to input random variables with arbitrary,...
SourceID proquest
springer
SourceType Aggregation Database
Publisher
StartPage 2425
SubjectTerms Algorithms
Computational Mathematics and Numerical Analysis
Dependent variables
Design analysis
Design optimization
Design standards
Engineering
Engineering Design
Polynomials
Random variables
Research Paper
Robust design
Sensitivity analysis
Shape optimization
Statistical analysis
Steering
Theoretical and Applied Mechanics
SummonAdditionalLinks – databaseName: SpringerLink Journals (ICM)
  dbid: U2A
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwELWgLDAgPkWhIA-MWEpiO3HGClFVSDAgKnWLYvtSkGhTNSmi-fWc06R8iIU5kSPd2Xfv5e6dCbn2DPKt1AjGwTNMQGhYbDSwOACrMgT8QjqB88NjOByJ-7EcN6Kwou12b0uSdaTeiN1celfM0R3HEzxWbZMdidzdNXKNgv4m_qo16HVQhvkiGjdSmb_X-AEsf9VC6xQzOCD7DTak_bUzD8kWzI7I3reJgcdk8pTrZVFSWzde0BwP_LRRUlInB1vQ9lbbkmIWsvmUviMbdvqoguoVTelkPWf6tQJL5_nbysmS8aPmJc0LCh8YHNz_sxMyGtw93w5Zc1cCmwdBVDIuYg2SyxCURt4ZSbQ0l77xQxvI1AMhgKfufAI3biqZLw1CG6WEnyFHlR4_JZ1ZPoMzQrMMrGcRx1mEGlxp5Wp32otiXFHHNuuSXmuypNnwRYIwiUeu_yrokpvWjF-PN8ORawck6ICkdkBSnf_v9QuyG7iukrrlsEc65WIJlwgLSn1V74JPKSuxkg
  priority: 102
  providerName: Springer Nature
Title Robust design optimization under dependent random variables by a generalized polynomial chaos expansion
URI https://link.springer.com/article/10.1007/s00158-020-02820-z
https://www.proquest.com/docview/2513719892
Volume 63
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT9tAEB6V5AIHVFoQoRDtoceuant34_UJhSoBgYoq1EjpyfI-TJEgDtigkl_PjLPh0QNXW9qVZnZnvpmdbwbga2Qx3iqs5MJHlks_sDyzxvMs8U6XCPilIoLzz_PByUSeTtU0JNzqUFa5somtoXaVpRz5d_TDIqUCn-RwfstpahS9roYRGmvQRROsdQe6R6PzXxfPtlgvATDBGh7LdBpoMy15juCC5hQ-UdwR8cUbkPnfu2jrbsYfYTPgRDZcKnYLPvjZJ9h41T3wM1xeVOa-bphrizBYhZf_JrAqGVHD7thqwm3D0CO56oY9YGRMXKmamUdWsMtlz-mrhXdsXl0_EkUZN7V_i6pm_h8aCsqlbcNkPPr944SHuQl8niRpw4XMjFdCDbw2GIOmCqUuVGzjgUtUEXkpvSjornphqUNZrCzCHK1lXGK8qiKxA51ZNfO7wMrSu8ghpnMIO4Q2mt7xTJRmuKLJXNmD_ZXI8nD46_xFVT34thLjy-_nRsmtAnJUQN4qIF_svb_aF1hPqKKkLTfch05zd-8PEBI0pg9renzch-7w-M_ZqB9OAX6dJMMnLTu5CA
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9tAEB5ROLQcEPQhKBT20N66qu3dje1DVVWFEBrgUCVSbq73YUCCOI0daPKj-hs74wehHHrjbGlt7Yxnvm93vhmA955BvpUayYXzDJeuY3hstONx4GyUIeCXigTOZ-ed3lB-H6nRCvxptTBUVtnGxCpQ29zQGfknzMMipAKf4MvkF6epUXS72o7QqN2i7-Z3SNmKzyeHaN8PQdA9Gnzr8WaqAJ8EQVhyIWPtlFAdF2lkaKHCbxLKN37HBir1nJROpOTJThjq3-UrgyAgiqSfIZtTnsB1n8GaFJjJSZnePb6P_FENtwlEcV-Go0akU0n1CJxEnMgasRyPL_6BtI9uYavk1t2EjQaVsq-1G23Bihu_hPUHvQpfwcWPXM-Kktmq5IPlGGpuGg0nIyHalLXzdEuG-c_mN-wWeTgpswqm5yxlF3WH66uFs2ySX89JEI0vNZdpXjD3G8MSndy9huGT7OcbWB3nY7cNLMuc9SwiSIsgR0Q6oltD7YUxrqhjm-3AXrtlSfOrFcnSMXbgY7uNy8f3bZkrAyRogKQyQLJ4-__VDuB5b3B2mpyenPd34UVAtSxVoeMerJbTmXuHYKTU-5UHMPj51C73F57L7f0
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9tAEB7xkCp6QNCCCIWyh_bGKvY-YvvAAUEjwkuoIlJurvfhgNTEUexQkl_FT2TWsUOLeuHA2dZ6NTO7-32e-WYBvnka-VaiBeXW01TYlqaRVpZGzJowRcAvpBM4X123zrrivCd7S_BUa2HKavc6JTnXNLguTcOiOTJpcyF8c0d9SB31cZzBo7OqrPLCTv8gacuPOqfo4e-MtX_cnpzR6l4BOmIsKCgXkbKSy5YNFXK0QOKsuPS13zJMJp4VwvLExbLl2nXw8qVGGBCGwk-Rz0mP47jLsCqc-hhXUJcdL_b-cA64HYyivgh6lUzn_3P-B9S-ysOWx1t7A9YrXEqO54G0CUt2-Ak-_tWt8DP0f2ZqkhfElEUfJMPNZlCpOImToo1JfaNuQfAENNmAPCATd9qsnKgpSUh_3uP6fmYNGWW_p04SjR_Vd0mWE_uIG5P7d7cF3Xex5zasDLOh3QGSptZ4BjGkQZjDQxW6vKHygghHVJFJG7BXmyyuFlseI0Tjgav9Yg04rM348njRmLl0QIwOiEsHxLPdt71-AB9uTtvxZef64gusMVfcUlY-7sFKMZ7YfUQnhfpaBgSBX-8dgc8hie-i
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Robust+design+optimization+under+dependent+random+variables+by+a+generalized+polynomial+chaos+expansion&rft.jtitle=Structural+and+multidisciplinary+optimization&rft.au=Lee%2C+Dongjin&rft.au=Rahman%2C+Sharif&rft.date=2021-05-01&rft.pub=Springer+Nature+B.V&rft.issn=1615-147X&rft.eissn=1615-1488&rft.volume=63&rft.issue=5&rft.spage=2425&rft.epage=2457&rft_id=info:doi/10.1007%2Fs00158-020-02820-z
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1615-147X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1615-147X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1615-147X&client=summon