Extremal black hole scattering at O(G3): graviton dominance, eikonal exponentiation, and differential equations

A bstract We use N = 8 supergravity as a toy model for understanding the dynamics of black hole binary systems via the scattering amplitudes approach. We compute the conservative part of the classical scattering angle of two extremal (half-BPS) black holes with minimal charge misalignment at O ( G 3...

Full description

Saved in:
Bibliographic Details
Published inThe journal of high energy physics Vol. 2020; no. 11
Main Authors Parra-Martinez, Julio, Ruf, Michael S., Zeng, Mao
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 09.11.2020
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract A bstract We use N = 8 supergravity as a toy model for understanding the dynamics of black hole binary systems via the scattering amplitudes approach. We compute the conservative part of the classical scattering angle of two extremal (half-BPS) black holes with minimal charge misalignment at O ( G 3 ) using the eikonal approximation and effective field theory, finding agreement between both methods. We construct the massive loop integrands by Kaluza-Klein reduction of the known D -dimensional massless integrands. To carry out integration we formulate a novel method for calculating the post-Minkowskian expansion with exact velocity dependence, by solving velocity differential equations for the Feynman integrals subject to modified boundary conditions that isolate conservative contributions from the potential region. Motivated by a recent result for universality in massless scattering, we compare the scattering angle to the result found by Bern et. al. in Einstein gravity and find that they coincide in the high-energy limit, suggesting graviton dominance at this order.
AbstractList A bstract We use N = 8 supergravity as a toy model for understanding the dynamics of black hole binary systems via the scattering amplitudes approach. We compute the conservative part of the classical scattering angle of two extremal (half-BPS) black holes with minimal charge misalignment at O ( G 3 ) using the eikonal approximation and effective field theory, finding agreement between both methods. We construct the massive loop integrands by Kaluza-Klein reduction of the known D -dimensional massless integrands. To carry out integration we formulate a novel method for calculating the post-Minkowskian expansion with exact velocity dependence, by solving velocity differential equations for the Feynman integrals subject to modified boundary conditions that isolate conservative contributions from the potential region. Motivated by a recent result for universality in massless scattering, we compare the scattering angle to the result found by Bern et. al. in Einstein gravity and find that they coincide in the high-energy limit, suggesting graviton dominance at this order.
We use N = 8 supergravity as a toy model for understanding the dynamics of black hole binary systems via the scattering amplitudes approach. We compute the conservative part of the classical scattering angle of two extremal (half-BPS) black holes with minimal charge misalignment at O(G3) using the eikonal approximation and effective field theory, finding agreement between both methods. We construct the massive loop integrands by Kaluza-Klein reduction of the known D-dimensional massless integrands. To carry out integration we formulate a novel method for calculating the post-Minkowskian expansion with exact velocity dependence, by solving velocity differential equations for the Feynman integrals subject to modified boundary conditions that isolate conservative contributions from the potential region. Motivated by a recent result for universality in massless scattering, we compare the scattering angle to the result found by Bern et. al. in Einstein gravity and find that they coincide in the high-energy limit, suggesting graviton dominance at this order.
Author Zeng, Mao
Parra-Martinez, Julio
Ruf, Michael S.
Author_xml – sequence: 1
  givenname: Julio
  orcidid: 0000-0003-0178-1569
  surname: Parra-Martinez
  fullname: Parra-Martinez, Julio
  organization: Mani L. Bhaumik Institute for Theoretical Physics, UCLA Department of Physics and Astronomy
– sequence: 2
  givenname: Michael S.
  orcidid: 0000-0001-6770-2822
  surname: Ruf
  fullname: Ruf, Michael S.
  email: michael.ruf@physik.uni-freiburg.de
  organization: Physikalisches Institut, Albert-Ludwigs Universität Freiburg
– sequence: 3
  givenname: Mao
  orcidid: 0000-0002-4741-4038
  surname: Zeng
  fullname: Zeng, Mao
  organization: Institut für Theoretische Physik, Eidgenössische Technische Hochschule Zürich
BookMark eNpFkN9PwjAQgBujiYA--9rEF0iYXn9sXX0zBEFDgg_6vHRdh4PRjrUQ_nwHmHgvl9x9d7n7-ujaOmsQeiDwRADE88d8-knIkAKFEVB2hXoEqIxSLuQt6nu_BiAxkdBDbnoMrdmqGue10hv842qDvVYhmLayK6wCXg5nbPSCV606VMFZXLhtZZXVZoxNtXG2mzXHpjvAhkqFytkxVrbARVWWpj0XO2C3P7f8HbopVe3N_V8eoO-36ddkHi2Ws_fJ6yJqKOUh0jolLJeSyRgSnqdEaam40IkuCUkgFQUBXgomTByrLso81jEnsjCSQlkAG6DHy96mdbu98SFbu33b3eozygXjNJFCdhRcKN-cvjXtP0UgO6nMLiqzk8qsU8l-AQPVa0I
ContentType Journal Article
Copyright The Author(s) 2020
The Author(s) 2020. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2020
– notice: The Author(s) 2020. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
8FE
8FG
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
DOI 10.1007/JHEP11(2020)023
DatabaseName Springer Nature OA Free Journals
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni Edition)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central Korea
SciTech Premium Collection
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
DatabaseTitle Publicly Available Content Database
Advanced Technologies & Aerospace Collection
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: C6C
  name: SpringerOpen
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1029-8479
ExternalDocumentID 10_1007_JHEP11_2020_023
GroupedDBID -5F
-5G
-A0
-BR
0R~
0VY
199
1N0
30V
4.4
408
40D
5GY
5VS
8FE
8FG
8TC
8UJ
95.
AAFWJ
AAKKN
ABEEZ
ACACY
ACGFS
ACHIP
ACREN
ACULB
ADBBV
ADINQ
AEGXH
AENEX
AFGXO
AFKRA
AFPKN
AFWTZ
AHBYD
AHYZX
AIBLX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOAED
ARAPS
ASPBG
ATQHT
AVWKF
AZFZN
BCNDV
BENPR
BGLVJ
C24
C6C
CCPQU
CS3
CSCUP
DU5
EBS
ER.
FEDTE
GQ6
GROUPED_DOAJ
HCIFZ
HF~
HLICF
HMJXF
HVGLF
HZ~
IHE
KOV
LAP
M~E
N5L
N9A
NB0
O93
OK1
P62
P9T
PIMPY
PROAC
R9I
RO9
RSV
S27
S3B
SOJ
SPH
T13
TUS
U2A
VC2
VSI
WK8
XPP
Z45
ZMT
ABUWG
AMVHM
AZQEC
DWQXO
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-p224t-cc813b99395064b81ac9a47c6cf116087d104f737e55aaaafb5c5419de920fd03
IEDL.DBID BENPR
IngestDate Sat Jul 26 00:26:59 EDT 2025
Fri Feb 21 02:49:16 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Keywords Classical Theories of Gravity
Supergravity Models
Scattering Amplitudes
Black Holes
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-p224t-cc813b99395064b81ac9a47c6cf116087d104f737e55aaaafb5c5419de920fd03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-0178-1569
0000-0001-6770-2822
0000-0002-4741-4038
OpenAccessLink https://www.proquest.com/docview/2473426979?pq-origsite=%requestingapplication%
PQID 2473426979
PQPubID 2034718
ParticipantIDs proquest_journals_2473426979
springer_journals_10_1007_JHEP11_2020_023
PublicationCentury 2000
PublicationDate 2020-11-09
PublicationDateYYYYMMDD 2020-11-09
PublicationDate_xml – month: 11
  year: 2020
  text: 2020-11-09
  day: 09
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationTitle The journal of high energy physics
PublicationTitleAbbrev J. High Energ. Phys
PublicationYear 2020
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References AmatiDCiafaloniMVenezianoGHigher order gravitational deflection and soft bremsstrahlung in Planckian energy superstring collisionsNucl. Phys. B19903475501990NuPhB.347..550A[INSPIRE]
KulaxiziMNgGSParnachevASubleading eikonal, AdS/CFT and double stress tensorsJHEP2019101072019JHEP...10..107K40557941427.81139[arXiv:1907.00867] [INSPIRE]
BernZCheungCRoibanRShenC-HSolonMPZengMScattering amplitudes and the conservative hamiltonian for binary systems at third post-Minkowskian orderPhys. Rev. Lett.20191222016032019PhRvL.122t1603B[arXiv:1901.04424] [INSPIRE]
CristofoliADamgaardPHDi VecchiaPHeissenbergCSecond-order Post-Minkowskian scattering in arbitrary dimensionsJHEP2020071222020JHEP...07..122C41379741451.83008[arXiv:2003.10274] [INSPIRE]
Caron-HuotSZahraeeZIntegrability of black hole orbits in maximal supergravityJHEP2019071792019JHEP...07..179C39905771418.83068[arXiv:1810.04694] [INSPIRE]
N. Siemonsen and J. Vines, Test black holes, scattering amplitudes and perturbations of Kerr spacetime, Phys. Rev. D101 (2020) 064066 [arXiv:1909.07361] [INSPIRE].
S. Melville, S.G. Naculich, H.J. Schnitzer and C.D. White, Wilson line approach to gravity in the high energy limit, Phys. Rev. D89 (2014) 025009 [arXiv:1306.6019] [INSPIRE].
GoncharovABSpradlinMVerguCVolovichAClassical polylogarithms for amplitudes and Wilson loopsPhys. Rev. Lett.20101051516052010PhRvL.105o1605G2734443[arXiv:1006.5703] [INSPIRE]
BlümleinJMaierAMarquardPSchäferGSchneiderCFrom momentum expansions to post-Minkowskian Hamiltonians by computer algebra algorithmsPhys. Lett. B202080113515740465611435.83039[arXiv:1911.04411] [INSPIRE]
V.A. Smirnov, Evaluating Feynman integrals, Springer Tracts in Modern Physics volume 211, Springer, Germany (2004).
CremmerEJuliaBThe SO(8) supergravityNucl. Phys. B19791591411979NuPhB.159..141C550003
KerrRPThe Lorentz-covariant approximation method in general relativity INuovo Cim.1959134691959NCim...13..469K1105270088.20604[INSPIRE]
SoldateMPartial wave unitarity and closed string amplitudesPhys. Lett. B19871863211987PhLB..186..321S[INSPIRE]
KabatDNOrtizMEikonal quantum gravity and Planckian scatteringNucl. Phys. B19923885701992NuPhB.388..570K[hep-th/9203082] [INSPIRE]
PortillaMScattering of two gravitating particles: classical approachJ. Phys. A19801336771980JPhA...13.3677P[INSPIRE]
PortillaMMomentum and angular momentum of two gravitating particlesJ. Phys. A19791210751979JPhA...12.1075P[INSPIRE]
AbreuSTwo-loop four-graviton scattering amplitudesPhys. Rev. Lett.20201242116012020PhRvL.124u1601A4111194[arXiv:2002.12374] [INSPIRE]
NeillDRothsteinIZClassical space-times from the S matrixNucl. Phys. B20138771772013NuPhB.877..177N31248371284.83052[arXiv:1304.7263] [INSPIRE]
HennJMMultiloop integrals in dimensional regularization made simplePhys. Rev. Lett.20131102516012013PhRvL.110y1601H[arXiv:1304.1806] [INSPIRE]
V.A. Smirnov, Analytic tools for Feynman integrals, Springer, Germany (2012) [INSPIRE].
DamourTGravitational scattering, post-Minkowskian approximation and effective one-body theoryPhys. Rev. D2016941040152016PhRvD..94j4015D3745958[arXiv:1609.00354] [INSPIRE]
Z. Bern, J.J. Carrasco, L.J. Dixon, H. Johansson and R. Roiban, The ultraviolet behavior of N = 8 supergravity at four loops, Phys. Rev. Lett.103 (2009) 081301 [arXiv:0905.2326] [INSPIRE].
SogaardMZhangYUnitarity cuts of integrals with doubled propagatorsJHEP2014071122014JHEP...07..112S[arXiv:1403.2463] [INSPIRE]
KotikovAVDifferential equations method: new technique for massive Feynman diagrams calculationPhys. Lett. B19912541581991PhLB..254..158K1092911[INSPIRE]
LaenenEStavengaGWhiteCDPath integral approach to eikonal and next-to-eikonal exponentiationJHEP2009030542009JHEP...03..054L[arXiv:0811.2067] [INSPIRE]
Bjerrum-BohrNEJVanhovePExplicit cancellation of triangles in one-loop gravity amplitudesJHEP2008040652008JHEP...04..065B2425238[arXiv:0802.0868] [INSPIRE]
DamgaardPHHaddadKHelsetAHeavy black hole effective theoryJHEP2019110702019JHEP...11..070D40694931429.83034[arXiv:1908.10308] [INSPIRE]
Di VecchiaPNaculichSGRussoRVenezianoGWhiteCDA tale of two exponentiations inN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} $$\end{document} = 8 supergravity at subleading levelJHEP2020031732020JHEP...03..173D40899491435.83198[arXiv:1911.11716] [INSPIRE]
Z. Bern, L.J. Dixon and D.A. Kosower, Two-loop g → gg splitting amplitudes in QCD, JHEP08 (2004) 012 [hep-ph/0404293] [INSPIRE].
BlümleinJMaierAMarquardPSchäferGTesting binary dynamics in gravity at the sixth post-Newtonian levelPhys. Lett. B20208071354964109431[arXiv:2003.07145] [INSPIRE]
Z. Bern, L.J. Dixon and D.A. Kosower, One loop amplitudes for e+e−to four partons, Nucl. Phys. B513 (1998) 3 [hep-ph/9708239] [INSPIRE].
GituliarOMageryaVFuchsia: a tool for reducing differential equations for Feynman master integrals to epsilon formComput. Phys. Commun.20172193292017CoPhC.219..329G36778161411.81015[arXiv:1701.04269] [INSPIRE]
AndrianopoliLD’AuriaRFerraraSFréPTrigianteME7(7) duality, BPS black hole evolution and fixed scalarsNucl. Phys. B19985094631998NuPhB.509..463A16017910934.83048[hep-th/9707087] [INSPIRE]
BosmaJSogaardMZhangYMaximal cuts in arbitrary dimensionJHEP2017080512017JHEP...08..051B36974311381.81146[arXiv:1704.04255] [INSPIRE]
T. Gehrmann and E. Remiddi, Numerical evaluation of harmonic polylogarithms, Comput. Phys. Commun.141 (2001) 296 [hep-ph/0107173] [INSPIRE].
KawaiHLewellenDCTyeSHHA relation between tree amplitudes of closed and open stringsNucl. Phys. B198626911986NuPhB.269....1K838667[INSPIRE]
Caron-HuotSHennJMIterative structure of finite loop integralsJHEP2014061142014JHEP...06..114C32343121333.81217[arXiv:1404.2922] [INSPIRE]
BertottiBOn gravitational motionNuovo Cim.195648981956NCim....4..898B833860071.22105[INSPIRE]
Z. Bern et al., Ultraviolet properties ofN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} $$\end{document} = 8 supergravity at five loops, Phys. Rev. D98 (2018) 086021 [arXiv:1804.09311] [INSPIRE].
MaybeeBO’ConnellDVinesJObservables and amplitudes for spinning particles and black holesJHEP2019121562019JHEP...12..156M40612671431.83101[arXiv:1906.09260] [INSPIRE]
BernZDixonLJDunbarDCPerelsteinMRozowskyJSOn the relationship between Yang-Mills theory and gravity and its implication for ultraviolet divergencesNucl. Phys. B19985304011998NuPhB.530..401B[hep-th/9802162] [INSPIRE]
Z. Bern, J.J. Carrasco, D. Forde, H. Ita and H. Johansson, Unexpected cancellations in gravity theories, Phys. Rev. D77 (2008) 025010 [arXiv:0707.1035] [INSPIRE].
T. Gehrmann and E. Remiddi, Differential equations for two loop four point functions, Nucl. Phys. B580 (2000) 485 [hep-ph/9912329] [INSPIRE].
AmatiDCiafaloniMVenezianoGTowards an S-matrix description of gravitational collapseJHEP2008020492008JHEP...02..049A2385996[arXiv:0712.1209] [INSPIRE]
BelLDamourTDeruelleNIbáñezJMartinJPoincaré-invariant gravitational field and equations of motion of two pointlike objects: The postlinear approximation of general relativityGen. Rel. Grav.1981139631981GReGr..13..963B[INSPIRE]
GreenMBSchwarzJHBrinkLN = 4 Yang-Mills and N = 8 supergravity as limits of string theoriesNucl. Phys. B19821984741982NuPhB.198..474G[INSPIRE]
N.E.J. Bjerrum-Bohr, P.H. Damgaard, G. Festuccia, L. Planté and P. Vanhove, General relativity from scattering amplitudes, Phys. Rev. Lett.121 (2018) 171601 [arXiv:1806.04920] [INSPIRE].
M. Beneke and V.A. Smirnov, Asymptotic expansion of Feynman integrals near threshold, Nucl. Phys. B522 (1998) 321 [hep-ph/9711391] [INSPIRE].
RothsteinIZStewartIWAn effective field theory for forward scattering and factorization violationJHEP2016080252016JHEP...08..025R35555901390.81365[arXiv:1601.04695] [INSPIRE]
D. Bini, T. Damour and A. Geralico, Binary dynamics at the fifth and fifth-and-a-half post-Newtonian orders, Phys. Rev. D102 (2020) 024062 [arXiv:2003.11891] [INSPIRE].
ArcioniGN = 8 BPS black holes with 1/2 or 1/4 supersymmetry and solvable Lie algebra decompositionsNucl. Phys. B19995422731999NuPhB.542..273A16714210953.83055[hep-th/9807136] [INSPIRE]
Arkani-HamedNHuangY-tO’ConnellDKerr black holes as elementary particlesJHEP2020010462020JHEP...01..046A40882731434.83049[arXiv:1906.10100] [INSPIRE]
KosowerDAMaybeeBO’ConnellDAmplitudes, observables, and classical scatteringJHEP2019021372019JHEP...02..137K39252331411.81217[arXiv:1811.10950] [INSPIRE]
Di VecchiaPLunaANaculichSGRussoRVenezianoGWhiteCDA tale of two exponentiations inN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} $$\end{document} = 8 supergravityPhys. Lett. B201979813492740075611434.83160[arXiv:1908.05603] [INSPIRE]
Z. Bern, L.J. Dixon, D.C. Dunbar and D.A. Kosower, Fusing gauge theory tree amplitudes into loop amplitudes, Nucl. Phys. B435 (1995) 59 [hep-ph/9409265] [INSPIRE].
AoudeRHaddadKHelsetAOn-shell heavy particle effective theoriesJHEP2020050512020JHEP...05..051A41124201437.83053[arXiv:2001.09164] [INSPIRE]
BianchiMSLeoniMA QQ → QQ planar double box in canonical formPhys. Lett. B20187773942018PhLB..777..394B1411.81092[arXiv:1612.05609] [INSPIRE]
R.J. Glauber, High-energy collision theory, Lect. Theor. Phys. (1959) 315.
A. Koemans Collado and S. Thomas, Eikonal scattering in Kaluza-Klein gravity, JHEP04 (2019) 171 [arXiv:1901.05869] [INSPIRE].
BertottiBPlebanskiJTheory of gravitational perturbations in the fast motion approximationAnn. Phys.1960111691960AnPhy..11..169B1146200094.23102
G. ’t Hooft, Graviton dominance in ultrahigh-energy scattering, Phys. Lett. B198 (1987) 61 [INSPIRE].
GuevaraAOchirovAVinesJBlack-hole scattering with gen
References_xml – reference: KawaiHLewellenDCTyeSHHA relation between tree amplitudes of closed and open stringsNucl. Phys. B198626911986NuPhB.269....1K838667[INSPIRE]
– reference: Bjerrum-BohrNEJDunbarDCItaHPerkinsWBRisagerKThe no-triangle hypothesis for N = 8 supergravityJHEP2006120722006JHEP...12..072B22766821226.83081[hep-th/0610043] [INSPIRE]
– reference: Caron-HuotSLarsenKJUniqueness of two-loop master contoursJHEP2012100262012JHEP...10..026C[arXiv:1205.0801] [INSPIRE]
– reference: GuevaraAOchirovAVinesJBlack-hole scattering with general spin directions from minimal-coupling amplitudesPhys. Rev. D20191001040242019PhRvD.100j4024G4041927[arXiv:1906.10071] [INSPIRE]
– reference: AmatiDCiafaloniMVenezianoGSuperstring collisions at Planckian energiesPhys. Lett. B1987197811987PhLB..197...81A[INSPIRE]
– reference: G. ’t Hooft, Graviton dominance in ultrahigh-energy scattering, Phys. Lett. B198 (1987) 61 [INSPIRE].
– reference: BernZCarrascoJJMChenW-MJohanssonHRoibanRZengMFive-loop four-point integrand of N = 8 supergravity as a generalized double copyPhys. Rev. D2017961260122017PhRvD..96l6012B3873302[arXiv:1708.06807] [INSPIRE]
– reference: KotikovAVDifferential equations method: new technique for massive Feynman diagrams calculationPhys. Lett. B19912541581991PhLB..254..158K1092911[INSPIRE]
– reference: N.E.J. Bjerrum-Bohr, P.H. Damgaard, G. Festuccia, L. Planté and P. Vanhove, General relativity from scattering amplitudes, Phys. Rev. Lett.121 (2018) 171601 [arXiv:1806.04920] [INSPIRE].
– reference: T. Damour, Classical and quantum scattering in post-Minkowskian gravity, Phys. Rev. D102 (2020) 024060 [arXiv:1912.02139] [INSPIRE].
– reference: AbreuSBrittoRDuhrCGardiECuts from residues: the one-loop caseJHEP2017061142017JHEP...06..114A36818391380.81421[arXiv:1702.03163] [INSPIRE]
– reference: A. Koemans Collado, P. Di Vecchia and R. Russo, Revisiting the second post-Minkowskian eikonal and the dynamics of binary black holes, Phys. Rev. D100 (2019) 066028 [arXiv:1904.02667] [INSPIRE].
– reference: Z. Bern, J.J. Carrasco, D. Forde, H. Ita and H. Johansson, Unexpected cancellations in gravity theories, Phys. Rev. D77 (2008) 025010 [arXiv:0707.1035] [INSPIRE].
– reference: AndrianopoliLD’AuriaRFerraraSFréPTrigianteME7(7) duality, BPS black hole evolution and fixed scalarsNucl. Phys. B19985094631998NuPhB.509..463A16017910934.83048[hep-th/9707087] [INSPIRE]
– reference: BlümleinJMaierAMarquardPSchäferGTesting binary dynamics in gravity at the sixth post-Newtonian levelPhys. Lett. B20208071354964109431[arXiv:2003.07145] [INSPIRE]
– reference: M. Levi, A.J. Mcleod and M. Von Hippel, NNNLO gravitational quadratic-in-spin interactions at the quartic order in G, arXiv:2003.07890 [INSPIRE].
– reference: A. Koemans Collado and S. Thomas, Eikonal scattering in Kaluza-Klein gravity, JHEP04 (2019) 171 [arXiv:1901.05869] [INSPIRE].
– reference: WestpfahlKGollerMGravitational scattering of two relativistic particles in postlinear approximationLett. Nuovo Cim.197926573[INSPIRE]
– reference: T. Gehrmann and E. Remiddi, Numerical evaluation of harmonic polylogarithms, Comput. Phys. Commun.141 (2001) 296 [hep-ph/0107173] [INSPIRE].
– reference: G. Heinrich and V.A. Smirnov, Analytical evaluation of dimensionally regularized massive on-shell double boxes, Phys. Lett. B598 (2004) 55 [hep-ph/0406053] [INSPIRE].
– reference: NairVPA current algebra for some gauge theory amplitudesPhys. Lett. B19882142151988PhLB..214..215N[INSPIRE]
– reference: D.A. Kosower and K.J. Larsen, Maximal unitarity at two loops, Phys. Rev. D85 (2012) 045017 [arXiv:1108.1180] [INSPIRE].
– reference: BernZCarrascoJJDixonLJJohanssonHKosowerDARoibanRThree-loop superfiniteness of N = 8 supergravityPhys. Rev. Lett.2007981613032007PhRvL..98p1303B[hep-th/0702112] [INSPIRE]
– reference: Z. Bern, L.J. Dixon and D.A. Kosower, Dimensionally regulated pentagon integrals, Nucl. Phys. B412 (1994) 751 [hep-ph/9306240] [INSPIRE].
– reference: S. Laporta, High precision calculation of multiloop Feynman integrals by difference equations, Int. J. Mod. Phys. A15 (2000) 5087 [hep-ph/0102033] [INSPIRE].
– reference: BernZCheungCRoibanRShenC-HSolonMPZengMScattering amplitudes and the conservative hamiltonian for binary systems at third post-Minkowskian orderPhys. Rev. Lett.20191222016032019PhRvL.122t1603B[arXiv:1901.04424] [INSPIRE]
– reference: HennJMMultiloop integrals in dimensional regularization made simplePhys. Rev. Lett.20131102516012013PhRvL.110y1601H[arXiv:1304.1806] [INSPIRE]
– reference: D. Bini, T. Damour and A. Geralico, Binary dynamics at the fifth and fifth-and-a-half post-Newtonian orders, Phys. Rev. D102 (2020) 024062 [arXiv:2003.11891] [INSPIRE].
– reference: Z. Bern et al., Ultraviolet properties ofN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} $$\end{document} = 8 supergravity at five loops, Phys. Rev. D98 (2018) 086021 [arXiv:1804.09311] [INSPIRE].
– reference: Z. Bern, L.J. Dixon, D.C. Dunbar and D.A. Kosower, One loop n point gauge theory amplitudes, unitarity and collinear limits, Nucl. Phys. B425 (1994) 217 [hep-ph/9403226] [INSPIRE].
– reference: RemiddiEDifferential equations for Feynman graph amplitudesNuovo Cim. A199711014351997NCimA.110.1435R[hep-th/9711188] [INSPIRE]
– reference: P.V. Landshoff and J.C. Polkinghorne, Iterations of Regge cuts, Phys. Rev.181 (1969) 1989 [INSPIRE].
– reference: GreenMBSchwarzJHBrinkLN = 4 Yang-Mills and N = 8 supergravity as limits of string theoriesNucl. Phys. B19821984741982NuPhB.198..474G[INSPIRE]
– reference: LIGO Scientific, Virgo collaboration, GW170817: observation of gravitational waves from a binary neutron star inspiral, Phys. Rev. Lett.119 (2017) 161101 [arXiv:1710.05832] [INSPIRE].
– reference: WestpfahlKHigh-speed scattering of charged and uncharged particles in general relativityProg. Phys.198533417813545
– reference: Caron-HuotSZahraeeZIntegrability of black hole orbits in maximal supergravityJHEP2019071792019JHEP...07..179C39905771418.83068[arXiv:1810.04694] [INSPIRE]
– reference: ArcioniGN = 8 BPS black holes with 1/2 or 1/4 supersymmetry and solvable Lie algebra decompositionsNucl. Phys. B19995422731999NuPhB.542..273A16714210953.83055[hep-th/9807136] [INSPIRE]
– reference: BosmaJSogaardMZhangYMaximal cuts in arbitrary dimensionJHEP2017080512017JHEP...08..051B36974311381.81146[arXiv:1704.04255] [INSPIRE]
– reference: LevyMSucherJEikonal approximation in quantum field theoryPhys. Rev.196918616561969PhRv..186.1656L260329[INSPIRE]
– reference: BernZDixonLJRoibanRIs N = 8 supergravity ultraviolet finite?Phys. Lett. B20076442652007PhLB..644..265B22879731248.83136[hep-th/0611086] [INSPIRE]
– reference: J. Vines, Scattering of two spinning black holes in post-Minkowskian gravity, to all orders in spin, and effective-one-body mappings, Class. Quant. Grav.35 (2018) 084002 [arXiv:1709.06016] [INSPIRE].
– reference: V.A. Smirnov, Analytic tools for Feynman integrals, Springer, Germany (2012) [INSPIRE].
– reference: KälinGPortoRAFrom boundary data to bound statesJHEP2020010722020JHEP...01..072K40882471434.85004[arXiv:1910.03008] [INSPIRE]
– reference: LaenenEStavengaGWhiteCDPath integral approach to eikonal and next-to-eikonal exponentiationJHEP2009030542009JHEP...03..054L[arXiv:0811.2067] [INSPIRE]
– reference: AmatiDCiafaloniMVenezianoGTowards an S-matrix description of gravitational collapseJHEP2008020492008JHEP...02..049A2385996[arXiv:0712.1209] [INSPIRE]
– reference: CremmerEJuliaBThe SO(8) supergravityNucl. Phys. B19791591411979NuPhB.159..141C550003
– reference: Z. Bern, H. Ita, J. Parra-Martinez and M.S. Ruf, Universality in the classical limit of massless gravitational scattering, Phys. Rev. Lett.125 (2020) 031601 [arXiv:2002.02459] [INSPIRE].
– reference: V.A. Smirnov, Evaluating Feynman integrals, Springer Tracts in Modern Physics volume 211, Springer, Germany (2004).
– reference: KabatDNOrtizMEikonal quantum gravity and Planckian scatteringNucl. Phys. B19923885701992NuPhB.388..570K[hep-th/9203082] [INSPIRE]
– reference: RothsteinIZStewartIWAn effective field theory for forward scattering and factorization violationJHEP2016080252016JHEP...08..025R35555901390.81365[arXiv:1601.04695] [INSPIRE]
– reference: S. Melville, S.G. Naculich, H.J. Schnitzer and C.D. White, Wilson line approach to gravity in the high energy limit, Phys. Rev. D89 (2014) 025009 [arXiv:1306.6019] [INSPIRE].
– reference: Z. Bern, A. Luna, R. Roiban, C.-H. Shen and M. Zeng, Spinning black hole binary dynamics, scattering amplitudes and effective field theory, arXiv:2005.03071 [INSPIRE].
– reference: BrittoRCachazoFFengBGeneralized unitarity and one-loop amplitudes in N = 4 super-Yang-MillsNucl. Phys. B20057252752005NuPhB.725..275B21642931178.81202[hep-th/0412103] [INSPIRE]
– reference: GituliarOMageryaVFuchsia: a tool for reducing differential equations for Feynman master integrals to epsilon formComput. Phys. Commun.20172193292017CoPhC.219..329G36778161411.81015[arXiv:1701.04269] [INSPIRE]
– reference: GoldbergerWDRothsteinIZAn effective field theory of gravity for extended objectsPhys. Rev. D2006731040292006PhRvD..73j4029G2224727[hep-th/0409156] [INSPIRE]
– reference: G. Kälin and R.A. Porto, From boundary data to bound states. Part II. Scattering angle to dynamical invariants (with twist), JHEP02 (2020) 120 [arXiv:1911.09130] [INSPIRE].
– reference: T. Damour, High-energy gravitational scattering and the general relativistic two-body problem, Phys. Rev. D97 (2018) 044038 [arXiv:1710.10599] [INSPIRE].
– reference: MaybeeBO’ConnellDVinesJObservables and amplitudes for spinning particles and black holesJHEP2019121562019JHEP...12..156M40612671431.83101[arXiv:1906.09260] [INSPIRE]
– reference: A. Edison, E. Herrmann, J. Parra-Martinez and J. Trnka, Gravity loop integrands from the ultraviolet, arXiv:1909.02003 [INSPIRE].
– reference: GilmoreJBRossAEffective field theory calculation of second post-Newtonian binary dynamicsPhys. Rev. D2008781240212008PhRvD..78l4021G[arXiv:0810.1328] [INSPIRE]
– reference: AbreuSTwo-loop four-graviton scattering amplitudesPhys. Rev. Lett.20201242116012020PhRvL.124u1601A4111194[arXiv:2002.12374] [INSPIRE]
– reference: N. Siemonsen and J. Vines, Test black holes, scattering amplitudes and perturbations of Kerr spacetime, Phys. Rev. D101 (2020) 064066 [arXiv:1909.07361] [INSPIRE].
– reference: E. Remiddi and J.A.M. Vermaseren, Harmonic polylogarithms, Int. J. Mod. Phys. A15 (2000) 725 [hep-ph/9905237] [INSPIRE].
– reference: Z. Bern, L.J. Dixon and D.A. Kosower, Two-loop g → gg splitting amplitudes in QCD, JHEP08 (2004) 012 [hep-ph/0404293] [INSPIRE].
– reference: ChungM-ZHuangY-TKimJ-WLeeSThe simplest massive S-matrix: from minimal coupling to Black HolesJHEP2019041562019JHEP...04..156C39539181415.83014[arXiv:1812.08752] [INSPIRE]
– reference: Bjerrum-BohrNEJVanhovePExplicit cancellation of triangles in one-loop gravity amplitudesJHEP2008040652008JHEP...04..065B2425238[arXiv:0802.0868] [INSPIRE]
– reference: Z. Bern, J.J.M. Carrasco and H. Johansson, New relations for gauge-theory amplitudes, Phys. Rev. D78 (2008) 085011 [arXiv:0805.3993] [INSPIRE].
– reference: Bjerrum-BohrNEJDunbarDCItaHSix-point one-loop N = 8 supergravity NMHV amplitudes and their ir behaviourPhys. Lett. B20056211832005PhLB..621..183B21526701247.83219[hep-th/0503102] [INSPIRE]
– reference: A.V. Smirnov and F.S. Chuharev, FIRE6: Feynman Integral REduction with Modular Arithmetic, arXiv:1901.07808 [INSPIRE].
– reference: DuhrCHopf algebras, coproducts and symbols: an application to Higgs boson amplitudesJHEP2012080432012JHEP...08..043D30069551397.16028[arXiv:1203.0454] [INSPIRE]
– reference: BeenakkerWDennerAInfrared divergent scalar box integrals with applications in the electroweak standard modelNucl. Phys. B19903383491990NuPhB.338..349B[INSPIRE]
– reference: CremmerEJuliaBScherkJSupergravity theory in eleven-dimensionsPhys. Lett. B1978764091978PhLB...76..409C[INSPIRE]
– reference: KulaxiziMNgGSParnachevASubleading eikonal, AdS/CFT and double stress tensorsJHEP2019101072019JHEP...10..107K40557941427.81139[arXiv:1907.00867] [INSPIRE]
– reference: Caron-HuotSHennJMIterative structure of finite loop integralsJHEP2014061142014JHEP...06..114C32343121333.81217[arXiv:1404.2922] [INSPIRE]
– reference: BernZBjerrum-BohrNEJDunbarDCInherited twistor-space structure of gravity loop amplitudesJHEP2005050562005JHEP...05..056B[hep-th/0501137] [INSPIRE]
– reference: R.J. Glauber, High-energy collision theory, Lect. Theor. Phys. (1959) 315.
– reference: E. Cremmer and B. Julia, The N = 8 supergravity theory. 1. The Lagrangian, Phys. Lett. B80 (1978) 48 [INSPIRE].
– reference: BelLDamourTDeruelleNIbáñezJMartinJPoincaré-invariant gravitational field and equations of motion of two pointlike objects: The postlinear approximation of general relativityGen. Rel. Grav.1981139631981GReGr..13..963B[INSPIRE]
– reference: GuevaraAOchirovAVinesJScattering of spinning black holes from exponentiated soft factorsJHEP2019090562019JHEP...09..056G40202041423.83030[arXiv:1812.06895] [INSPIRE]
– reference: MuzinichIJSoldateMHigh-energy unitarity of gravitation and stringsPhys. Rev. D1988373591988PhRvD..37..359M[INSPIRE]
– reference: M. Levi, A.J. Mcleod and M. Von Hippel, N3LO gravitational spin-orbit coupling at order G4, arXiv:2003.02827 [INSPIRE].
– reference: BernZCarrascoJJChenW-MJohanssonHRoibanRGravity amplitudes as generalized double copies of gauge-theory amplitudesPhys. Rev. Lett.20171181816022017PhRvL.118r1602B[arXiv:1701.02519] [INSPIRE]
– reference: Bjerrum-BohrNEJDonoghueJFVanhovePOn-shell techniques and universal results in quantum gravityJHEP2014021112014JHEP...02..111B31831381333.83043[arXiv:1309.0804] [INSPIRE]
– reference: CheungCRothsteinIZSolonMPFrom scattering amplitudes to classical potentials in the post-Minkowskian expansionPhys. Rev. Lett.20181212511012018PhRvL.121y1101C[arXiv:1808.02489] [INSPIRE]
– reference: HerrmannEParra-MartinezJLogarithmic forms and differential equations for Feynman integralsJHEP2020020992020JHEP...02..099H40891821435.81078[arXiv:1909.04777] [INSPIRE]
– reference: PrimoATancrediLOn the maximal cut of Feynman integrals and the solution of their differential equationsNucl. Phys. B2017916942017NuPhB.916...94P36114011356.81136[arXiv:1610.08397] [INSPIRE]
– reference: PortillaMScattering of two gravitating particles: classical approachJ. Phys. A19801336771980JPhA...13.3677P[INSPIRE]
– reference: SoldateMPartial wave unitarity and closed string amplitudesPhys. Lett. B19871863211987PhLB..186..321S[INSPIRE]
– reference: Z. Bern, J.J. Carrasco, L.J. Dixon, H. Johansson and R. Roiban, The ultraviolet behavior of N = 8 supergravity at four loops, Phys. Rev. Lett.103 (2009) 081301 [arXiv:0905.2326] [INSPIRE].
– reference: J. Vines, J. Steinhoff and A. Buonanno, Spinning-black-hole scattering and the test-black-hole limit at second post-Minkowskian order, Phys. Rev. D99 (2019) 064054 [arXiv:1812.00956] [INSPIRE].
– reference: BernZDixonLJDunbarDCPerelsteinMRozowskyJSOn the relationship between Yang-Mills theory and gravity and its implication for ultraviolet divergencesNucl. Phys. B19985304011998NuPhB.530..401B[hep-th/9802162] [INSPIRE]
– reference: V.A. Smirnov, Analytical result for dimensionally regularized massive on-shell planar double box, Phys. Lett. B524 (2002) 129 [hep-ph/0111160] [INSPIRE].
– reference: T. Gehrmann and E. Remiddi, Differential equations for two loop four point functions, Nucl. Phys. B580 (2000) 485 [hep-ph/9912329] [INSPIRE].
– reference: BernZCarrascoJJMDixonLJJohanssonHRoibanRManifest ultraviolet behavior for the three-loop four-point amplitude of N = 8 supergravityPhys. Rev. D2008781050192008PhRvD..78j5019B[arXiv:0808.4112] [INSPIRE]
– reference: Z. Bern, J.J.M. Carrasco and H. Johansson, Perturbative quantum gravity as a double copy of gauge theory, Phys. Rev. Lett.105 (2010) 061602 [arXiv:1004.0476] [INSPIRE].
– reference: AmatiDCiafaloniMVenezianoGClassical and quantum gravity effects from planckian energy superstring collisionsInt. J. Mod. Phys. A1988316151988IJMPA...3.1615A[INSPIRE]
– reference: S. Laporta and E. Remiddi, The analytical value of the electron (g − 2) at order α3in QED, Phys. Lett. B379 (1996) 283 [hep-ph/9602417] [INSPIRE].
– reference: Arkani-HamedNHuangY-tO’ConnellDKerr black holes as elementary particlesJHEP2020010462020JHEP...01..046A40882731434.83049[arXiv:1906.10100] [INSPIRE]
– reference: A.B. Goncharov, Multiple polylogarithms and mixed Tate motives, math/0103059 [INSPIRE].
– reference: M. Prausa, epsilon: a tool to find a canonical basis of master integrals, Comput. Phys. Commun.219 (2017) 361 [arXiv:1701.00725] [INSPIRE].
– reference: KerrRPThe Lorentz-covariant approximation method in general relativity INuovo Cim.1959134691959NCim...13..469K1105270088.20604[INSPIRE]
– reference: AmatiDCiafaloniMVenezianoGHigher order gravitational deflection and soft bremsstrahlung in Planckian energy superstring collisionsNucl. Phys. B19903475501990NuPhB.347..550A[INSPIRE]
– reference: Di VecchiaPLunaANaculichSGRussoRVenezianoGWhiteCDA tale of two exponentiations inN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} $$\end{document} = 8 supergravityPhys. Lett. B201979813492740075611434.83160[arXiv:1908.05603] [INSPIRE]
– reference: DamourTGravitational scattering, post-Minkowskian approximation and effective one-body theoryPhys. Rev. D2016941040152016PhRvD..94j4015D3745958[arXiv:1609.00354] [INSPIRE]
– reference: LedvinkaTSchaeferGBicakJRelativistic closed-form Hamiltonian for many-body gravitating systems in the post-Minkowskian approximationPhys. Rev. Lett.20081002511012008PhRvL.100y1101L24155851228.83020[arXiv:0807.0214] [INSPIRE]
– reference: KosowerDAMaybeeBO’ConnellDAmplitudes, observables, and classical scatteringJHEP2019021372019JHEP...02..137K39252331411.81217[arXiv:1811.10950] [INSPIRE]
– reference: AkhouryRSaotomeRStermanGCollinear and soft divergences in perturbative quantum gravityPhys. Rev. D2011841040402011PhRvD..84j4040A[arXiv:1109.0270] [INSPIRE]
– reference: ChetyrkinKGTkachovFVIntegration by parts: the algorithm to calculate β-functions in 4 loopsNucl. Phys. B19811921591981NuPhB.192..159C[INSPIRE]
– reference: M. Beneke and V.A. Smirnov, Asymptotic expansion of Feynman integrals near threshold, Nucl. Phys. B522 (1998) 321 [hep-ph/9711391] [INSPIRE].
– reference: AblingerJBlümleinJMarquardPRanaNSchneiderCAutomated solution of first order factorizable systems of differential equations in one variableNucl. Phys. B20199392532019NuPhB.939..253A38942981409.81080[arXiv:1810.12261] [INSPIRE]
– reference: BertottiBOn gravitational motionNuovo Cim.195648981956NCim....4..898B833860071.22105[INSPIRE]
– reference: BernZCheungCRoibanRShenC-HSolonMPZengMBlack hole binary dynamics from the double copy and effective theoryJHEP2019102062019JHEP...10..206B40510521427.83035[arXiv:1908.01493] [INSPIRE]
– reference: R. Akhoury, R. Saotome and G. Sterman, High energy scattering in perturbative quantum gravity at next to leading power, arXiv:1308.5204 [INSPIRE].
– reference: Di VecchiaPNaculichSGRussoRVenezianoGWhiteCDA tale of two exponentiations inN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} $$\end{document} = 8 supergravity at subleading levelJHEP2020031732020JHEP...03..173D40899491435.83198[arXiv:1911.11716] [INSPIRE]
– reference: BernZCarrascoJJMDixonLJJohanssonHRoibanRSimplifying multiloop integrands and ultraviolet divergences of gauge theory and gravity amplitudesPhys. Rev. D2012851050142012PhRvD..85j5014B[arXiv:1201.5366] [INSPIRE]
– reference: PortillaMMomentum and angular momentum of two gravitating particlesJ. Phys. A19791210751979JPhA...12.1075P[INSPIRE]
– reference: CheungCSolonMPClassical gravitational scattering atO\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{O} $$\end{document}(G3) from Feynman diagramsJHEP2020061442020JHEP...06..144C1439.83013[arXiv:2003.08351] [INSPIRE]
– reference: BlümleinJMaierAMarquardPSchäferGSchneiderCFrom momentum expansions to post-Minkowskian Hamiltonians by computer algebra algorithmsPhys. Lett. B202080113515740465611435.83039[arXiv:1911.04411] [INSPIRE]
– reference: HennJMLectures on differential equations for Feynman integralsJ. Phys. A2015481530012015JPhA...48o3001H33357061312.81078[arXiv:1412.2296] [INSPIRE]
– reference: CristofoliADamgaardPHDi VecchiaPHeissenbergCSecond-order Post-Minkowskian scattering in arbitrary dimensionsJHEP2020071222020JHEP...07..122C41379741451.83008[arXiv:2003.10274] [INSPIRE]
– reference: DamgaardPHHaddadKHelsetAHeavy black hole effective theoryJHEP2019110702019JHEP...11..070D40694931429.83034[arXiv:1908.10308] [INSPIRE]
– reference: Z. Bern, L.J. Dixon, D.C. Dunbar and D.A. Kosower, Fusing gauge theory tree amplitudes into loop amplitudes, Nucl. Phys. B435 (1995) 59 [hep-ph/9409265] [INSPIRE].
– reference: Z. Bern, L.J. Dixon and D.A. Kosower, One loop amplitudes for e+e−to four partons, Nucl. Phys. B513 (1998) 3 [hep-ph/9708239] [INSPIRE].
– reference: AntonelliABuonannoASteinhoffJvan de MeentMVinesJEnergetics of two-body Hamiltonians in post-Minkowskian gravityPhys. Rev. D2019991040042019PhRvD..99j4004A4007086[arXiv:1901.07102] [INSPIRE]
– reference: M.B. Green, J. Schwarz and E. Witten, Superstring theory. Volume 2: loop amplitudes, anomalies and phenomenology, Cambridge University Press, Cambridge U.K. (1988).
– reference: HennJMSmirnovVAAnalytic results for two-loop master integrals for Bhabha scattering IJHEP2013110412013JHEP...11..041H[arXiv:1307.4083] [INSPIRE]
– reference: NeillDRothsteinIZClassical space-times from the S matrixNucl. Phys. B20138771772013NuPhB.877..177N31248371284.83052[arXiv:1304.7263] [INSPIRE]
– reference: BianchiMSLeoniMA QQ → QQ planar double box in canonical formPhys. Lett. B20187773942018PhLB..777..394B1411.81092[arXiv:1612.05609] [INSPIRE]
– reference: LIGO Scientific, Virgo collaboration, Observation of gravitational waves from a binary black hole merger, Phys. Rev. Lett.116 (2016) 061102 [arXiv:1602.03837] [INSPIRE].
– reference: BertottiBPlebanskiJTheory of gravitational perturbations in the fast motion approximationAnn. Phys.1960111691960AnPhy..11..169B1146200094.23102
– reference: SogaardMZhangYUnitarity cuts of integrals with doubled propagatorsJHEP2014071122014JHEP...07..112S[arXiv:1403.2463] [INSPIRE]
– reference: GoncharovABSpradlinMVerguCVolovichAClassical polylogarithms for amplitudes and Wilson loopsPhys. Rev. Lett.20101051516052010PhRvL.105o1605G2734443[arXiv:1006.5703] [INSPIRE]
– reference: AoudeRHaddadKHelsetAOn-shell heavy particle effective theoriesJHEP2020050512020JHEP...05..051A41124201437.83053[arXiv:2001.09164] [INSPIRE]
SSID ssj0015190
Score 2.6753638
Snippet A bstract We use N = 8 supergravity as a toy model for understanding the dynamics of black hole binary systems via the scattering amplitudes approach. We...
We use N = 8 supergravity as a toy model for understanding the dynamics of black hole binary systems via the scattering amplitudes approach. We compute the...
SourceID proquest
springer
SourceType Aggregation Database
Publisher
SubjectTerms Binary systems
Black holes
Boundary conditions
Classical and Quantum Gravitation
Differential equations
Elementary Particles
Field theory
Gravitons
High energy physics
Misalignment
Physics
Physics and Astronomy
Quantum Field Theories
Quantum Field Theory
Quantum Physics
Regular Article - Theoretical Physics
Relativity Theory
Scattering angle
String Theory
Supergravity
SummonAdditionalLinks – databaseName: Springer Journals Complete - Open Access
  dbid: C24
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fS8MwEA5zIvgi_sTplDz4sMEKTdo0iW8im2MP6oODvZX2moKI3Vwr7M_3kjWI-mSfQnstJXftXXL3fUfIDZqsAsEg4FLkQax5GSgjogBiBTpOQGnjqi0ek-k8ni3EokOYx8K4anefknR_ag92m03Hz4wNcLEeDtHR7JBdgWNr1PcW4NAmDjAgCT2Dz9-bfoSRvzKfzqFMDslBGwnSu63qjkjHVMdkz1VkQn1CluNNszbvKJHbPTZq-9jSGhwdJj6PZg19GjxEw1tqOwjhd1nRYunqWsCMqHl9syE2NZvVsrIFQU4BI5pVBfU9UfAkCnxsub7rUzKfjF_up0HbHSFYodttAgDFohzDC20553LFMtBZLCGBkrEkVLLAlVYpI2mEyPAocwEiZrowmodlEUZnpFvhK5wTmvEQEiUKbsnhLF8OCMNFaTKeW5CH6ZG-n7a0NfE65bGMLA5W6h4Z-qn8vuzpkLcaSK0GUtTAxT9kL8m-HTrkn-6TbrP-NFcYAjT5tVP6Fz0Fq_E
  priority: 102
  providerName: Springer Nature
Title Extremal black hole scattering at O(G3): graviton dominance, eikonal exponentiation, and differential equations
URI https://link.springer.com/article/10.1007/JHEP11(2020)023
https://www.proquest.com/docview/2473426979
Volume 2020
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3PS8MwFA5uIngRf-J0jhw8bLCyNm3axIvMsTk86BAH3kb7moKI3WYr-Of7XtaqeLCHQNsQSr40ee_l5fsYu8Qhq0B64IhIJk6gReYoI30HAgU6CEFpY7Mt7sPpPLh7ls9VwK2o0irrOdFO1OkSKEY-EEHk07HLSF-v1g6pRtHuaiWh0WDbOAUrdL62b8b3s8fvfQS0T9ya0MeNBnfT8czzuujwuz2XFIp-WZV_NkLt-jLZZ3uVYciHGyQP2JbJD9mOTdCE4ogtx5_lu3nDGgmF3DjJ2vICLDsmtsfjkj90b_3eFSdBIfxNc54ubZoLmD43L69kcXPzuVrmlB9k8ejzOE95LZGCD7HCekP9XRyz-WT8NJo6lViCs8JVuHQAlOcnaG1ooqBLlBeDjoMIQsg8L3RVlKLjlUV-ZKSM8coSCTLwdGq0cLPU9U9YM8dPOGU8Fi6ESqaCuOKIPgekETIzsUjozIdpsXbdbYtqxBeLH3xarFd35c_rmh15g8CCEFggAmf_N3XOdqmmPfun26xZvn-YCzQCyqTDGmpy26nwxruRCKgMRx3rVmM5F8MvHvq2gw
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB7xUAUXBKVVaXn4UCRWIiJx4sRGQgjBLsujwAEkbmkycSRUNbuQIOBP8RuZ8W4K4tAbOSa2FXnGM2N75vsAfpLKalQBejJRuRcZWXraqtDDSKOJYtTGumyLs7h_FR1fq-sJeG5rYTitsrWJzlAXA-Qz8i0ZJSGXXSZmd3jrMWsU3662FBojtTixTw-0Zat3jg5IvutS9rqX-31vzCrgDcldNR6iDsKc3LJhrLZcBxmaLEowxjIIYl8nBe1QyiRMrFIZPWWuUEWBKayRfln4IY07CdNRGBpeUbp3-O_WgqIhv4UP8pOt4373Igg2JEVkHZ_5kN7EsO-uXZ03683D3DgMFXsjvVmACVt9hk8uHRTrRRh0H5s7-5da5HzAJ5hEV9TosDhpPJE14nzjMOxsC6YvIqNQiWLgkmrQbgp784fje2Efh4OKs5Gc9DdFVhWiJWShl9TgdgQ0Xn-Bqw-ZxK8wVdEvfAORSR9jrQrJyHQM1oPKSlXaTOZcYWKXYLmdtnS8vur0VRuWoNNO5evnFot5JIGUJZCSBL7_f6g1mOlf_jpNT4_OTn7ALPdyVYdmGaaau3u7QuFHk686mQv4_dFK9gIKIe1q
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fS9xAEB7sicUXsbXFn-0-VPDAcMkmm80KIm296_mD61Eq-BaTyQZEzJ0mov5r_nXO5JJa-tA385hsljDzZXd2d-b7AL4QZCNUHjpSq9QJjMydyCrfwSBCE4QYGVtnW4zC4VlwfK7O5-CprYXhtMp2TKwH6myCvEfek4H2uexSm17epEWMDwcH0xuHFaT4pLWV05hB5MQ-3tPyrdw_OiRfb0s56P_-PnQahQFnSlNX5SBGnp_SFG2Yty2NvARNEmgMMfe80I10RquVXPvaKpXQlacKVeCZzBrp5pnrU79vYF7TqsjtwPy3_mj8688ZBsVGbksm5Ore8bA_9rwdSfFZ12V1pL8i2n8OYeu5bbAMS01QKr7OUPQO5mzxHhbq5FAsV2DSf6hu7TW1SHm7T7CkriixZuak_kRSiZ87P_zunmAxIxoiCpFN6hQbtLvCXl5xtC_sw3RScG5SjYVdkRSZaOVZ6CY1uJnRjpcf4OxVzPgROgV9wiqIRLoYRiqTzFPH1D2orFS5TWTK9SZ2DTZbs8XN31bGL9hYg25rypfHLTPzzAMxeyAmD6z_v6vP8JYAFp8ejU42YJFfqksQzSZ0qts7u0WxSJV-apwu4OK1cfYMy1Xy_A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Extremal+black+hole+scattering+at+O%28G3%29%3A+graviton+dominance%2C+eikonal+exponentiation%2C+and+differential+equations&rft.jtitle=The+journal+of+high+energy+physics&rft.au=Parra-Martinez%2C+Julio&rft.au=Ruf%2C+Michael+S&rft.au=Zeng+Mao&rft.date=2020-11-09&rft.pub=Springer+Nature+B.V&rft.eissn=1029-8479&rft.volume=2020&rft.issue=11&rft_id=info:doi/10.1007%2FJHEP11%282020%29023&rft.externalDBID=HAS_PDF_LINK