Extremal black hole scattering at O(G3): graviton dominance, eikonal exponentiation, and differential equations
A bstract We use N = 8 supergravity as a toy model for understanding the dynamics of black hole binary systems via the scattering amplitudes approach. We compute the conservative part of the classical scattering angle of two extremal (half-BPS) black holes with minimal charge misalignment at O ( G 3...
Saved in:
Published in | The journal of high energy physics Vol. 2020; no. 11 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
09.11.2020
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | A
bstract
We use
N
= 8 supergravity as a toy model for understanding the dynamics of black hole binary systems via the scattering amplitudes approach. We compute the conservative part of the classical scattering angle of two extremal (half-BPS) black holes with minimal charge misalignment at
O
(
G
3
) using the eikonal approximation and effective field theory, finding agreement between both methods. We construct the massive loop integrands by Kaluza-Klein reduction of the known
D
-dimensional massless integrands. To carry out integration we formulate a novel method for calculating the post-Minkowskian expansion with exact velocity dependence, by solving velocity differential equations for the Feynman integrals subject to modified boundary conditions that isolate conservative contributions from the potential region. Motivated by a recent result for universality in massless scattering, we compare the scattering angle to the result found by Bern et. al. in Einstein gravity and find that they coincide in the high-energy limit, suggesting graviton dominance at this order. |
---|---|
AbstractList | A
bstract
We use
N
= 8 supergravity as a toy model for understanding the dynamics of black hole binary systems via the scattering amplitudes approach. We compute the conservative part of the classical scattering angle of two extremal (half-BPS) black holes with minimal charge misalignment at
O
(
G
3
) using the eikonal approximation and effective field theory, finding agreement between both methods. We construct the massive loop integrands by Kaluza-Klein reduction of the known
D
-dimensional massless integrands. To carry out integration we formulate a novel method for calculating the post-Minkowskian expansion with exact velocity dependence, by solving velocity differential equations for the Feynman integrals subject to modified boundary conditions that isolate conservative contributions from the potential region. Motivated by a recent result for universality in massless scattering, we compare the scattering angle to the result found by Bern et. al. in Einstein gravity and find that they coincide in the high-energy limit, suggesting graviton dominance at this order. We use N = 8 supergravity as a toy model for understanding the dynamics of black hole binary systems via the scattering amplitudes approach. We compute the conservative part of the classical scattering angle of two extremal (half-BPS) black holes with minimal charge misalignment at O(G3) using the eikonal approximation and effective field theory, finding agreement between both methods. We construct the massive loop integrands by Kaluza-Klein reduction of the known D-dimensional massless integrands. To carry out integration we formulate a novel method for calculating the post-Minkowskian expansion with exact velocity dependence, by solving velocity differential equations for the Feynman integrals subject to modified boundary conditions that isolate conservative contributions from the potential region. Motivated by a recent result for universality in massless scattering, we compare the scattering angle to the result found by Bern et. al. in Einstein gravity and find that they coincide in the high-energy limit, suggesting graviton dominance at this order. |
Author | Zeng, Mao Parra-Martinez, Julio Ruf, Michael S. |
Author_xml | – sequence: 1 givenname: Julio orcidid: 0000-0003-0178-1569 surname: Parra-Martinez fullname: Parra-Martinez, Julio organization: Mani L. Bhaumik Institute for Theoretical Physics, UCLA Department of Physics and Astronomy – sequence: 2 givenname: Michael S. orcidid: 0000-0001-6770-2822 surname: Ruf fullname: Ruf, Michael S. email: michael.ruf@physik.uni-freiburg.de organization: Physikalisches Institut, Albert-Ludwigs Universität Freiburg – sequence: 3 givenname: Mao orcidid: 0000-0002-4741-4038 surname: Zeng fullname: Zeng, Mao organization: Institut für Theoretische Physik, Eidgenössische Technische Hochschule Zürich |
BookMark | eNpFkN9PwjAQgBujiYA--9rEF0iYXn9sXX0zBEFDgg_6vHRdh4PRjrUQ_nwHmHgvl9x9d7n7-ujaOmsQeiDwRADE88d8-knIkAKFEVB2hXoEqIxSLuQt6nu_BiAxkdBDbnoMrdmqGue10hv842qDvVYhmLayK6wCXg5nbPSCV606VMFZXLhtZZXVZoxNtXG2mzXHpjvAhkqFytkxVrbARVWWpj0XO2C3P7f8HbopVe3N_V8eoO-36ddkHi2Ws_fJ6yJqKOUh0jolLJeSyRgSnqdEaam40IkuCUkgFQUBXgomTByrLso81jEnsjCSQlkAG6DHy96mdbu98SFbu33b3eozygXjNJFCdhRcKN-cvjXtP0UgO6nMLiqzk8qsU8l-AQPVa0I |
ContentType | Journal Article |
Copyright | The Author(s) 2020 The Author(s) 2020. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2020 – notice: The Author(s) 2020. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C 8FE 8FG ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO HCIFZ P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS |
DOI | 10.1007/JHEP11(2020)023 |
DatabaseName | Springer Nature OA Free Journals ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni Edition) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Central Korea SciTech Premium Collection Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China |
DatabaseTitle | Publicly Available Content Database Advanced Technologies & Aerospace Collection Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: C6C name: SpringerOpen url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 1029-8479 |
ExternalDocumentID | 10_1007_JHEP11_2020_023 |
GroupedDBID | -5F -5G -A0 -BR 0R~ 0VY 199 1N0 30V 4.4 408 40D 5GY 5VS 8FE 8FG 8TC 8UJ 95. AAFWJ AAKKN ABEEZ ACACY ACGFS ACHIP ACREN ACULB ADBBV ADINQ AEGXH AENEX AFGXO AFKRA AFPKN AFWTZ AHBYD AHYZX AIBLX ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AOAED ARAPS ASPBG ATQHT AVWKF AZFZN BCNDV BENPR BGLVJ C24 C6C CCPQU CS3 CSCUP DU5 EBS ER. FEDTE GQ6 GROUPED_DOAJ HCIFZ HF~ HLICF HMJXF HVGLF HZ~ IHE KOV LAP M~E N5L N9A NB0 O93 OK1 P62 P9T PIMPY PROAC R9I RO9 RSV S27 S3B SOJ SPH T13 TUS U2A VC2 VSI WK8 XPP Z45 ZMT ABUWG AMVHM AZQEC DWQXO PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS |
ID | FETCH-LOGICAL-p224t-cc813b99395064b81ac9a47c6cf116087d104f737e55aaaafb5c5419de920fd03 |
IEDL.DBID | BENPR |
IngestDate | Sat Jul 26 00:26:59 EDT 2025 Fri Feb 21 02:49:16 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Keywords | Classical Theories of Gravity Supergravity Models Scattering Amplitudes Black Holes |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-p224t-cc813b99395064b81ac9a47c6cf116087d104f737e55aaaafb5c5419de920fd03 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-0178-1569 0000-0001-6770-2822 0000-0002-4741-4038 |
OpenAccessLink | https://www.proquest.com/docview/2473426979?pq-origsite=%requestingapplication% |
PQID | 2473426979 |
PQPubID | 2034718 |
ParticipantIDs | proquest_journals_2473426979 springer_journals_10_1007_JHEP11_2020_023 |
PublicationCentury | 2000 |
PublicationDate | 2020-11-09 |
PublicationDateYYYYMMDD | 2020-11-09 |
PublicationDate_xml | – month: 11 year: 2020 text: 2020-11-09 day: 09 |
PublicationDecade | 2020 |
PublicationPlace | Berlin/Heidelberg |
PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg |
PublicationTitle | The journal of high energy physics |
PublicationTitleAbbrev | J. High Energ. Phys |
PublicationYear | 2020 |
Publisher | Springer Berlin Heidelberg Springer Nature B.V |
Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
References | AmatiDCiafaloniMVenezianoGHigher order gravitational deflection and soft bremsstrahlung in Planckian energy superstring collisionsNucl. Phys. B19903475501990NuPhB.347..550A[INSPIRE] KulaxiziMNgGSParnachevASubleading eikonal, AdS/CFT and double stress tensorsJHEP2019101072019JHEP...10..107K40557941427.81139[arXiv:1907.00867] [INSPIRE] BernZCheungCRoibanRShenC-HSolonMPZengMScattering amplitudes and the conservative hamiltonian for binary systems at third post-Minkowskian orderPhys. Rev. Lett.20191222016032019PhRvL.122t1603B[arXiv:1901.04424] [INSPIRE] CristofoliADamgaardPHDi VecchiaPHeissenbergCSecond-order Post-Minkowskian scattering in arbitrary dimensionsJHEP2020071222020JHEP...07..122C41379741451.83008[arXiv:2003.10274] [INSPIRE] Caron-HuotSZahraeeZIntegrability of black hole orbits in maximal supergravityJHEP2019071792019JHEP...07..179C39905771418.83068[arXiv:1810.04694] [INSPIRE] N. Siemonsen and J. Vines, Test black holes, scattering amplitudes and perturbations of Kerr spacetime, Phys. Rev. D101 (2020) 064066 [arXiv:1909.07361] [INSPIRE]. S. Melville, S.G. Naculich, H.J. Schnitzer and C.D. White, Wilson line approach to gravity in the high energy limit, Phys. Rev. D89 (2014) 025009 [arXiv:1306.6019] [INSPIRE]. GoncharovABSpradlinMVerguCVolovichAClassical polylogarithms for amplitudes and Wilson loopsPhys. Rev. Lett.20101051516052010PhRvL.105o1605G2734443[arXiv:1006.5703] [INSPIRE] BlümleinJMaierAMarquardPSchäferGSchneiderCFrom momentum expansions to post-Minkowskian Hamiltonians by computer algebra algorithmsPhys. Lett. B202080113515740465611435.83039[arXiv:1911.04411] [INSPIRE] V.A. Smirnov, Evaluating Feynman integrals, Springer Tracts in Modern Physics volume 211, Springer, Germany (2004). CremmerEJuliaBThe SO(8) supergravityNucl. Phys. B19791591411979NuPhB.159..141C550003 KerrRPThe Lorentz-covariant approximation method in general relativity INuovo Cim.1959134691959NCim...13..469K1105270088.20604[INSPIRE] SoldateMPartial wave unitarity and closed string amplitudesPhys. Lett. B19871863211987PhLB..186..321S[INSPIRE] KabatDNOrtizMEikonal quantum gravity and Planckian scatteringNucl. Phys. B19923885701992NuPhB.388..570K[hep-th/9203082] [INSPIRE] PortillaMScattering of two gravitating particles: classical approachJ. Phys. A19801336771980JPhA...13.3677P[INSPIRE] PortillaMMomentum and angular momentum of two gravitating particlesJ. Phys. A19791210751979JPhA...12.1075P[INSPIRE] AbreuSTwo-loop four-graviton scattering amplitudesPhys. Rev. Lett.20201242116012020PhRvL.124u1601A4111194[arXiv:2002.12374] [INSPIRE] NeillDRothsteinIZClassical space-times from the S matrixNucl. Phys. B20138771772013NuPhB.877..177N31248371284.83052[arXiv:1304.7263] [INSPIRE] HennJMMultiloop integrals in dimensional regularization made simplePhys. Rev. Lett.20131102516012013PhRvL.110y1601H[arXiv:1304.1806] [INSPIRE] V.A. Smirnov, Analytic tools for Feynman integrals, Springer, Germany (2012) [INSPIRE]. DamourTGravitational scattering, post-Minkowskian approximation and effective one-body theoryPhys. Rev. D2016941040152016PhRvD..94j4015D3745958[arXiv:1609.00354] [INSPIRE] Z. Bern, J.J. Carrasco, L.J. Dixon, H. Johansson and R. Roiban, The ultraviolet behavior of N = 8 supergravity at four loops, Phys. Rev. Lett.103 (2009) 081301 [arXiv:0905.2326] [INSPIRE]. SogaardMZhangYUnitarity cuts of integrals with doubled propagatorsJHEP2014071122014JHEP...07..112S[arXiv:1403.2463] [INSPIRE] KotikovAVDifferential equations method: new technique for massive Feynman diagrams calculationPhys. Lett. B19912541581991PhLB..254..158K1092911[INSPIRE] LaenenEStavengaGWhiteCDPath integral approach to eikonal and next-to-eikonal exponentiationJHEP2009030542009JHEP...03..054L[arXiv:0811.2067] [INSPIRE] Bjerrum-BohrNEJVanhovePExplicit cancellation of triangles in one-loop gravity amplitudesJHEP2008040652008JHEP...04..065B2425238[arXiv:0802.0868] [INSPIRE] DamgaardPHHaddadKHelsetAHeavy black hole effective theoryJHEP2019110702019JHEP...11..070D40694931429.83034[arXiv:1908.10308] [INSPIRE] Di VecchiaPNaculichSGRussoRVenezianoGWhiteCDA tale of two exponentiations inN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} $$\end{document} = 8 supergravity at subleading levelJHEP2020031732020JHEP...03..173D40899491435.83198[arXiv:1911.11716] [INSPIRE] Z. Bern, L.J. Dixon and D.A. Kosower, Two-loop g → gg splitting amplitudes in QCD, JHEP08 (2004) 012 [hep-ph/0404293] [INSPIRE]. BlümleinJMaierAMarquardPSchäferGTesting binary dynamics in gravity at the sixth post-Newtonian levelPhys. Lett. B20208071354964109431[arXiv:2003.07145] [INSPIRE] Z. Bern, L.J. Dixon and D.A. Kosower, One loop amplitudes for e+e−to four partons, Nucl. Phys. B513 (1998) 3 [hep-ph/9708239] [INSPIRE]. GituliarOMageryaVFuchsia: a tool for reducing differential equations for Feynman master integrals to epsilon formComput. Phys. Commun.20172193292017CoPhC.219..329G36778161411.81015[arXiv:1701.04269] [INSPIRE] AndrianopoliLD’AuriaRFerraraSFréPTrigianteME7(7) duality, BPS black hole evolution and fixed scalarsNucl. Phys. B19985094631998NuPhB.509..463A16017910934.83048[hep-th/9707087] [INSPIRE] BosmaJSogaardMZhangYMaximal cuts in arbitrary dimensionJHEP2017080512017JHEP...08..051B36974311381.81146[arXiv:1704.04255] [INSPIRE] T. Gehrmann and E. Remiddi, Numerical evaluation of harmonic polylogarithms, Comput. Phys. Commun.141 (2001) 296 [hep-ph/0107173] [INSPIRE]. KawaiHLewellenDCTyeSHHA relation between tree amplitudes of closed and open stringsNucl. Phys. B198626911986NuPhB.269....1K838667[INSPIRE] Caron-HuotSHennJMIterative structure of finite loop integralsJHEP2014061142014JHEP...06..114C32343121333.81217[arXiv:1404.2922] [INSPIRE] BertottiBOn gravitational motionNuovo Cim.195648981956NCim....4..898B833860071.22105[INSPIRE] Z. Bern et al., Ultraviolet properties ofN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} $$\end{document} = 8 supergravity at five loops, Phys. Rev. D98 (2018) 086021 [arXiv:1804.09311] [INSPIRE]. MaybeeBO’ConnellDVinesJObservables and amplitudes for spinning particles and black holesJHEP2019121562019JHEP...12..156M40612671431.83101[arXiv:1906.09260] [INSPIRE] BernZDixonLJDunbarDCPerelsteinMRozowskyJSOn the relationship between Yang-Mills theory and gravity and its implication for ultraviolet divergencesNucl. Phys. B19985304011998NuPhB.530..401B[hep-th/9802162] [INSPIRE] Z. Bern, J.J. Carrasco, D. Forde, H. Ita and H. Johansson, Unexpected cancellations in gravity theories, Phys. Rev. D77 (2008) 025010 [arXiv:0707.1035] [INSPIRE]. T. Gehrmann and E. Remiddi, Differential equations for two loop four point functions, Nucl. Phys. B580 (2000) 485 [hep-ph/9912329] [INSPIRE]. AmatiDCiafaloniMVenezianoGTowards an S-matrix description of gravitational collapseJHEP2008020492008JHEP...02..049A2385996[arXiv:0712.1209] [INSPIRE] BelLDamourTDeruelleNIbáñezJMartinJPoincaré-invariant gravitational field and equations of motion of two pointlike objects: The postlinear approximation of general relativityGen. Rel. Grav.1981139631981GReGr..13..963B[INSPIRE] GreenMBSchwarzJHBrinkLN = 4 Yang-Mills and N = 8 supergravity as limits of string theoriesNucl. Phys. B19821984741982NuPhB.198..474G[INSPIRE] N.E.J. Bjerrum-Bohr, P.H. Damgaard, G. Festuccia, L. Planté and P. Vanhove, General relativity from scattering amplitudes, Phys. Rev. Lett.121 (2018) 171601 [arXiv:1806.04920] [INSPIRE]. M. Beneke and V.A. Smirnov, Asymptotic expansion of Feynman integrals near threshold, Nucl. Phys. B522 (1998) 321 [hep-ph/9711391] [INSPIRE]. RothsteinIZStewartIWAn effective field theory for forward scattering and factorization violationJHEP2016080252016JHEP...08..025R35555901390.81365[arXiv:1601.04695] [INSPIRE] D. Bini, T. Damour and A. Geralico, Binary dynamics at the fifth and fifth-and-a-half post-Newtonian orders, Phys. Rev. D102 (2020) 024062 [arXiv:2003.11891] [INSPIRE]. ArcioniGN = 8 BPS black holes with 1/2 or 1/4 supersymmetry and solvable Lie algebra decompositionsNucl. Phys. B19995422731999NuPhB.542..273A16714210953.83055[hep-th/9807136] [INSPIRE] Arkani-HamedNHuangY-tO’ConnellDKerr black holes as elementary particlesJHEP2020010462020JHEP...01..046A40882731434.83049[arXiv:1906.10100] [INSPIRE] KosowerDAMaybeeBO’ConnellDAmplitudes, observables, and classical scatteringJHEP2019021372019JHEP...02..137K39252331411.81217[arXiv:1811.10950] [INSPIRE] Di VecchiaPLunaANaculichSGRussoRVenezianoGWhiteCDA tale of two exponentiations inN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} $$\end{document} = 8 supergravityPhys. Lett. B201979813492740075611434.83160[arXiv:1908.05603] [INSPIRE] Z. Bern, L.J. Dixon, D.C. Dunbar and D.A. Kosower, Fusing gauge theory tree amplitudes into loop amplitudes, Nucl. Phys. B435 (1995) 59 [hep-ph/9409265] [INSPIRE]. AoudeRHaddadKHelsetAOn-shell heavy particle effective theoriesJHEP2020050512020JHEP...05..051A41124201437.83053[arXiv:2001.09164] [INSPIRE] BianchiMSLeoniMA QQ → QQ planar double box in canonical formPhys. Lett. B20187773942018PhLB..777..394B1411.81092[arXiv:1612.05609] [INSPIRE] R.J. Glauber, High-energy collision theory, Lect. Theor. Phys. (1959) 315. A. Koemans Collado and S. Thomas, Eikonal scattering in Kaluza-Klein gravity, JHEP04 (2019) 171 [arXiv:1901.05869] [INSPIRE]. BertottiBPlebanskiJTheory of gravitational perturbations in the fast motion approximationAnn. Phys.1960111691960AnPhy..11..169B1146200094.23102 G. ’t Hooft, Graviton dominance in ultrahigh-energy scattering, Phys. Lett. B198 (1987) 61 [INSPIRE]. GuevaraAOchirovAVinesJBlack-hole scattering with gen |
References_xml | – reference: KawaiHLewellenDCTyeSHHA relation between tree amplitudes of closed and open stringsNucl. Phys. B198626911986NuPhB.269....1K838667[INSPIRE] – reference: Bjerrum-BohrNEJDunbarDCItaHPerkinsWBRisagerKThe no-triangle hypothesis for N = 8 supergravityJHEP2006120722006JHEP...12..072B22766821226.83081[hep-th/0610043] [INSPIRE] – reference: Caron-HuotSLarsenKJUniqueness of two-loop master contoursJHEP2012100262012JHEP...10..026C[arXiv:1205.0801] [INSPIRE] – reference: GuevaraAOchirovAVinesJBlack-hole scattering with general spin directions from minimal-coupling amplitudesPhys. Rev. D20191001040242019PhRvD.100j4024G4041927[arXiv:1906.10071] [INSPIRE] – reference: AmatiDCiafaloniMVenezianoGSuperstring collisions at Planckian energiesPhys. Lett. B1987197811987PhLB..197...81A[INSPIRE] – reference: G. ’t Hooft, Graviton dominance in ultrahigh-energy scattering, Phys. Lett. B198 (1987) 61 [INSPIRE]. – reference: BernZCarrascoJJMChenW-MJohanssonHRoibanRZengMFive-loop four-point integrand of N = 8 supergravity as a generalized double copyPhys. Rev. D2017961260122017PhRvD..96l6012B3873302[arXiv:1708.06807] [INSPIRE] – reference: KotikovAVDifferential equations method: new technique for massive Feynman diagrams calculationPhys. Lett. B19912541581991PhLB..254..158K1092911[INSPIRE] – reference: N.E.J. Bjerrum-Bohr, P.H. Damgaard, G. Festuccia, L. Planté and P. Vanhove, General relativity from scattering amplitudes, Phys. Rev. Lett.121 (2018) 171601 [arXiv:1806.04920] [INSPIRE]. – reference: T. Damour, Classical and quantum scattering in post-Minkowskian gravity, Phys. Rev. D102 (2020) 024060 [arXiv:1912.02139] [INSPIRE]. – reference: AbreuSBrittoRDuhrCGardiECuts from residues: the one-loop caseJHEP2017061142017JHEP...06..114A36818391380.81421[arXiv:1702.03163] [INSPIRE] – reference: A. Koemans Collado, P. Di Vecchia and R. Russo, Revisiting the second post-Minkowskian eikonal and the dynamics of binary black holes, Phys. Rev. D100 (2019) 066028 [arXiv:1904.02667] [INSPIRE]. – reference: Z. Bern, J.J. Carrasco, D. Forde, H. Ita and H. Johansson, Unexpected cancellations in gravity theories, Phys. Rev. D77 (2008) 025010 [arXiv:0707.1035] [INSPIRE]. – reference: AndrianopoliLD’AuriaRFerraraSFréPTrigianteME7(7) duality, BPS black hole evolution and fixed scalarsNucl. Phys. B19985094631998NuPhB.509..463A16017910934.83048[hep-th/9707087] [INSPIRE] – reference: BlümleinJMaierAMarquardPSchäferGTesting binary dynamics in gravity at the sixth post-Newtonian levelPhys. Lett. B20208071354964109431[arXiv:2003.07145] [INSPIRE] – reference: M. Levi, A.J. Mcleod and M. Von Hippel, NNNLO gravitational quadratic-in-spin interactions at the quartic order in G, arXiv:2003.07890 [INSPIRE]. – reference: A. Koemans Collado and S. Thomas, Eikonal scattering in Kaluza-Klein gravity, JHEP04 (2019) 171 [arXiv:1901.05869] [INSPIRE]. – reference: WestpfahlKGollerMGravitational scattering of two relativistic particles in postlinear approximationLett. Nuovo Cim.197926573[INSPIRE] – reference: T. Gehrmann and E. Remiddi, Numerical evaluation of harmonic polylogarithms, Comput. Phys. Commun.141 (2001) 296 [hep-ph/0107173] [INSPIRE]. – reference: G. Heinrich and V.A. Smirnov, Analytical evaluation of dimensionally regularized massive on-shell double boxes, Phys. Lett. B598 (2004) 55 [hep-ph/0406053] [INSPIRE]. – reference: NairVPA current algebra for some gauge theory amplitudesPhys. Lett. B19882142151988PhLB..214..215N[INSPIRE] – reference: D.A. Kosower and K.J. Larsen, Maximal unitarity at two loops, Phys. Rev. D85 (2012) 045017 [arXiv:1108.1180] [INSPIRE]. – reference: BernZCarrascoJJDixonLJJohanssonHKosowerDARoibanRThree-loop superfiniteness of N = 8 supergravityPhys. Rev. Lett.2007981613032007PhRvL..98p1303B[hep-th/0702112] [INSPIRE] – reference: Z. Bern, L.J. Dixon and D.A. Kosower, Dimensionally regulated pentagon integrals, Nucl. Phys. B412 (1994) 751 [hep-ph/9306240] [INSPIRE]. – reference: S. Laporta, High precision calculation of multiloop Feynman integrals by difference equations, Int. J. Mod. Phys. A15 (2000) 5087 [hep-ph/0102033] [INSPIRE]. – reference: BernZCheungCRoibanRShenC-HSolonMPZengMScattering amplitudes and the conservative hamiltonian for binary systems at third post-Minkowskian orderPhys. Rev. Lett.20191222016032019PhRvL.122t1603B[arXiv:1901.04424] [INSPIRE] – reference: HennJMMultiloop integrals in dimensional regularization made simplePhys. Rev. Lett.20131102516012013PhRvL.110y1601H[arXiv:1304.1806] [INSPIRE] – reference: D. Bini, T. Damour and A. Geralico, Binary dynamics at the fifth and fifth-and-a-half post-Newtonian orders, Phys. Rev. D102 (2020) 024062 [arXiv:2003.11891] [INSPIRE]. – reference: Z. Bern et al., Ultraviolet properties ofN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} $$\end{document} = 8 supergravity at five loops, Phys. Rev. D98 (2018) 086021 [arXiv:1804.09311] [INSPIRE]. – reference: Z. Bern, L.J. Dixon, D.C. Dunbar and D.A. Kosower, One loop n point gauge theory amplitudes, unitarity and collinear limits, Nucl. Phys. B425 (1994) 217 [hep-ph/9403226] [INSPIRE]. – reference: RemiddiEDifferential equations for Feynman graph amplitudesNuovo Cim. A199711014351997NCimA.110.1435R[hep-th/9711188] [INSPIRE] – reference: P.V. Landshoff and J.C. Polkinghorne, Iterations of Regge cuts, Phys. Rev.181 (1969) 1989 [INSPIRE]. – reference: GreenMBSchwarzJHBrinkLN = 4 Yang-Mills and N = 8 supergravity as limits of string theoriesNucl. Phys. B19821984741982NuPhB.198..474G[INSPIRE] – reference: LIGO Scientific, Virgo collaboration, GW170817: observation of gravitational waves from a binary neutron star inspiral, Phys. Rev. Lett.119 (2017) 161101 [arXiv:1710.05832] [INSPIRE]. – reference: WestpfahlKHigh-speed scattering of charged and uncharged particles in general relativityProg. Phys.198533417813545 – reference: Caron-HuotSZahraeeZIntegrability of black hole orbits in maximal supergravityJHEP2019071792019JHEP...07..179C39905771418.83068[arXiv:1810.04694] [INSPIRE] – reference: ArcioniGN = 8 BPS black holes with 1/2 or 1/4 supersymmetry and solvable Lie algebra decompositionsNucl. Phys. B19995422731999NuPhB.542..273A16714210953.83055[hep-th/9807136] [INSPIRE] – reference: BosmaJSogaardMZhangYMaximal cuts in arbitrary dimensionJHEP2017080512017JHEP...08..051B36974311381.81146[arXiv:1704.04255] [INSPIRE] – reference: LevyMSucherJEikonal approximation in quantum field theoryPhys. Rev.196918616561969PhRv..186.1656L260329[INSPIRE] – reference: BernZDixonLJRoibanRIs N = 8 supergravity ultraviolet finite?Phys. Lett. B20076442652007PhLB..644..265B22879731248.83136[hep-th/0611086] [INSPIRE] – reference: J. Vines, Scattering of two spinning black holes in post-Minkowskian gravity, to all orders in spin, and effective-one-body mappings, Class. Quant. Grav.35 (2018) 084002 [arXiv:1709.06016] [INSPIRE]. – reference: V.A. Smirnov, Analytic tools for Feynman integrals, Springer, Germany (2012) [INSPIRE]. – reference: KälinGPortoRAFrom boundary data to bound statesJHEP2020010722020JHEP...01..072K40882471434.85004[arXiv:1910.03008] [INSPIRE] – reference: LaenenEStavengaGWhiteCDPath integral approach to eikonal and next-to-eikonal exponentiationJHEP2009030542009JHEP...03..054L[arXiv:0811.2067] [INSPIRE] – reference: AmatiDCiafaloniMVenezianoGTowards an S-matrix description of gravitational collapseJHEP2008020492008JHEP...02..049A2385996[arXiv:0712.1209] [INSPIRE] – reference: CremmerEJuliaBThe SO(8) supergravityNucl. Phys. B19791591411979NuPhB.159..141C550003 – reference: Z. Bern, H. Ita, J. Parra-Martinez and M.S. Ruf, Universality in the classical limit of massless gravitational scattering, Phys. Rev. Lett.125 (2020) 031601 [arXiv:2002.02459] [INSPIRE]. – reference: V.A. Smirnov, Evaluating Feynman integrals, Springer Tracts in Modern Physics volume 211, Springer, Germany (2004). – reference: KabatDNOrtizMEikonal quantum gravity and Planckian scatteringNucl. Phys. B19923885701992NuPhB.388..570K[hep-th/9203082] [INSPIRE] – reference: RothsteinIZStewartIWAn effective field theory for forward scattering and factorization violationJHEP2016080252016JHEP...08..025R35555901390.81365[arXiv:1601.04695] [INSPIRE] – reference: S. Melville, S.G. Naculich, H.J. Schnitzer and C.D. White, Wilson line approach to gravity in the high energy limit, Phys. Rev. D89 (2014) 025009 [arXiv:1306.6019] [INSPIRE]. – reference: Z. Bern, A. Luna, R. Roiban, C.-H. Shen and M. Zeng, Spinning black hole binary dynamics, scattering amplitudes and effective field theory, arXiv:2005.03071 [INSPIRE]. – reference: BrittoRCachazoFFengBGeneralized unitarity and one-loop amplitudes in N = 4 super-Yang-MillsNucl. Phys. B20057252752005NuPhB.725..275B21642931178.81202[hep-th/0412103] [INSPIRE] – reference: GituliarOMageryaVFuchsia: a tool for reducing differential equations for Feynman master integrals to epsilon formComput. Phys. Commun.20172193292017CoPhC.219..329G36778161411.81015[arXiv:1701.04269] [INSPIRE] – reference: GoldbergerWDRothsteinIZAn effective field theory of gravity for extended objectsPhys. Rev. D2006731040292006PhRvD..73j4029G2224727[hep-th/0409156] [INSPIRE] – reference: G. Kälin and R.A. Porto, From boundary data to bound states. Part II. Scattering angle to dynamical invariants (with twist), JHEP02 (2020) 120 [arXiv:1911.09130] [INSPIRE]. – reference: T. Damour, High-energy gravitational scattering and the general relativistic two-body problem, Phys. Rev. D97 (2018) 044038 [arXiv:1710.10599] [INSPIRE]. – reference: MaybeeBO’ConnellDVinesJObservables and amplitudes for spinning particles and black holesJHEP2019121562019JHEP...12..156M40612671431.83101[arXiv:1906.09260] [INSPIRE] – reference: A. Edison, E. Herrmann, J. Parra-Martinez and J. Trnka, Gravity loop integrands from the ultraviolet, arXiv:1909.02003 [INSPIRE]. – reference: GilmoreJBRossAEffective field theory calculation of second post-Newtonian binary dynamicsPhys. Rev. D2008781240212008PhRvD..78l4021G[arXiv:0810.1328] [INSPIRE] – reference: AbreuSTwo-loop four-graviton scattering amplitudesPhys. Rev. Lett.20201242116012020PhRvL.124u1601A4111194[arXiv:2002.12374] [INSPIRE] – reference: N. Siemonsen and J. Vines, Test black holes, scattering amplitudes and perturbations of Kerr spacetime, Phys. Rev. D101 (2020) 064066 [arXiv:1909.07361] [INSPIRE]. – reference: E. Remiddi and J.A.M. Vermaseren, Harmonic polylogarithms, Int. J. Mod. Phys. A15 (2000) 725 [hep-ph/9905237] [INSPIRE]. – reference: Z. Bern, L.J. Dixon and D.A. Kosower, Two-loop g → gg splitting amplitudes in QCD, JHEP08 (2004) 012 [hep-ph/0404293] [INSPIRE]. – reference: ChungM-ZHuangY-TKimJ-WLeeSThe simplest massive S-matrix: from minimal coupling to Black HolesJHEP2019041562019JHEP...04..156C39539181415.83014[arXiv:1812.08752] [INSPIRE] – reference: Bjerrum-BohrNEJVanhovePExplicit cancellation of triangles in one-loop gravity amplitudesJHEP2008040652008JHEP...04..065B2425238[arXiv:0802.0868] [INSPIRE] – reference: Z. Bern, J.J.M. Carrasco and H. Johansson, New relations for gauge-theory amplitudes, Phys. Rev. D78 (2008) 085011 [arXiv:0805.3993] [INSPIRE]. – reference: Bjerrum-BohrNEJDunbarDCItaHSix-point one-loop N = 8 supergravity NMHV amplitudes and their ir behaviourPhys. Lett. B20056211832005PhLB..621..183B21526701247.83219[hep-th/0503102] [INSPIRE] – reference: A.V. Smirnov and F.S. Chuharev, FIRE6: Feynman Integral REduction with Modular Arithmetic, arXiv:1901.07808 [INSPIRE]. – reference: DuhrCHopf algebras, coproducts and symbols: an application to Higgs boson amplitudesJHEP2012080432012JHEP...08..043D30069551397.16028[arXiv:1203.0454] [INSPIRE] – reference: BeenakkerWDennerAInfrared divergent scalar box integrals with applications in the electroweak standard modelNucl. Phys. B19903383491990NuPhB.338..349B[INSPIRE] – reference: CremmerEJuliaBScherkJSupergravity theory in eleven-dimensionsPhys. Lett. B1978764091978PhLB...76..409C[INSPIRE] – reference: KulaxiziMNgGSParnachevASubleading eikonal, AdS/CFT and double stress tensorsJHEP2019101072019JHEP...10..107K40557941427.81139[arXiv:1907.00867] [INSPIRE] – reference: Caron-HuotSHennJMIterative structure of finite loop integralsJHEP2014061142014JHEP...06..114C32343121333.81217[arXiv:1404.2922] [INSPIRE] – reference: BernZBjerrum-BohrNEJDunbarDCInherited twistor-space structure of gravity loop amplitudesJHEP2005050562005JHEP...05..056B[hep-th/0501137] [INSPIRE] – reference: R.J. Glauber, High-energy collision theory, Lect. Theor. Phys. (1959) 315. – reference: E. Cremmer and B. Julia, The N = 8 supergravity theory. 1. The Lagrangian, Phys. Lett. B80 (1978) 48 [INSPIRE]. – reference: BelLDamourTDeruelleNIbáñezJMartinJPoincaré-invariant gravitational field and equations of motion of two pointlike objects: The postlinear approximation of general relativityGen. Rel. Grav.1981139631981GReGr..13..963B[INSPIRE] – reference: GuevaraAOchirovAVinesJScattering of spinning black holes from exponentiated soft factorsJHEP2019090562019JHEP...09..056G40202041423.83030[arXiv:1812.06895] [INSPIRE] – reference: MuzinichIJSoldateMHigh-energy unitarity of gravitation and stringsPhys. Rev. D1988373591988PhRvD..37..359M[INSPIRE] – reference: M. Levi, A.J. Mcleod and M. Von Hippel, N3LO gravitational spin-orbit coupling at order G4, arXiv:2003.02827 [INSPIRE]. – reference: BernZCarrascoJJChenW-MJohanssonHRoibanRGravity amplitudes as generalized double copies of gauge-theory amplitudesPhys. Rev. Lett.20171181816022017PhRvL.118r1602B[arXiv:1701.02519] [INSPIRE] – reference: Bjerrum-BohrNEJDonoghueJFVanhovePOn-shell techniques and universal results in quantum gravityJHEP2014021112014JHEP...02..111B31831381333.83043[arXiv:1309.0804] [INSPIRE] – reference: CheungCRothsteinIZSolonMPFrom scattering amplitudes to classical potentials in the post-Minkowskian expansionPhys. Rev. Lett.20181212511012018PhRvL.121y1101C[arXiv:1808.02489] [INSPIRE] – reference: HerrmannEParra-MartinezJLogarithmic forms and differential equations for Feynman integralsJHEP2020020992020JHEP...02..099H40891821435.81078[arXiv:1909.04777] [INSPIRE] – reference: PrimoATancrediLOn the maximal cut of Feynman integrals and the solution of their differential equationsNucl. Phys. B2017916942017NuPhB.916...94P36114011356.81136[arXiv:1610.08397] [INSPIRE] – reference: PortillaMScattering of two gravitating particles: classical approachJ. Phys. A19801336771980JPhA...13.3677P[INSPIRE] – reference: SoldateMPartial wave unitarity and closed string amplitudesPhys. Lett. B19871863211987PhLB..186..321S[INSPIRE] – reference: Z. Bern, J.J. Carrasco, L.J. Dixon, H. Johansson and R. Roiban, The ultraviolet behavior of N = 8 supergravity at four loops, Phys. Rev. Lett.103 (2009) 081301 [arXiv:0905.2326] [INSPIRE]. – reference: J. Vines, J. Steinhoff and A. Buonanno, Spinning-black-hole scattering and the test-black-hole limit at second post-Minkowskian order, Phys. Rev. D99 (2019) 064054 [arXiv:1812.00956] [INSPIRE]. – reference: BernZDixonLJDunbarDCPerelsteinMRozowskyJSOn the relationship between Yang-Mills theory and gravity and its implication for ultraviolet divergencesNucl. Phys. B19985304011998NuPhB.530..401B[hep-th/9802162] [INSPIRE] – reference: V.A. Smirnov, Analytical result for dimensionally regularized massive on-shell planar double box, Phys. Lett. B524 (2002) 129 [hep-ph/0111160] [INSPIRE]. – reference: T. Gehrmann and E. Remiddi, Differential equations for two loop four point functions, Nucl. Phys. B580 (2000) 485 [hep-ph/9912329] [INSPIRE]. – reference: BernZCarrascoJJMDixonLJJohanssonHRoibanRManifest ultraviolet behavior for the three-loop four-point amplitude of N = 8 supergravityPhys. Rev. D2008781050192008PhRvD..78j5019B[arXiv:0808.4112] [INSPIRE] – reference: Z. Bern, J.J.M. Carrasco and H. Johansson, Perturbative quantum gravity as a double copy of gauge theory, Phys. Rev. Lett.105 (2010) 061602 [arXiv:1004.0476] [INSPIRE]. – reference: AmatiDCiafaloniMVenezianoGClassical and quantum gravity effects from planckian energy superstring collisionsInt. J. Mod. Phys. A1988316151988IJMPA...3.1615A[INSPIRE] – reference: S. Laporta and E. Remiddi, The analytical value of the electron (g − 2) at order α3in QED, Phys. Lett. B379 (1996) 283 [hep-ph/9602417] [INSPIRE]. – reference: Arkani-HamedNHuangY-tO’ConnellDKerr black holes as elementary particlesJHEP2020010462020JHEP...01..046A40882731434.83049[arXiv:1906.10100] [INSPIRE] – reference: A.B. Goncharov, Multiple polylogarithms and mixed Tate motives, math/0103059 [INSPIRE]. – reference: M. Prausa, epsilon: a tool to find a canonical basis of master integrals, Comput. Phys. Commun.219 (2017) 361 [arXiv:1701.00725] [INSPIRE]. – reference: KerrRPThe Lorentz-covariant approximation method in general relativity INuovo Cim.1959134691959NCim...13..469K1105270088.20604[INSPIRE] – reference: AmatiDCiafaloniMVenezianoGHigher order gravitational deflection and soft bremsstrahlung in Planckian energy superstring collisionsNucl. Phys. B19903475501990NuPhB.347..550A[INSPIRE] – reference: Di VecchiaPLunaANaculichSGRussoRVenezianoGWhiteCDA tale of two exponentiations inN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} $$\end{document} = 8 supergravityPhys. Lett. B201979813492740075611434.83160[arXiv:1908.05603] [INSPIRE] – reference: DamourTGravitational scattering, post-Minkowskian approximation and effective one-body theoryPhys. Rev. D2016941040152016PhRvD..94j4015D3745958[arXiv:1609.00354] [INSPIRE] – reference: LedvinkaTSchaeferGBicakJRelativistic closed-form Hamiltonian for many-body gravitating systems in the post-Minkowskian approximationPhys. Rev. Lett.20081002511012008PhRvL.100y1101L24155851228.83020[arXiv:0807.0214] [INSPIRE] – reference: KosowerDAMaybeeBO’ConnellDAmplitudes, observables, and classical scatteringJHEP2019021372019JHEP...02..137K39252331411.81217[arXiv:1811.10950] [INSPIRE] – reference: AkhouryRSaotomeRStermanGCollinear and soft divergences in perturbative quantum gravityPhys. Rev. D2011841040402011PhRvD..84j4040A[arXiv:1109.0270] [INSPIRE] – reference: ChetyrkinKGTkachovFVIntegration by parts: the algorithm to calculate β-functions in 4 loopsNucl. Phys. B19811921591981NuPhB.192..159C[INSPIRE] – reference: M. Beneke and V.A. Smirnov, Asymptotic expansion of Feynman integrals near threshold, Nucl. Phys. B522 (1998) 321 [hep-ph/9711391] [INSPIRE]. – reference: AblingerJBlümleinJMarquardPRanaNSchneiderCAutomated solution of first order factorizable systems of differential equations in one variableNucl. Phys. B20199392532019NuPhB.939..253A38942981409.81080[arXiv:1810.12261] [INSPIRE] – reference: BertottiBOn gravitational motionNuovo Cim.195648981956NCim....4..898B833860071.22105[INSPIRE] – reference: BernZCheungCRoibanRShenC-HSolonMPZengMBlack hole binary dynamics from the double copy and effective theoryJHEP2019102062019JHEP...10..206B40510521427.83035[arXiv:1908.01493] [INSPIRE] – reference: R. Akhoury, R. Saotome and G. Sterman, High energy scattering in perturbative quantum gravity at next to leading power, arXiv:1308.5204 [INSPIRE]. – reference: Di VecchiaPNaculichSGRussoRVenezianoGWhiteCDA tale of two exponentiations inN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} $$\end{document} = 8 supergravity at subleading levelJHEP2020031732020JHEP...03..173D40899491435.83198[arXiv:1911.11716] [INSPIRE] – reference: BernZCarrascoJJMDixonLJJohanssonHRoibanRSimplifying multiloop integrands and ultraviolet divergences of gauge theory and gravity amplitudesPhys. Rev. D2012851050142012PhRvD..85j5014B[arXiv:1201.5366] [INSPIRE] – reference: PortillaMMomentum and angular momentum of two gravitating particlesJ. Phys. A19791210751979JPhA...12.1075P[INSPIRE] – reference: CheungCSolonMPClassical gravitational scattering atO\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{O} $$\end{document}(G3) from Feynman diagramsJHEP2020061442020JHEP...06..144C1439.83013[arXiv:2003.08351] [INSPIRE] – reference: BlümleinJMaierAMarquardPSchäferGSchneiderCFrom momentum expansions to post-Minkowskian Hamiltonians by computer algebra algorithmsPhys. Lett. B202080113515740465611435.83039[arXiv:1911.04411] [INSPIRE] – reference: HennJMLectures on differential equations for Feynman integralsJ. Phys. A2015481530012015JPhA...48o3001H33357061312.81078[arXiv:1412.2296] [INSPIRE] – reference: CristofoliADamgaardPHDi VecchiaPHeissenbergCSecond-order Post-Minkowskian scattering in arbitrary dimensionsJHEP2020071222020JHEP...07..122C41379741451.83008[arXiv:2003.10274] [INSPIRE] – reference: DamgaardPHHaddadKHelsetAHeavy black hole effective theoryJHEP2019110702019JHEP...11..070D40694931429.83034[arXiv:1908.10308] [INSPIRE] – reference: Z. Bern, L.J. Dixon, D.C. Dunbar and D.A. Kosower, Fusing gauge theory tree amplitudes into loop amplitudes, Nucl. Phys. B435 (1995) 59 [hep-ph/9409265] [INSPIRE]. – reference: Z. Bern, L.J. Dixon and D.A. Kosower, One loop amplitudes for e+e−to four partons, Nucl. Phys. B513 (1998) 3 [hep-ph/9708239] [INSPIRE]. – reference: AntonelliABuonannoASteinhoffJvan de MeentMVinesJEnergetics of two-body Hamiltonians in post-Minkowskian gravityPhys. Rev. D2019991040042019PhRvD..99j4004A4007086[arXiv:1901.07102] [INSPIRE] – reference: M.B. Green, J. Schwarz and E. Witten, Superstring theory. Volume 2: loop amplitudes, anomalies and phenomenology, Cambridge University Press, Cambridge U.K. (1988). – reference: HennJMSmirnovVAAnalytic results for two-loop master integrals for Bhabha scattering IJHEP2013110412013JHEP...11..041H[arXiv:1307.4083] [INSPIRE] – reference: NeillDRothsteinIZClassical space-times from the S matrixNucl. Phys. B20138771772013NuPhB.877..177N31248371284.83052[arXiv:1304.7263] [INSPIRE] – reference: BianchiMSLeoniMA QQ → QQ planar double box in canonical formPhys. Lett. B20187773942018PhLB..777..394B1411.81092[arXiv:1612.05609] [INSPIRE] – reference: LIGO Scientific, Virgo collaboration, Observation of gravitational waves from a binary black hole merger, Phys. Rev. Lett.116 (2016) 061102 [arXiv:1602.03837] [INSPIRE]. – reference: BertottiBPlebanskiJTheory of gravitational perturbations in the fast motion approximationAnn. Phys.1960111691960AnPhy..11..169B1146200094.23102 – reference: SogaardMZhangYUnitarity cuts of integrals with doubled propagatorsJHEP2014071122014JHEP...07..112S[arXiv:1403.2463] [INSPIRE] – reference: GoncharovABSpradlinMVerguCVolovichAClassical polylogarithms for amplitudes and Wilson loopsPhys. Rev. Lett.20101051516052010PhRvL.105o1605G2734443[arXiv:1006.5703] [INSPIRE] – reference: AoudeRHaddadKHelsetAOn-shell heavy particle effective theoriesJHEP2020050512020JHEP...05..051A41124201437.83053[arXiv:2001.09164] [INSPIRE] |
SSID | ssj0015190 |
Score | 2.6753638 |
Snippet | A
bstract
We use
N
= 8 supergravity as a toy model for understanding the dynamics of black hole binary systems via the scattering amplitudes approach. We... We use N = 8 supergravity as a toy model for understanding the dynamics of black hole binary systems via the scattering amplitudes approach. We compute the... |
SourceID | proquest springer |
SourceType | Aggregation Database Publisher |
SubjectTerms | Binary systems Black holes Boundary conditions Classical and Quantum Gravitation Differential equations Elementary Particles Field theory Gravitons High energy physics Misalignment Physics Physics and Astronomy Quantum Field Theories Quantum Field Theory Quantum Physics Regular Article - Theoretical Physics Relativity Theory Scattering angle String Theory Supergravity |
SummonAdditionalLinks | – databaseName: Springer Journals Complete - Open Access dbid: C24 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fS8MwEA5zIvgi_sTplDz4sMEKTdo0iW8im2MP6oODvZX2moKI3Vwr7M_3kjWI-mSfQnstJXftXXL3fUfIDZqsAsEg4FLkQax5GSgjogBiBTpOQGnjqi0ek-k8ni3EokOYx8K4anefknR_ag92m03Hz4wNcLEeDtHR7JBdgWNr1PcW4NAmDjAgCT2Dz9-bfoSRvzKfzqFMDslBGwnSu63qjkjHVMdkz1VkQn1CluNNszbvKJHbPTZq-9jSGhwdJj6PZg19GjxEw1tqOwjhd1nRYunqWsCMqHl9syE2NZvVsrIFQU4BI5pVBfU9UfAkCnxsub7rUzKfjF_up0HbHSFYodttAgDFohzDC20553LFMtBZLCGBkrEkVLLAlVYpI2mEyPAocwEiZrowmodlEUZnpFvhK5wTmvEQEiUKbsnhLF8OCMNFaTKeW5CH6ZG-n7a0NfE65bGMLA5W6h4Z-qn8vuzpkLcaSK0GUtTAxT9kL8m-HTrkn-6TbrP-NFcYAjT5tVP6Fz0Fq_E priority: 102 providerName: Springer Nature |
Title | Extremal black hole scattering at O(G3): graviton dominance, eikonal exponentiation, and differential equations |
URI | https://link.springer.com/article/10.1007/JHEP11(2020)023 https://www.proquest.com/docview/2473426979 |
Volume | 2020 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3PS8MwFA5uIngRf-J0jhw8bLCyNm3axIvMsTk86BAH3kb7moKI3WYr-Of7XtaqeLCHQNsQSr40ee_l5fsYu8Qhq0B64IhIJk6gReYoI30HAgU6CEFpY7Mt7sPpPLh7ls9VwK2o0irrOdFO1OkSKEY-EEHk07HLSF-v1g6pRtHuaiWh0WDbOAUrdL62b8b3s8fvfQS0T9ya0MeNBnfT8czzuujwuz2XFIp-WZV_NkLt-jLZZ3uVYciHGyQP2JbJD9mOTdCE4ogtx5_lu3nDGgmF3DjJ2vICLDsmtsfjkj90b_3eFSdBIfxNc54ubZoLmD43L69kcXPzuVrmlB9k8ejzOE95LZGCD7HCekP9XRyz-WT8NJo6lViCs8JVuHQAlOcnaG1ooqBLlBeDjoMIQsg8L3RVlKLjlUV-ZKSM8coSCTLwdGq0cLPU9U9YM8dPOGU8Fi6ESqaCuOKIPgekETIzsUjozIdpsXbdbYtqxBeLH3xarFd35c_rmh15g8CCEFggAmf_N3XOdqmmPfun26xZvn-YCzQCyqTDGmpy26nwxruRCKgMRx3rVmM5F8MvHvq2gw |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB7xUAUXBKVVaXn4UCRWIiJx4sRGQgjBLsujwAEkbmkycSRUNbuQIOBP8RuZ8W4K4tAbOSa2FXnGM2N75vsAfpLKalQBejJRuRcZWXraqtDDSKOJYtTGumyLs7h_FR1fq-sJeG5rYTitsrWJzlAXA-Qz8i0ZJSGXXSZmd3jrMWsU3662FBojtTixTw-0Zat3jg5IvutS9rqX-31vzCrgDcldNR6iDsKc3LJhrLZcBxmaLEowxjIIYl8nBe1QyiRMrFIZPWWuUEWBKayRfln4IY07CdNRGBpeUbp3-O_WgqIhv4UP8pOt4373Igg2JEVkHZ_5kN7EsO-uXZ03683D3DgMFXsjvVmACVt9hk8uHRTrRRh0H5s7-5da5HzAJ5hEV9TosDhpPJE14nzjMOxsC6YvIqNQiWLgkmrQbgp784fje2Efh4OKs5Gc9DdFVhWiJWShl9TgdgQ0Xn-Bqw-ZxK8wVdEvfAORSR9jrQrJyHQM1oPKSlXaTOZcYWKXYLmdtnS8vur0VRuWoNNO5evnFot5JIGUJZCSBL7_f6g1mOlf_jpNT4_OTn7ALPdyVYdmGaaau3u7QuFHk686mQv4_dFK9gIKIe1q |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fS9xAEB7sicUXsbXFn-0-VPDAcMkmm80KIm296_mD61Eq-BaTyQZEzJ0mov5r_nXO5JJa-tA385hsljDzZXd2d-b7AL4QZCNUHjpSq9QJjMydyCrfwSBCE4QYGVtnW4zC4VlwfK7O5-CprYXhtMp2TKwH6myCvEfek4H2uexSm17epEWMDwcH0xuHFaT4pLWV05hB5MQ-3tPyrdw_OiRfb0s56P_-PnQahQFnSlNX5SBGnp_SFG2Yty2NvARNEmgMMfe80I10RquVXPvaKpXQlacKVeCZzBrp5pnrU79vYF7TqsjtwPy3_mj8688ZBsVGbksm5Ore8bA_9rwdSfFZ12V1pL8i2n8OYeu5bbAMS01QKr7OUPQO5mzxHhbq5FAsV2DSf6hu7TW1SHm7T7CkriixZuak_kRSiZ87P_zunmAxIxoiCpFN6hQbtLvCXl5xtC_sw3RScG5SjYVdkRSZaOVZ6CY1uJnRjpcf4OxVzPgROgV9wiqIRLoYRiqTzFPH1D2orFS5TWTK9SZ2DTZbs8XN31bGL9hYg25rypfHLTPzzAMxeyAmD6z_v6vP8JYAFp8ejU42YJFfqksQzSZ0qts7u0WxSJV-apwu4OK1cfYMy1Xy_A |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Extremal+black+hole+scattering+at+O%28G3%29%3A+graviton+dominance%2C+eikonal+exponentiation%2C+and+differential+equations&rft.jtitle=The+journal+of+high+energy+physics&rft.au=Parra-Martinez%2C+Julio&rft.au=Ruf%2C+Michael+S&rft.au=Zeng+Mao&rft.date=2020-11-09&rft.pub=Springer+Nature+B.V&rft.eissn=1029-8479&rft.volume=2020&rft.issue=11&rft_id=info:doi/10.1007%2FJHEP11%282020%29023&rft.externalDBID=HAS_PDF_LINK |