Data-Driven Rogue Waves in Nonlocal PT-Symmetric Schrödinger Equation via Mix-Training PINN

In this paper, by modifying loss function MSE (adding the mean square error of the complex conjugate term to the loss function) and training area of the physics-informed neural network (PINN), the authors proposed two neural network models: Mix-training PINN and prior information mix-training PINN....

Full description

Saved in:
Bibliographic Details
Published inJournal of systems science and complexity Vol. 38; no. 5; pp. 2272 - 2290
Main Authors Sun, Jiawei, Li, Biao
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.10.2025
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1009-6124
1559-7067
DOI10.1007/s11424-024-3418-3

Cover

Loading…
Abstract In this paper, by modifying loss function MSE (adding the mean square error of the complex conjugate term to the loss function) and training area of the physics-informed neural network (PINN), the authors proposed two neural network models: Mix-training PINN and prior information mix-training PINN. The authors demonstrated the advantages of these models by simulating rogue waves in the nonlocal P T -symmetric Schrödinger equation. Numerical experiments showed that the proposed models not only simulate first-order rogue waves, but also significantly improve the simulation capability. Compared with original PINN, the prediction accuracy of the first-order rouge waves are improved by one to three orders of magnitude. By testing the inverse problem of first-order rogue waves, it is also proved that these models have good performance.
AbstractList In this paper, by modifying loss function MSE (adding the mean square error of the complex conjugate term to the loss function) and training area of the physics-informed neural network (PINN), the authors proposed two neural network models: Mix-training PINN and prior information mix-training PINN. The authors demonstrated the advantages of these models by simulating rogue waves in the nonlocal P T -symmetric Schrödinger equation. Numerical experiments showed that the proposed models not only simulate first-order rogue waves, but also significantly improve the simulation capability. Compared with original PINN, the prediction accuracy of the first-order rouge waves are improved by one to three orders of magnitude. By testing the inverse problem of first-order rogue waves, it is also proved that these models have good performance.
In this paper, by modifying loss function MSE (adding the mean square error of the complex conjugate term to the loss function) and training area of the physics-informed neural network (PINN), the authors proposed two neural network models: Mix-training PINN and prior information mix-training PINN. The authors demonstrated the advantages of these models by simulating rogue waves in the nonlocal PT-symmetric Schrödinger equation. Numerical experiments showed that the proposed models not only simulate first-order rogue waves, but also significantly improve the simulation capability. Compared with original PINN, the prediction accuracy of the first-order rouge waves are improved by one to three orders of magnitude. By testing the inverse problem of first-order rogue waves, it is also proved that these models have good performance.
Author Sun, Jiawei
Li, Biao
Author_xml – sequence: 1
  givenname: Jiawei
  surname: Sun
  fullname: Sun, Jiawei
  email: adequatefloater@gmail.com
  organization: School of Mathematics and Statistics, Ningbo University
– sequence: 2
  givenname: Biao
  surname: Li
  fullname: Li, Biao
  email: libiao@nbu.edu.cn
  organization: School of Mathematics and Statistics, Ningbo University
BookMark eNpFkN1OAjEQhRuDiYA-gHdNvK5Of_bv0gAqCSIRjDcmm263xRLoQneX6Iv5Ar6YRUy8mMwk52TmzNdDHVc5jdAlhWsKkNzUlAomCITigqaEn6AujaKMJBAnnTADZCSmTJyhXl2vAHicQdpFb0PZSDL0dq8dfq6Wrcavcq9rbB2eVm5dKbnGswWZf242uvFW4bl6999fpXVL7fFo18rGVg7vrcSP9oMsvLQuaHg2nk7P0amR61pf_PU-erkbLQYPZPJ0Px7cTsiWsbghRqQgQCUFcCUUU3FUxGVqIsMNZUWmjTEZN1GcFCqEjkSpS81Bh2doKqlIeR9dHfdufbVrdd3kq6r1LpzMOeOJ4EKkWXCxo6ve-t_0_y4K-YFifqSYB4r5gWLO-Q8GxGbl
ContentType Journal Article
Copyright The Editorial Office of JSSC & Springer-Verlag GmbH Germany 2024
The Editorial Office of JSSC & Springer-Verlag GmbH Germany 2024.
Copyright_xml – notice: The Editorial Office of JSSC & Springer-Verlag GmbH Germany 2024
– notice: The Editorial Office of JSSC & Springer-Verlag GmbH Germany 2024.
DOI 10.1007/s11424-024-3418-3
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Statistics
Mathematics
EISSN 1559-7067
EndPage 2290
ExternalDocumentID 10_1007_s11424_024_3418_3
GroupedDBID -SA
-S~
-Y2
.86
.VR
06D
0R~
0VY
1N0
29L
2J2
2JN
2JY
2KG
2KM
2LR
2VQ
2~H
30V
4.4
406
408
40D
40E
5GY
5VR
5VS
5XA
5XB
6NX
8TC
95-
95.
95~
96X
AAAVM
AABHQ
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABDBE
ABDZT
ABECU
ABFSG
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABRTQ
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACSNA
ACSTC
ACZOJ
ADHHG
ADHIR
ADHKG
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AEZWR
AFBBN
AFDZB
AFGCZ
AFHIU
AFLOW
AFOHR
AFQWF
AFUIB
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGQPQ
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHPBZ
AHSBF
AHWEU
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AIXLP
AJBLW
AJRNO
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
ATHPR
AVWKF
AXYYD
AYFIA
AZFZN
B-.
BA0
BAPOH
BDATZ
BGNMA
BSONS
CAG
CAJEA
CCEZO
CCVFK
CHBEP
COF
CS3
CSCUP
CW9
DDRTE
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ7
H13
HF~
HG6
HLICF
HMJXF
HRMNR
HVGLF
HZ~
IJ-
IKXTQ
IWAJR
IXD
I~X
I~Z
J-C
JBSCW
JZLTJ
KDC
KOV
LLZTM
M4Y
MA-
N2Q
NPVJJ
NQJWS
NU0
O9-
O93
O9J
P9R
PF0
PT4
Q--
QOS
R89
R9I
REI
ROL
RPX
RSV
S16
S1Z
S27
S3B
SAP
SCL
SDH
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TSK
TUC
U1G
U2A
U5K
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
ZMTXR
~A9
ID FETCH-LOGICAL-p226t-f48040c7b03c4c2c65b6d8f5f3f12b9efff93f567bc69054dede30e12418a1483
IEDL.DBID U2A
ISSN 1009-6124
IngestDate Thu Aug 07 15:12:16 EDT 2025
Thu Aug 07 05:59:53 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords physics-informed neural network
rogue waves
nonlocal NLS equation
Mix-training
prior information
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-p226t-f48040c7b03c4c2c65b6d8f5f3f12b9efff93f567bc69054dede30e12418a1483
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 3237434489
PQPubID 2044418
PageCount 19
ParticipantIDs proquest_journals_3237434489
springer_journals_10_1007_s11424_024_3418_3
PublicationCentury 2000
PublicationDate 2025-10-01
PublicationDateYYYYMMDD 2025-10-01
PublicationDate_xml – month: 10
  year: 2025
  text: 2025-10-01
  day: 01
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationTitle Journal of systems science and complexity
PublicationTitleAbbrev J Syst Sci Complex
PublicationYear 2025
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
SSID ssj0036908
Score 2.354369
Snippet In this paper, by modifying loss function MSE (adding the mean square error of the complex conjugate term to the loss function) and training area of the...
SourceID proquest
springer
SourceType Aggregation Database
Publisher
StartPage 2272
SubjectTerms Complex Systems
Control
Inverse problems
Mathematics
Mathematics and Statistics
Mathematics of Computing
Neural networks
Operations Research/Decision Theory
Schrodinger equation
Statistics
Systems Theory
Title Data-Driven Rogue Waves in Nonlocal PT-Symmetric Schrödinger Equation via Mix-Training PINN
URI https://link.springer.com/article/10.1007/s11424-024-3418-3
https://www.proquest.com/docview/3237434489
Volume 38
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NTsJAEN4oXPBgFDWiaPbgzWzSdrdLeyQCEg3ECERMTJrd7W7kQFGoRF_MF_DFnC2tqPHisWnTNDPTme_b-UPoLHalcah2iXQ0J4w5ioRSCEKF4LHSDcNNVm3R590Ruxr747yPe1FUuxcpycxTr5vdbFMWgZhCwPMGhG6ism-pOxjxyGsW7pcC3Vv1vzkh8CKPFanMv17xA1b-yoRmAaazg7ZzZIibK1Xuog2dVNHWt3mBcNX7GrK6qKKKBYqrOct76KElUkFac-u88K09j8F3YqkXeJLg_izJQha-GZLB23Rql2gpPFCP84_3OPsW3H5ejfzGy4nAvckrGearIzDQ_v4-GnXaw4suyTcnkCeAUykxLICfUzWkQxVTnuK-5HFgfEON68lQG2NCanzekArE5bNYx5o6GqTlBgIIEj1ApWSW6EOEuYm5DBqBFFwwqZlgcaAAUzmho-wJag3VCxFGufkvIupRQCbA_MIaOi_Eur69HpVs9RGBPiKrj4ge_evpY1Tx7DberLSujkrp_EWfAERI5SkqNy_vr9unmWl8AorVtn8
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1RT8IwEG4UH8QHo6gRRe2Db6bJWLuyPRKBoAIxApEHk6Xt2sgDQ2ES_WP-Af-Y17GJGl98XLoszV13913v7juEzqOqNA7VVSIdzQljjiKBFIJQIXikdM1wk1Zb9Hh7yK5H3ijr457n1e55SjK11KtmN9uURcCnELC8PqHraAOwgG_ruIZuPTe_FMK9Zf-bE0Bc5LI8lfnXJ37Ayl-Z0NTBtHbQdoYMcX2pyl20puMS2vrGFwhP3S-S1XkJFS1QXPIs76GHhkgEacys8cJ39j4G34uFnuNxjHvTOHVZ-HZA-m-TiR2ipXBfPc4-3qN0L7j5vKT8xouxwN3xKxlkoyMwhP29fTRsNQeXbZJNTiBPAKcSYpgPP6eqSYcqplzFPckj33iGmqorA22MCajxeE0qEJfHIh1p6miQVtUXECDRA1SIp7E-RJibiEu_5kvBBZOaCRb5CjCVEzjK3qCWUSUXYZgd_3lIXQrIBCK_oIwucrGulldUyVYfIegjtPoI6dG_3j5Dm-1BtxN2rno3x6jo2sm8aZldBRWS2Ys-AbiQyNP0eHwCjIW33g
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF60guhBtCpWq-7Bmywm2c02ORbb4quhaIsehLBP7KFpbWPRP-Yf8I-5m4dV8eIxJCxhZnfmm52ZbwA4kS7XDlYu4o6iiBBHoJAzhjBjVArV0FRn1RYRvRiQqwf_oZhzOiur3cuUZN7TYFmakvRsIvXZovHNNmgh41-QscIBwstgxVhj127rgdcsTTE2oV_eC-eEJkbySJnW_GuJHxDzV1Y0czadTbBRoETYzNW6BZZUUgXr37gDzVP3i3B1VgVrFjTmnMvb4LHFUoZaU2vI4K29m4H3bK5mcJjAaJxk7gv2-ujubTSyA7UEvBNP0493mf0LbD_n9N9wPmSwO3xF_WKMBOxdRtEOGHTa_fMLVExRQBMDrVKkSWAOqmhwBwsiPEF9TmWgfY216_FQaa1DrH3a4MKIyydSSYUdZaTlBswES3gXVJJxovYApFpSHjQCzigjXBFGZCAMvnJCR9jb1BqolyKMi6Mwi7GHDUoxUWBYA6elWBevF7TJVh-x0Uds9RHj_X99fQxWe61OfHMZXR-ANc8O6c0q7uqgkk5f1KFBDik_ynbHJ3UvvBo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Data-Driven+Rogue+Waves+in+Nonlocal+PT-Symmetric+Schr%C3%B6dinger+Equation+via+Mix-Training+PINN&rft.jtitle=Journal+of+systems+science+and+complexity&rft.au=Sun%2C+Jiawei&rft.au=Li%2C+Biao&rft.date=2025-10-01&rft.pub=Springer+Berlin+Heidelberg&rft.issn=1009-6124&rft.eissn=1559-7067&rft.volume=38&rft.issue=5&rft.spage=2272&rft.epage=2290&rft_id=info:doi/10.1007%2Fs11424-024-3418-3&rft.externalDocID=10_1007_s11424_024_3418_3
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1009-6124&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1009-6124&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1009-6124&client=summon