A family of pairs of imaginary cyclic fields of degree (p-1)/2 with both class numbers divisible by p

Let p be a prime number with p ≡ 5 ( mod 8 ) . We construct a new infinite family of pairs of imaginary cyclic fields of degree ( p - 1 ) / 2 with both class numbers divisible by p . Let k 0 be the unique subfield of Q ( ζ p ) of degree ( p - 1 ) / 4 and u p = ( t + b p ) / 2 ( > 1 ) be the funda...

Full description

Saved in:
Bibliographic Details
Published inThe Ramanujan journal Vol. 52; no. 1; pp. 133 - 161
Main Authors Aoki, Miho, Kishi, Yasuhiro
Format Journal Article
LanguageEnglish
Published New York Springer US 01.05.2020
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Let p be a prime number with p ≡ 5 ( mod 8 ) . We construct a new infinite family of pairs of imaginary cyclic fields of degree ( p - 1 ) / 2 with both class numbers divisible by p . Let k 0 be the unique subfield of Q ( ζ p ) of degree ( p - 1 ) / 4 and u p = ( t + b p ) / 2 ( > 1 ) be the fundamental unit of k : = Q ( p ) . We put D m , n : = L m ( 2 F m - F n L m ) b for integers m and n , where { F n } and { L n } are linear recurrence sequences of degree two associated to the characteristic polynomial P ( X ) = X 2 - t X - 1 . We assume that there exists a pair ( m 0 , n 0 ) of integers satisfying certain congruence relations. Then we show that there exists a positive integer N q which satisfies the both class numbers of k 0 ( D m , n ) and k 0 ( p D m , n ) are divisible by p for any pairs ( m ,  n ) with m ≡ m 0 ( mod N q ) , n ≡ n 0 ( mod N q ) and n > 3 . Furthermore, we show that if we assume that ERH holds, then there exists the pair ( m 0 , n 0 ) .
AbstractList Let p be a prime number with p≡5(mod8). We construct a new infinite family of pairs of imaginary cyclic fields of degree (p-1)/2 with both class numbers divisible by p. Let k0 be the unique subfield of Q(ζp) of degree (p-1)/4 and up=(t+bp)/2(>1) be the fundamental unit of k:=Q(p). We put Dm,n:=Lm(2Fm-FnLm)b for integers m and n, where {Fn} and {Ln} are linear recurrence sequences of degree two associated to the characteristic polynomial P(X)=X2-tX-1. We assume that there exists a pair (m0,n0) of integers satisfying certain congruence relations. Then we show that there exists a positive integer Nq which satisfies the both class numbers of k0(Dm,n) and k0(pDm,n) are divisible by p for any pairs (m, n) with m≡m0(modNq),n≡n0(modNq) and n>3. Furthermore, we show that if we assume that ERH holds, then there exists the pair (m0,n0).
Let p be a prime number with p ≡ 5 ( mod 8 ) . We construct a new infinite family of pairs of imaginary cyclic fields of degree ( p - 1 ) / 2 with both class numbers divisible by p . Let k 0 be the unique subfield of Q ( ζ p ) of degree ( p - 1 ) / 4 and u p = ( t + b p ) / 2 ( > 1 ) be the fundamental unit of k : = Q ( p ) . We put D m , n : = L m ( 2 F m - F n L m ) b for integers m and n , where { F n } and { L n } are linear recurrence sequences of degree two associated to the characteristic polynomial P ( X ) = X 2 - t X - 1 . We assume that there exists a pair ( m 0 , n 0 ) of integers satisfying certain congruence relations. Then we show that there exists a positive integer N q which satisfies the both class numbers of k 0 ( D m , n ) and k 0 ( p D m , n ) are divisible by p for any pairs ( m ,  n ) with m ≡ m 0 ( mod N q ) , n ≡ n 0 ( mod N q ) and n > 3 . Furthermore, we show that if we assume that ERH holds, then there exists the pair ( m 0 , n 0 ) .
Author Aoki, Miho
Kishi, Yasuhiro
Author_xml – sequence: 1
  givenname: Miho
  surname: Aoki
  fullname: Aoki, Miho
  email: aoki@riko.shimane-u.ac.jp
  organization: Department of Mathematics, Interdisciplinary Faculty of Science and Engineering, Shimane University
– sequence: 2
  givenname: Yasuhiro
  surname: Kishi
  fullname: Kishi, Yasuhiro
  organization: Department of Mathematics, Faculty of Education, Aichi University of Education
BookMark eNpFkE1LAzEQhoNUsK3-AG8BL3qInUw2m-yxFL-g4EXPS7JJasp2d920yv57t1bwMvPCPLwDz4xMmrbxhFxzuOcAapE456JgwDUD0JIVZ2TKpUJWCBCTMQuNLIMCLsgspS0AZCDUlPglDWYX64G2gXYm9ukY4s5sYmP6gVZDVceKhuhr93tyftN7T287xu8WSL_j_oPadhxVbVKizWFn_Vji4ldM0dae2oF2l-Q8mDr5q789J--PD2-rZ7Z-fXpZLdesQ8z3zBUqaOdRo1NKKhkqHoQWGDCrhJR5lQk0GAqd2wyCwszlOkeTO8utQ_BiTm5OvV3ffh582pfb9tA348sShdaCayFhpPBEpa6Pzcb3_xSH8qizPOksR53lUWdZiB-Tm2g6
ContentType Journal Article
Copyright Springer Science+Business Media, LLC, part of Springer Nature 2019
Springer Science+Business Media, LLC, part of Springer Nature 2019.
Copyright_xml – notice: Springer Science+Business Media, LLC, part of Springer Nature 2019
– notice: Springer Science+Business Media, LLC, part of Springer Nature 2019.
DOI 10.1007/s11139-018-0085-9
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1572-9303
EndPage 161
ExternalDocumentID 10_1007_s11139_018_0085_9
GroupedDBID -5D
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06D
0R~
0VY
123
1N0
1SB
203
29P
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5VS
67Z
6NX
6TJ
8TC
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADQRH
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BAPOH
BDATZ
BGNMA
BSONS
CAG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
J9A
JBSCW
JCJTX
JZLTJ
KDC
KOV
LAK
LLZTM
M4Y
MA-
N2Q
NB0
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
OVD
P9R
PF0
PT4
PT5
QOS
R89
R9I
RIG
RNI
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S27
S3B
SAP
SDH
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TEORI
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7U
ZMTXR
~A9
AAPKM
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
ID FETCH-LOGICAL-p226t-d97f8de282d77575fc1f3832f24c3556c432a2f986b40f724d6862a6db1bd20e3
IEDL.DBID U2A
ISSN 1382-4090
IngestDate Fri Jul 25 10:56:43 EDT 2025
Fri Feb 21 02:33:24 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords 11R29
Abelian number fields
Gauss sums
Class numbers
Fundamental units
11R11
Linear recurrence sequences
11R16
Jacobi sums
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-p226t-d97f8de282d77575fc1f3832f24c3556c432a2f986b40f724d6862a6db1bd20e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2388318350
PQPubID 2043831
PageCount 29
ParticipantIDs proquest_journals_2388318350
springer_journals_10_1007_s11139_018_0085_9
PublicationCentury 2000
PublicationDate 2020-05-01
PublicationDateYYYYMMDD 2020-05-01
PublicationDate_xml – month: 05
  year: 2020
  text: 2020-05-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Dordrecht
PublicationSubtitle An International Journal Devoted to the Areas of Mathematics Influenced by Ramanujan
PublicationTitle The Ramanujan journal
PublicationTitleAbbrev Ramanujan J
PublicationYear 2020
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References WashingtonLCIntroduction to Cyclotomic Fields1982New YorkSpringer10.1007/978-1-4684-0133-2
KomatsuTAn infinite family of pairs of quadratic fields Q(D)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{Q}}(\sqrt{D})$$\end{document} and Q(mD)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{Q}}(\sqrt{mD})$$\end{document} whose class numbers are both divisible by 3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$3$$\end{document}Acta Arith.2002104129136191424810.4064/aa104-2-3
IizukaYKonomiYNakanoSOn the class number divisibility of pairs of quadratic fields obtained from points on elliptic curvesJ. Math. Soc. Jpn.201668899915348815210.2969/jmsj/06820899
AlacaSWilliamsKSIntroductory Algebraic Number Theory2004CambridgeCambridge University Press1035.11001
AokiMKishiYAn infinite family of pairs of imaginary quadratic fields with both class numbers divisible by fiveJ. Number Theory2017176333343362213310.1016/j.jnt.2016.12.007
WeilASur les courbes algébriques et les variétés quis’en déduisent1948ParisHermann0036.16001
BerndtBCEvansRJWilliamsKSGauss and Jacobi Sums1998New YorkWiley0906.11001
KomatsuTAn infinite family of pairs of imaginary quadratic fields with ideal classes of a given orderInt. J. Number Theory2017132253260360662010.1142/S1793042117500154
AokiMKishiYOn systems of fundamental units of certain quartic fieldsInt. J. Number Theory201511720192035344044310.1142/S1793042115500864
ImaokaMKishiYOn dihedral extensions and Frobenius extensions: Galois theory and modular formsDev. Math.2004111952201068.11070
ScholzAÜber die Beziehung der Klassenzahlen quadratischer Körper zueinanderJ. Reine Angew. Math.193216620120315813090004.05104
LenstraHWJrOn Artin’s conjecture and Euclid’s algorithm in global fieldsInvent. Math.19774220122448041310.1007/BF01389788
TakagiTElementary Number Theory Lecture19712TokyoKyoritsu Shuppan(Japanese)
RibenboimPThe New Book of Prime Number Records1996New YorkSpringer10.1007/978-1-4612-0759-7
References_xml – reference: ImaokaMKishiYOn dihedral extensions and Frobenius extensions: Galois theory and modular formsDev. Math.2004111952201068.11070
– reference: WeilASur les courbes algébriques et les variétés quis’en déduisent1948ParisHermann0036.16001
– reference: ScholzAÜber die Beziehung der Klassenzahlen quadratischer Körper zueinanderJ. Reine Angew. Math.193216620120315813090004.05104
– reference: KomatsuTAn infinite family of pairs of imaginary quadratic fields with ideal classes of a given orderInt. J. Number Theory2017132253260360662010.1142/S1793042117500154
– reference: IizukaYKonomiYNakanoSOn the class number divisibility of pairs of quadratic fields obtained from points on elliptic curvesJ. Math. Soc. Jpn.201668899915348815210.2969/jmsj/06820899
– reference: RibenboimPThe New Book of Prime Number Records1996New YorkSpringer10.1007/978-1-4612-0759-7
– reference: AokiMKishiYOn systems of fundamental units of certain quartic fieldsInt. J. Number Theory201511720192035344044310.1142/S1793042115500864
– reference: KomatsuTAn infinite family of pairs of quadratic fields Q(D)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{Q}}(\sqrt{D})$$\end{document} and Q(mD)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{Q}}(\sqrt{mD})$$\end{document} whose class numbers are both divisible by 3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$3$$\end{document}Acta Arith.2002104129136191424810.4064/aa104-2-3
– reference: WashingtonLCIntroduction to Cyclotomic Fields1982New YorkSpringer10.1007/978-1-4684-0133-2
– reference: TakagiTElementary Number Theory Lecture19712TokyoKyoritsu Shuppan(Japanese)
– reference: LenstraHWJrOn Artin’s conjecture and Euclid’s algorithm in global fieldsInvent. Math.19774220122448041310.1007/BF01389788
– reference: AlacaSWilliamsKSIntroductory Algebraic Number Theory2004CambridgeCambridge University Press1035.11001
– reference: AokiMKishiYAn infinite family of pairs of imaginary quadratic fields with both class numbers divisible by fiveJ. Number Theory2017176333343362213310.1016/j.jnt.2016.12.007
– reference: BerndtBCEvansRJWilliamsKSGauss and Jacobi Sums1998New YorkWiley0906.11001
SSID ssj0004037
Score 2.1689694
Snippet Let p be a prime number with p ≡ 5 ( mod 8 ) . We construct a new infinite family of pairs of imaginary cyclic fields of degree ( p - 1 ) / 2 with both class...
Let p be a prime number with p≡5(mod8). We construct a new infinite family of pairs of imaginary cyclic fields of degree (p-1)/2 with both class numbers...
SourceID proquest
springer
SourceType Aggregation Database
Publisher
StartPage 133
SubjectTerms Combinatorics
Field Theory and Polynomials
Fourier Analysis
Functions of a Complex Variable
Integers
Mathematics
Mathematics and Statistics
Number Theory
Polynomials
Title A family of pairs of imaginary cyclic fields of degree (p-1)/2 with both class numbers divisible by p
URI https://link.springer.com/article/10.1007/s11139-018-0085-9
https://www.proquest.com/docview/2388318350
Volume 52
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF60vehBfOKjljl4UGSx2W5exyDWotSThXoK2RcUahuaeui_dyZNGhQv3gITEpjZx_ftzDfL2I3nG6Wkk9xJaZCg6JirvpU8zKQ2QiJGDkjgPHoLhmP5MvEnlY67qKvd65RkuVI3YjcP0QpS34gTTuDxLmv7SN2pjmsskkYM2SsbZVJvPfx3vE1l_vWJH7DyVya03GAGh-ygQoaQbEJ5xHbs_Jjtj7ZtVYsTZhPYHEjAwkFOmRh6mH7STUPZcg16rWdTDWVVWmkyFum0hduce3cPAujQFRTGBjSBZthcB1IAabJwaswsqDXkp2w8eHp_HPLqngSeI3hacROHLjIWyZMJQ4RfTnsOiadwQmqEE4GWfZEJF0eBkj0XCmlIFpIFRnnKiJ7tn7HWfDG35wxsZIMI4-qbzEpLjW2Er4RnXYZIwYS9C9apHZZWg71IcdePaGnw0XxfO7ExN42Ryfspej8l76fx5b_evmJ7grhuWWzYYa3V8steIyBYqS5rJ88fr0_dciB8A9YOrqE
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1JS8NAFB5qPagHccWl6hwUFBlMppPt4KGopbXLqYXeYmaDQm1DU5H8Hv-ob9KkQfHiobfAC0Py5r2Z75u3DELXtiM5Z5oRzZgEgiICwuuKES9iQlIGGNk1Bc69vtsasteRM6qgr6IWJst2L0KS2UpdFrvZgFaA-vrE4AQS5JmUHZV-Ak9LHtvPMKk3lDZfBk8tkl8lQGLAFwsiA0_7UgG_kJ4HCEULWwM3o5oyATuuK1idRlQHvsuZpT3KpKmciFzJbS6ppeow7gbaBOzhG9cZ0kZZfGlljTlNLz_412AVOv3rk3_A2F-R12xDa-6h3RyJ4sbSdPZRRU0P0E5v1cY1OUSqgZcHIHimcWwiP-Zh_G5uNormKRapmIwFzrLgMpFUQN8Vvo2JffdAsTnkxRxsAQsD0vHy-pEEmxowcMWJwjzF8REarkWZx6g6nU3VCcLKV64PduTISDFlGulQh1Nb6QiQifSsU1QrFBbmzpWEMAm-WYocEN8XSizFZSNmo_0QtB8a7YfB2b_evkJbrUGvG3bb_c452qaGZ2eJjjVUXcw_1AWAkQW_zIwBo7d1W983lZ3pUA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LS8NAEF5qBdGD-MRH1T0oKLK02W5eBw_FWlpriwcLvcXsCwq1DU1F8qv8i86kLxQvHrwFNoRkdib7fTvzzRJy6bhaSmEFs0JoICgqZLJqBPNjoTQXgJE9FDh3ul6zJx77br9APhdamLzafZGSnGkasEvTaFpOtC2vhG8OIBegwQFDzMDCeVVl22QfwNnSu1YdJviK88bDy32TzY8VYAlgjSnToW8DbYBraN8HtGKVY4GnccuFgtXXU6LKY27DwJOiYn0uNKooYk9LR2peMVV47hpZFyg-hgDq8dpKiFnJm3RiXz_47nCZRv3tlb9B2h9Z2Hxxa-yQ7TkqpbWZG-2Sghntka3OsqVruk9Mjc42Q-jY0gSzQHgxeMNTjuJJRlWmhgNF84q4fEgboPKGXifMuSlzihu-VIJfUIWAnc6OIkkp6sEgLIeGyowmB6T3L8Y8JMXReGSOCDWB8QLwKVfHRhhsqsNdyR1jY0Ap2q8ck9LCYNE80NIIEEeAvyUXhm8XRlwNr5oyo_UjsH6E1o_Ckz_dfUE2nuuN6KnVbZ-STY6UO695LJHidPJuzgCXTOV57guUvP63830Bo8_tgw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+family+of+pairs+of+imaginary+cyclic+fields+of+degree+%28p-1%29%2F2+with+both+class+numbers+divisible+by+p&rft.jtitle=The+Ramanujan+journal&rft.au=Aoki+Miho&rft.au=Kishi+Yasuhiro&rft.date=2020-05-01&rft.pub=Springer+Nature+B.V&rft.issn=1382-4090&rft.eissn=1572-9303&rft.volume=52&rft.issue=1&rft.spage=133&rft.epage=161&rft_id=info:doi/10.1007%2Fs11139-018-0085-9&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1382-4090&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1382-4090&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1382-4090&client=summon