Data-Driven Rogue Waves in Nonlocal PT-Symmetric Schrödinger Equation via Mix-Training PINN
In this paper, by modifying loss function MSE (adding the mean square error of the complex conjugate term to the loss function) and training area of the physics-informed neural network (PINN), the authors proposed two neural network models: Mix-training PINN and prior information mix-training PINN....
Saved in:
Published in | Journal of systems science and complexity Vol. 38; no. 5; pp. 2272 - 2290 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.10.2025
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 1009-6124 1559-7067 |
DOI | 10.1007/s11424-024-3418-3 |
Cover
Loading…
Abstract | In this paper, by modifying loss function MSE (adding the mean square error of the complex conjugate term to the loss function) and training area of the physics-informed neural network (PINN), the authors proposed two neural network models: Mix-training PINN and prior information mix-training PINN. The authors demonstrated the advantages of these models by simulating rogue waves in the nonlocal
P
T
-symmetric Schrödinger equation. Numerical experiments showed that the proposed models not only simulate first-order rogue waves, but also significantly improve the simulation capability. Compared with original PINN, the prediction accuracy of the first-order rouge waves are improved by one to three orders of magnitude. By testing the inverse problem of first-order rogue waves, it is also proved that these models have good performance. |
---|---|
AbstractList | In this paper, by modifying loss function MSE (adding the mean square error of the complex conjugate term to the loss function) and training area of the physics-informed neural network (PINN), the authors proposed two neural network models: Mix-training PINN and prior information mix-training PINN. The authors demonstrated the advantages of these models by simulating rogue waves in the nonlocal
P
T
-symmetric Schrödinger equation. Numerical experiments showed that the proposed models not only simulate first-order rogue waves, but also significantly improve the simulation capability. Compared with original PINN, the prediction accuracy of the first-order rouge waves are improved by one to three orders of magnitude. By testing the inverse problem of first-order rogue waves, it is also proved that these models have good performance. In this paper, by modifying loss function MSE (adding the mean square error of the complex conjugate term to the loss function) and training area of the physics-informed neural network (PINN), the authors proposed two neural network models: Mix-training PINN and prior information mix-training PINN. The authors demonstrated the advantages of these models by simulating rogue waves in the nonlocal PT-symmetric Schrödinger equation. Numerical experiments showed that the proposed models not only simulate first-order rogue waves, but also significantly improve the simulation capability. Compared with original PINN, the prediction accuracy of the first-order rouge waves are improved by one to three orders of magnitude. By testing the inverse problem of first-order rogue waves, it is also proved that these models have good performance. |
Author | Sun, Jiawei Li, Biao |
Author_xml | – sequence: 1 givenname: Jiawei surname: Sun fullname: Sun, Jiawei email: adequatefloater@gmail.com organization: School of Mathematics and Statistics, Ningbo University – sequence: 2 givenname: Biao surname: Li fullname: Li, Biao email: libiao@nbu.edu.cn organization: School of Mathematics and Statistics, Ningbo University |
BookMark | eNpFkN1OAjEQhRuDiYA-gHdNvK5Of_bv0gAqCSIRjDcmm263xRLoQneX6Iv5Ar6YRUy8mMwk52TmzNdDHVc5jdAlhWsKkNzUlAomCITigqaEn6AujaKMJBAnnTADZCSmTJyhXl2vAHicQdpFb0PZSDL0dq8dfq6Wrcavcq9rbB2eVm5dKbnGswWZf242uvFW4bl6999fpXVL7fFo18rGVg7vrcSP9oMsvLQuaHg2nk7P0amR61pf_PU-erkbLQYPZPJ0Px7cTsiWsbghRqQgQCUFcCUUU3FUxGVqIsMNZUWmjTEZN1GcFCqEjkSpS81Bh2doKqlIeR9dHfdufbVrdd3kq6r1LpzMOeOJ4EKkWXCxo6ve-t_0_y4K-YFifqSYB4r5gWLO-Q8GxGbl |
ContentType | Journal Article |
Copyright | The Editorial Office of JSSC & Springer-Verlag GmbH Germany 2024 The Editorial Office of JSSC & Springer-Verlag GmbH Germany 2024. |
Copyright_xml | – notice: The Editorial Office of JSSC & Springer-Verlag GmbH Germany 2024 – notice: The Editorial Office of JSSC & Springer-Verlag GmbH Germany 2024. |
DOI | 10.1007/s11424-024-3418-3 |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Statistics Mathematics |
EISSN | 1559-7067 |
EndPage | 2290 |
ExternalDocumentID | 10_1007_s11424_024_3418_3 |
GroupedDBID | -SA -S~ -Y2 .86 .VR 06D 0R~ 0VY 1N0 29L 2J2 2JN 2JY 2KG 2KM 2LR 2VQ 2~H 30V 4.4 406 408 40D 40E 5GY 5VR 5VS 5XA 5XB 6NX 8TC 95- 95. 95~ 96X AAAVM AABHQ AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABDBE ABDZT ABECU ABFSG ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABRTQ ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACSNA ACSTC ACZOJ ADHHG ADHIR ADHKG ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AEZWR AFBBN AFDZB AFGCZ AFHIU AFLOW AFOHR AFQWF AFUIB AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGQPQ AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHPBZ AHSBF AHWEU AHYZX AIAKS AIGIU AIIXL AILAN AITGF AIXLP AJBLW AJRNO ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG ATHPR AVWKF AXYYD AYFIA AZFZN B-. BA0 BAPOH BDATZ BGNMA BSONS CAG CAJEA CCEZO CCVFK CHBEP COF CS3 CSCUP CW9 DDRTE DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ7 H13 HF~ HG6 HLICF HMJXF HRMNR HVGLF HZ~ IJ- IKXTQ IWAJR IXD I~X I~Z J-C JBSCW JZLTJ KDC KOV LLZTM M4Y MA- N2Q NPVJJ NQJWS NU0 O9- O93 O9J P9R PF0 PT4 Q-- QOS R89 R9I REI ROL RPX RSV S16 S1Z S27 S3B SAP SCL SDH SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TSG TSK TUC U1G U2A U5K UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR ZMTXR ~A9 |
ID | FETCH-LOGICAL-p226t-f48040c7b03c4c2c65b6d8f5f3f12b9efff93f567bc69054dede30e12418a1483 |
IEDL.DBID | U2A |
ISSN | 1009-6124 |
IngestDate | Thu Aug 07 15:12:16 EDT 2025 Thu Aug 07 05:59:53 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | physics-informed neural network rogue waves nonlocal NLS equation Mix-training prior information |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-p226t-f48040c7b03c4c2c65b6d8f5f3f12b9efff93f567bc69054dede30e12418a1483 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 3237434489 |
PQPubID | 2044418 |
PageCount | 19 |
ParticipantIDs | proquest_journals_3237434489 springer_journals_10_1007_s11424_024_3418_3 |
PublicationCentury | 2000 |
PublicationDate | 2025-10-01 |
PublicationDateYYYYMMDD | 2025-10-01 |
PublicationDate_xml | – month: 10 year: 2025 text: 2025-10-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Berlin/Heidelberg |
PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg |
PublicationTitle | Journal of systems science and complexity |
PublicationTitleAbbrev | J Syst Sci Complex |
PublicationYear | 2025 |
Publisher | Springer Berlin Heidelberg Springer Nature B.V |
Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
SSID | ssj0036908 |
Score | 2.354369 |
Snippet | In this paper, by modifying loss function MSE (adding the mean square error of the complex conjugate term to the loss function) and training area of the... |
SourceID | proquest springer |
SourceType | Aggregation Database Publisher |
StartPage | 2272 |
SubjectTerms | Complex Systems Control Inverse problems Mathematics Mathematics and Statistics Mathematics of Computing Neural networks Operations Research/Decision Theory Schrodinger equation Statistics Systems Theory |
Title | Data-Driven Rogue Waves in Nonlocal PT-Symmetric Schrödinger Equation via Mix-Training PINN |
URI | https://link.springer.com/article/10.1007/s11424-024-3418-3 https://www.proquest.com/docview/3237434489 |
Volume | 38 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NTsJAEN4oXPBgFDWiaPbgzWzSdrdLeyQCEg3ECERMTJrd7W7kQFGoRF_MF_DFnC2tqPHisWnTNDPTme_b-UPoLHalcah2iXQ0J4w5ioRSCEKF4LHSDcNNVm3R590Ruxr747yPe1FUuxcpycxTr5vdbFMWgZhCwPMGhG6ism-pOxjxyGsW7pcC3Vv1vzkh8CKPFanMv17xA1b-yoRmAaazg7ZzZIibK1Xuog2dVNHWt3mBcNX7GrK6qKKKBYqrOct76KElUkFac-u88K09j8F3YqkXeJLg_izJQha-GZLB23Rql2gpPFCP84_3OPsW3H5ejfzGy4nAvckrGearIzDQ_v4-GnXaw4suyTcnkCeAUykxLICfUzWkQxVTnuK-5HFgfEON68lQG2NCanzekArE5bNYx5o6GqTlBgIIEj1ApWSW6EOEuYm5DBqBFFwwqZlgcaAAUzmho-wJag3VCxFGufkvIupRQCbA_MIaOi_Eur69HpVs9RGBPiKrj4ge_evpY1Tx7DberLSujkrp_EWfAERI5SkqNy_vr9unmWl8AorVtn8 |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1RT8IwEG4UH8QHo6gRRe2Db6bJWLuyPRKBoAIxApEHk6Xt2sgDQ2ES_WP-Af-Y17GJGl98XLoszV13913v7juEzqOqNA7VVSIdzQljjiKBFIJQIXikdM1wk1Zb9Hh7yK5H3ijr457n1e55SjK11KtmN9uURcCnELC8PqHraAOwgG_ruIZuPTe_FMK9Zf-bE0Bc5LI8lfnXJ37Ayl-Z0NTBtHbQdoYMcX2pyl20puMS2vrGFwhP3S-S1XkJFS1QXPIs76GHhkgEacys8cJ39j4G34uFnuNxjHvTOHVZ-HZA-m-TiR2ipXBfPc4-3qN0L7j5vKT8xouxwN3xKxlkoyMwhP29fTRsNQeXbZJNTiBPAKcSYpgPP6eqSYcqplzFPckj33iGmqorA22MCajxeE0qEJfHIh1p6miQVtUXECDRA1SIp7E-RJibiEu_5kvBBZOaCRb5CjCVEzjK3qCWUSUXYZgd_3lIXQrIBCK_oIwucrGulldUyVYfIegjtPoI6dG_3j5Dm-1BtxN2rno3x6jo2sm8aZldBRWS2Ys-AbiQyNP0eHwCjIW33g |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF60guhBtCpWq-7Bmywm2c02ORbb4quhaIsehLBP7KFpbWPRP-Yf8I-5m4dV8eIxJCxhZnfmm52ZbwA4kS7XDlYu4o6iiBBHoJAzhjBjVArV0FRn1RYRvRiQqwf_oZhzOiur3cuUZN7TYFmakvRsIvXZovHNNmgh41-QscIBwstgxVhj127rgdcsTTE2oV_eC-eEJkbySJnW_GuJHxDzV1Y0czadTbBRoETYzNW6BZZUUgXr37gDzVP3i3B1VgVrFjTmnMvb4LHFUoZaU2vI4K29m4H3bK5mcJjAaJxk7gv2-ujubTSyA7UEvBNP0493mf0LbD_n9N9wPmSwO3xF_WKMBOxdRtEOGHTa_fMLVExRQBMDrVKkSWAOqmhwBwsiPEF9TmWgfY216_FQaa1DrH3a4MKIyydSSYUdZaTlBswES3gXVJJxovYApFpSHjQCzigjXBFGZCAMvnJCR9jb1BqolyKMi6Mwi7GHDUoxUWBYA6elWBevF7TJVh-x0Uds9RHj_X99fQxWe61OfHMZXR-ANc8O6c0q7uqgkk5f1KFBDik_ynbHJ3UvvBo |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Data-Driven+Rogue+Waves+in+Nonlocal+PT-Symmetric+Schr%C3%B6dinger+Equation+via+Mix-Training+PINN&rft.jtitle=Journal+of+systems+science+and+complexity&rft.au=Sun%2C+Jiawei&rft.au=Li%2C+Biao&rft.date=2025-10-01&rft.pub=Springer+Berlin+Heidelberg&rft.issn=1009-6124&rft.eissn=1559-7067&rft.volume=38&rft.issue=5&rft.spage=2272&rft.epage=2290&rft_id=info:doi/10.1007%2Fs11424-024-3418-3&rft.externalDocID=10_1007_s11424_024_3418_3 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1009-6124&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1009-6124&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1009-6124&client=summon |