A family of pairs of imaginary cyclic fields of degree (p-1)/2 with both class numbers divisible by p
Let p be a prime number with p ≡ 5 ( mod 8 ) . We construct a new infinite family of pairs of imaginary cyclic fields of degree ( p - 1 ) / 2 with both class numbers divisible by p . Let k 0 be the unique subfield of Q ( ζ p ) of degree ( p - 1 ) / 4 and u p = ( t + b p ) / 2 ( > 1 ) be the funda...
Saved in:
Published in | The Ramanujan journal Vol. 52; no. 1; pp. 133 - 161 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.05.2020
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Let
p
be a prime number with
p
≡
5
(
mod
8
)
. We construct a new infinite family of pairs of imaginary cyclic fields of degree
(
p
-
1
)
/
2
with both class numbers divisible by
p
. Let
k
0
be the unique subfield of
Q
(
ζ
p
)
of degree
(
p
-
1
)
/
4
and
u
p
=
(
t
+
b
p
)
/
2
(
>
1
)
be the fundamental unit of
k
:
=
Q
(
p
)
. We put
D
m
,
n
:
=
L
m
(
2
F
m
-
F
n
L
m
)
b
for integers
m
and
n
, where
{
F
n
}
and
{
L
n
}
are linear recurrence sequences of degree two associated to the characteristic polynomial
P
(
X
)
=
X
2
-
t
X
-
1
. We assume that there exists a pair
(
m
0
,
n
0
)
of integers satisfying certain congruence relations. Then we show that there exists a positive integer
N
q
which satisfies the both class numbers of
k
0
(
D
m
,
n
)
and
k
0
(
p
D
m
,
n
)
are divisible by
p
for any pairs (
m
,
n
) with
m
≡
m
0
(
mod
N
q
)
,
n
≡
n
0
(
mod
N
q
)
and
n
>
3
. Furthermore, we show that if we assume that ERH holds, then there exists the pair
(
m
0
,
n
0
)
. |
---|---|
AbstractList | Let p be a prime number with p≡5(mod8). We construct a new infinite family of pairs of imaginary cyclic fields of degree (p-1)/2 with both class numbers divisible by p. Let k0 be the unique subfield of Q(ζp) of degree (p-1)/4 and up=(t+bp)/2(>1) be the fundamental unit of k:=Q(p). We put Dm,n:=Lm(2Fm-FnLm)b for integers m and n, where {Fn} and {Ln} are linear recurrence sequences of degree two associated to the characteristic polynomial P(X)=X2-tX-1. We assume that there exists a pair (m0,n0) of integers satisfying certain congruence relations. Then we show that there exists a positive integer Nq which satisfies the both class numbers of k0(Dm,n) and k0(pDm,n) are divisible by p for any pairs (m, n) with m≡m0(modNq),n≡n0(modNq) and n>3. Furthermore, we show that if we assume that ERH holds, then there exists the pair (m0,n0). Let p be a prime number with p ≡ 5 ( mod 8 ) . We construct a new infinite family of pairs of imaginary cyclic fields of degree ( p - 1 ) / 2 with both class numbers divisible by p . Let k 0 be the unique subfield of Q ( ζ p ) of degree ( p - 1 ) / 4 and u p = ( t + b p ) / 2 ( > 1 ) be the fundamental unit of k : = Q ( p ) . We put D m , n : = L m ( 2 F m - F n L m ) b for integers m and n , where { F n } and { L n } are linear recurrence sequences of degree two associated to the characteristic polynomial P ( X ) = X 2 - t X - 1 . We assume that there exists a pair ( m 0 , n 0 ) of integers satisfying certain congruence relations. Then we show that there exists a positive integer N q which satisfies the both class numbers of k 0 ( D m , n ) and k 0 ( p D m , n ) are divisible by p for any pairs ( m , n ) with m ≡ m 0 ( mod N q ) , n ≡ n 0 ( mod N q ) and n > 3 . Furthermore, we show that if we assume that ERH holds, then there exists the pair ( m 0 , n 0 ) . |
Author | Aoki, Miho Kishi, Yasuhiro |
Author_xml | – sequence: 1 givenname: Miho surname: Aoki fullname: Aoki, Miho email: aoki@riko.shimane-u.ac.jp organization: Department of Mathematics, Interdisciplinary Faculty of Science and Engineering, Shimane University – sequence: 2 givenname: Yasuhiro surname: Kishi fullname: Kishi, Yasuhiro organization: Department of Mathematics, Faculty of Education, Aichi University of Education |
BookMark | eNpFkE1LAzEQhoNUsK3-AG8BL3qInUw2m-yxFL-g4EXPS7JJasp2d920yv57t1bwMvPCPLwDz4xMmrbxhFxzuOcAapE456JgwDUD0JIVZ2TKpUJWCBCTMQuNLIMCLsgspS0AZCDUlPglDWYX64G2gXYm9ukY4s5sYmP6gVZDVceKhuhr93tyftN7T287xu8WSL_j_oPadhxVbVKizWFn_Vji4ldM0dae2oF2l-Q8mDr5q789J--PD2-rZ7Z-fXpZLdesQ8z3zBUqaOdRo1NKKhkqHoQWGDCrhJR5lQk0GAqd2wyCwszlOkeTO8utQ_BiTm5OvV3ffh582pfb9tA348sShdaCayFhpPBEpa6Pzcb3_xSH8qizPOksR53lUWdZiB-Tm2g6 |
ContentType | Journal Article |
Copyright | Springer Science+Business Media, LLC, part of Springer Nature 2019 Springer Science+Business Media, LLC, part of Springer Nature 2019. |
Copyright_xml | – notice: Springer Science+Business Media, LLC, part of Springer Nature 2019 – notice: Springer Science+Business Media, LLC, part of Springer Nature 2019. |
DOI | 10.1007/s11139-018-0085-9 |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 1572-9303 |
EndPage | 161 |
ExternalDocumentID | 10_1007_s11139_018_0085_9 |
GroupedDBID | -5D -5G -BR -EM -Y2 -~C .86 .VR 06D 0R~ 0VY 123 1N0 1SB 203 29P 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5VS 67Z 6NX 6TJ 8TC 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADQRH ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFGCZ AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGWIL AGWZB AGYKE AHAVH AHBYD AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BAPOH BDATZ BGNMA BSONS CAG COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z J9A JBSCW JCJTX JZLTJ KDC KOV LAK LLZTM M4Y MA- N2Q NB0 NPVJJ NQJWS NU0 O9- O93 O9J OAM OVD P9R PF0 PT4 PT5 QOS R89 R9I RIG RNI ROL RPX RSV RZC RZE RZK S16 S1Z S27 S3B SAP SDH SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TEORI TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z7U ZMTXR ~A9 AAPKM ABBRH ABDBE ABFSG ABRTQ ACSTC AEZWR AFDZB AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR AYFIA |
ID | FETCH-LOGICAL-p226t-d97f8de282d77575fc1f3832f24c3556c432a2f986b40f724d6862a6db1bd20e3 |
IEDL.DBID | U2A |
ISSN | 1382-4090 |
IngestDate | Fri Jul 25 10:56:43 EDT 2025 Fri Feb 21 02:33:24 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | 11R29 Abelian number fields Gauss sums Class numbers Fundamental units 11R11 Linear recurrence sequences 11R16 Jacobi sums |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-p226t-d97f8de282d77575fc1f3832f24c3556c432a2f986b40f724d6862a6db1bd20e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2388318350 |
PQPubID | 2043831 |
PageCount | 29 |
ParticipantIDs | proquest_journals_2388318350 springer_journals_10_1007_s11139_018_0085_9 |
PublicationCentury | 2000 |
PublicationDate | 2020-05-01 |
PublicationDateYYYYMMDD | 2020-05-01 |
PublicationDate_xml | – month: 05 year: 2020 text: 2020-05-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York – name: Dordrecht |
PublicationSubtitle | An International Journal Devoted to the Areas of Mathematics Influenced by Ramanujan |
PublicationTitle | The Ramanujan journal |
PublicationTitleAbbrev | Ramanujan J |
PublicationYear | 2020 |
Publisher | Springer US Springer Nature B.V |
Publisher_xml | – name: Springer US – name: Springer Nature B.V |
References | WashingtonLCIntroduction to Cyclotomic Fields1982New YorkSpringer10.1007/978-1-4684-0133-2 KomatsuTAn infinite family of pairs of quadratic fields Q(D)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{Q}}(\sqrt{D})$$\end{document} and Q(mD)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{Q}}(\sqrt{mD})$$\end{document} whose class numbers are both divisible by 3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$3$$\end{document}Acta Arith.2002104129136191424810.4064/aa104-2-3 IizukaYKonomiYNakanoSOn the class number divisibility of pairs of quadratic fields obtained from points on elliptic curvesJ. Math. Soc. Jpn.201668899915348815210.2969/jmsj/06820899 AlacaSWilliamsKSIntroductory Algebraic Number Theory2004CambridgeCambridge University Press1035.11001 AokiMKishiYAn infinite family of pairs of imaginary quadratic fields with both class numbers divisible by fiveJ. Number Theory2017176333343362213310.1016/j.jnt.2016.12.007 WeilASur les courbes algébriques et les variétés quis’en déduisent1948ParisHermann0036.16001 BerndtBCEvansRJWilliamsKSGauss and Jacobi Sums1998New YorkWiley0906.11001 KomatsuTAn infinite family of pairs of imaginary quadratic fields with ideal classes of a given orderInt. J. Number Theory2017132253260360662010.1142/S1793042117500154 AokiMKishiYOn systems of fundamental units of certain quartic fieldsInt. J. Number Theory201511720192035344044310.1142/S1793042115500864 ImaokaMKishiYOn dihedral extensions and Frobenius extensions: Galois theory and modular formsDev. Math.2004111952201068.11070 ScholzAÜber die Beziehung der Klassenzahlen quadratischer Körper zueinanderJ. Reine Angew. Math.193216620120315813090004.05104 LenstraHWJrOn Artin’s conjecture and Euclid’s algorithm in global fieldsInvent. Math.19774220122448041310.1007/BF01389788 TakagiTElementary Number Theory Lecture19712TokyoKyoritsu Shuppan(Japanese) RibenboimPThe New Book of Prime Number Records1996New YorkSpringer10.1007/978-1-4612-0759-7 |
References_xml | – reference: ImaokaMKishiYOn dihedral extensions and Frobenius extensions: Galois theory and modular formsDev. Math.2004111952201068.11070 – reference: WeilASur les courbes algébriques et les variétés quis’en déduisent1948ParisHermann0036.16001 – reference: ScholzAÜber die Beziehung der Klassenzahlen quadratischer Körper zueinanderJ. Reine Angew. Math.193216620120315813090004.05104 – reference: KomatsuTAn infinite family of pairs of imaginary quadratic fields with ideal classes of a given orderInt. J. Number Theory2017132253260360662010.1142/S1793042117500154 – reference: IizukaYKonomiYNakanoSOn the class number divisibility of pairs of quadratic fields obtained from points on elliptic curvesJ. Math. Soc. Jpn.201668899915348815210.2969/jmsj/06820899 – reference: RibenboimPThe New Book of Prime Number Records1996New YorkSpringer10.1007/978-1-4612-0759-7 – reference: AokiMKishiYOn systems of fundamental units of certain quartic fieldsInt. J. Number Theory201511720192035344044310.1142/S1793042115500864 – reference: KomatsuTAn infinite family of pairs of quadratic fields Q(D)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{Q}}(\sqrt{D})$$\end{document} and Q(mD)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{Q}}(\sqrt{mD})$$\end{document} whose class numbers are both divisible by 3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$3$$\end{document}Acta Arith.2002104129136191424810.4064/aa104-2-3 – reference: WashingtonLCIntroduction to Cyclotomic Fields1982New YorkSpringer10.1007/978-1-4684-0133-2 – reference: TakagiTElementary Number Theory Lecture19712TokyoKyoritsu Shuppan(Japanese) – reference: LenstraHWJrOn Artin’s conjecture and Euclid’s algorithm in global fieldsInvent. Math.19774220122448041310.1007/BF01389788 – reference: AlacaSWilliamsKSIntroductory Algebraic Number Theory2004CambridgeCambridge University Press1035.11001 – reference: AokiMKishiYAn infinite family of pairs of imaginary quadratic fields with both class numbers divisible by fiveJ. Number Theory2017176333343362213310.1016/j.jnt.2016.12.007 – reference: BerndtBCEvansRJWilliamsKSGauss and Jacobi Sums1998New YorkWiley0906.11001 |
SSID | ssj0004037 |
Score | 2.1689694 |
Snippet | Let
p
be a prime number with
p
≡
5
(
mod
8
)
. We construct a new infinite family of pairs of imaginary cyclic fields of degree
(
p
-
1
)
/
2
with both class... Let p be a prime number with p≡5(mod8). We construct a new infinite family of pairs of imaginary cyclic fields of degree (p-1)/2 with both class numbers... |
SourceID | proquest springer |
SourceType | Aggregation Database Publisher |
StartPage | 133 |
SubjectTerms | Combinatorics Field Theory and Polynomials Fourier Analysis Functions of a Complex Variable Integers Mathematics Mathematics and Statistics Number Theory Polynomials |
Title | A family of pairs of imaginary cyclic fields of degree (p-1)/2 with both class numbers divisible by p |
URI | https://link.springer.com/article/10.1007/s11139-018-0085-9 https://www.proquest.com/docview/2388318350 |
Volume | 52 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF60vehBfOKjljl4UGSx2W5exyDWotSThXoK2RcUahuaeui_dyZNGhQv3gITEpjZx_ftzDfL2I3nG6Wkk9xJaZCg6JirvpU8zKQ2QiJGDkjgPHoLhmP5MvEnlY67qKvd65RkuVI3YjcP0QpS34gTTuDxLmv7SN2pjmsskkYM2SsbZVJvPfx3vE1l_vWJH7DyVya03GAGh-ygQoaQbEJ5xHbs_Jjtj7ZtVYsTZhPYHEjAwkFOmRh6mH7STUPZcg16rWdTDWVVWmkyFum0hduce3cPAujQFRTGBjSBZthcB1IAabJwaswsqDXkp2w8eHp_HPLqngSeI3hacROHLjIWyZMJQ4RfTnsOiadwQmqEE4GWfZEJF0eBkj0XCmlIFpIFRnnKiJ7tn7HWfDG35wxsZIMI4-qbzEpLjW2Er4RnXYZIwYS9C9apHZZWg71IcdePaGnw0XxfO7ExN42Ryfspej8l76fx5b_evmJ7grhuWWzYYa3V8steIyBYqS5rJ88fr0_dciB8A9YOrqE |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1JS8NAFB5qPagHccWl6hwUFBlMppPt4KGopbXLqYXeYmaDQm1DU5H8Hv-ob9KkQfHiobfAC0Py5r2Z75u3DELXtiM5Z5oRzZgEgiICwuuKES9iQlIGGNk1Bc69vtsasteRM6qgr6IWJst2L0KS2UpdFrvZgFaA-vrE4AQS5JmUHZV-Ak9LHtvPMKk3lDZfBk8tkl8lQGLAFwsiA0_7UgG_kJ4HCEULWwM3o5oyATuuK1idRlQHvsuZpT3KpKmciFzJbS6ppeow7gbaBOzhG9cZ0kZZfGlljTlNLz_412AVOv3rk3_A2F-R12xDa-6h3RyJ4sbSdPZRRU0P0E5v1cY1OUSqgZcHIHimcWwiP-Zh_G5uNormKRapmIwFzrLgMpFUQN8Vvo2JffdAsTnkxRxsAQsD0vHy-pEEmxowcMWJwjzF8REarkWZx6g6nU3VCcLKV64PduTISDFlGulQh1Nb6QiQifSsU1QrFBbmzpWEMAm-WYocEN8XSizFZSNmo_0QtB8a7YfB2b_evkJbrUGvG3bb_c452qaGZ2eJjjVUXcw_1AWAkQW_zIwBo7d1W983lZ3pUA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LS8NAEF5qBdGD-MRH1T0oKLK02W5eBw_FWlpriwcLvcXsCwq1DU1F8qv8i86kLxQvHrwFNoRkdib7fTvzzRJy6bhaSmEFs0JoICgqZLJqBPNjoTQXgJE9FDh3ul6zJx77br9APhdamLzafZGSnGkasEvTaFpOtC2vhG8OIBegwQFDzMDCeVVl22QfwNnSu1YdJviK88bDy32TzY8VYAlgjSnToW8DbYBraN8HtGKVY4GnccuFgtXXU6LKY27DwJOiYn0uNKooYk9LR2peMVV47hpZFyg-hgDq8dpKiFnJm3RiXz_47nCZRv3tlb9B2h9Z2Hxxa-yQ7TkqpbWZG-2Sghntka3OsqVruk9Mjc42Q-jY0gSzQHgxeMNTjuJJRlWmhgNF84q4fEgboPKGXifMuSlzihu-VIJfUIWAnc6OIkkp6sEgLIeGyowmB6T3L8Y8JMXReGSOCDWB8QLwKVfHRhhsqsNdyR1jY0Ap2q8ck9LCYNE80NIIEEeAvyUXhm8XRlwNr5oyo_UjsH6E1o_Ckz_dfUE2nuuN6KnVbZ-STY6UO695LJHidPJuzgCXTOV57guUvP63830Bo8_tgw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+family+of+pairs+of+imaginary+cyclic+fields+of+degree+%28p-1%29%2F2+with+both+class+numbers+divisible+by+p&rft.jtitle=The+Ramanujan+journal&rft.au=Aoki+Miho&rft.au=Kishi+Yasuhiro&rft.date=2020-05-01&rft.pub=Springer+Nature+B.V&rft.issn=1382-4090&rft.eissn=1572-9303&rft.volume=52&rft.issue=1&rft.spage=133&rft.epage=161&rft_id=info:doi/10.1007%2Fs11139-018-0085-9&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1382-4090&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1382-4090&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1382-4090&client=summon |