K2‐Hamiltonian graphs: II

In this paper, we use theoretical and computational tools to continue our investigation of K2 ${K}_{2}$‐hamiltonian graphs, that is, graphs in which the removal of any pair of adjacent vertices yields a hamiltonian graph, and their interplay with K1 ${K}_{1}$‐hamiltonian graphs, that is, graphs in w...

Full description

Saved in:
Bibliographic Details
Published inJournal of graph theory Vol. 105; no. 4; pp. 580 - 611
Main Authors Goedgebeur, Jan, Renders, Jarne, Wiener, Gábor, Zamfirescu, Carol T.
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc 01.04.2024
Subjects
Online AccessGet full text
ISSN0364-9024
1097-0118
DOI10.1002/jgt.23057

Cover

Abstract In this paper, we use theoretical and computational tools to continue our investigation of K2 ${K}_{2}$‐hamiltonian graphs, that is, graphs in which the removal of any pair of adjacent vertices yields a hamiltonian graph, and their interplay with K1 ${K}_{1}$‐hamiltonian graphs, that is, graphs in which every vertex‐deleted subgraph is hamiltonian. Perhaps surprisingly, there exist graphs that are both K1 ${K}_{1}$‐ and K2 ${K}_{2}$‐hamiltonian, yet non‐hamiltonian, for example, the Petersen graph. Grünbaum conjectured that every planar K1 ${K}_{1}$‐hamiltonian graph must itself be hamiltonian; Thomassen disproved this conjecture. Here we show that even planar graphs that are both K1 ${K}_{1}$‐ and K2 ${K}_{2}$‐hamiltonian need not be hamiltonian, and that the number of such graphs grows at least exponentially. Motivated by results of Aldred, McKay, and Wormald, we determine for every integer n $n$ that is not 14 or 17 whether there exists a K2 ${K}_{2}$‐hypohamiltonian, that is non‐hamiltonian and K2 ${K}_{2}$‐hamiltonian, graph of order n $n$, and characterise all orders for which such cubic graphs and such snarks exist. We also describe the smallest cubic planar graph which is K2 ${K}_{2}$‐hypohamiltonian, as well as the smallest planar K2 ${K}_{2}$‐hypohamiltonian graph of girth 5. We conclude with open problems and by correcting two inaccuracies from the first article.
AbstractList In this paper, we use theoretical and computational tools to continue our investigation of K2 ${K}_{2}$‐hamiltonian graphs, that is, graphs in which the removal of any pair of adjacent vertices yields a hamiltonian graph, and their interplay with K1 ${K}_{1}$‐hamiltonian graphs, that is, graphs in which every vertex‐deleted subgraph is hamiltonian. Perhaps surprisingly, there exist graphs that are both K1 ${K}_{1}$‐ and K2 ${K}_{2}$‐hamiltonian, yet non‐hamiltonian, for example, the Petersen graph. Grünbaum conjectured that every planar K1 ${K}_{1}$‐hamiltonian graph must itself be hamiltonian; Thomassen disproved this conjecture. Here we show that even planar graphs that are both K1 ${K}_{1}$‐ and K2 ${K}_{2}$‐hamiltonian need not be hamiltonian, and that the number of such graphs grows at least exponentially. Motivated by results of Aldred, McKay, and Wormald, we determine for every integer n $n$ that is not 14 or 17 whether there exists a K2 ${K}_{2}$‐hypohamiltonian, that is non‐hamiltonian and K2 ${K}_{2}$‐hamiltonian, graph of order n $n$, and characterise all orders for which such cubic graphs and such snarks exist. We also describe the smallest cubic planar graph which is K2 ${K}_{2}$‐hypohamiltonian, as well as the smallest planar K2 ${K}_{2}$‐hypohamiltonian graph of girth 5. We conclude with open problems and by correcting two inaccuracies from the first article.
Author Goedgebeur, Jan
Zamfirescu, Carol T.
Renders, Jarne
Wiener, Gábor
Author_xml – sequence: 1
  givenname: Jan
  orcidid: 0000-0001-8984-2463
  surname: Goedgebeur
  fullname: Goedgebeur, Jan
  organization: Ghent University
– sequence: 2
  givenname: Jarne
  orcidid: 0000-0002-1147-1460
  surname: Renders
  fullname: Renders, Jarne
  email: jarne.renders@kuleuven.be
  organization: KU Leuven Campus Kulak‐Kortrijk
– sequence: 3
  givenname: Gábor
  orcidid: 0000-0002-3940-3144
  surname: Wiener
  fullname: Wiener, Gábor
  organization: Budapest University of Technology and Economics
– sequence: 4
  givenname: Carol T.
  orcidid: 0000-0002-9673-410X
  surname: Zamfirescu
  fullname: Zamfirescu, Carol T.
  organization: Babeş‐Bolyai University
BookMark eNotj7FOwzAURS1UJNLCwMxSidnt87Od2GyogjZQiaXMlhNeSqI0CUkq1I1P4Bv5EkLL9K6eju7VGbNRVVfE2LWAmQDAebHtZyhBR2csEGAjDkKYEQtAhopbQHXBxl1XwPDWYAJ284w_X98rv8vLvq5yX023rW_eu7tpHF-y88yXHV393wl7fXzYLFZ8_bKMF_dr3iDKiEuvwzTyKSmfCLIoiCy9GTQWpSWjgLTPMkqMSSCjDHSaUgoqsUoolUgvJ-z21Nu09ceeut4V9b6thkmHFjUMnAwHan6iPvOSDq5p851vD06A-xN3g7g7irun5eYY5C_lbE3L
ContentType Journal Article
Copyright 2023 Wiley Periodicals LLC.
2024 Wiley Periodicals LLC.
Copyright_xml – notice: 2023 Wiley Periodicals LLC.
– notice: 2024 Wiley Periodicals LLC.
DOI 10.1002/jgt.23057
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1097-0118
EndPage 611
ExternalDocumentID JGT23057
Genre article
GrantInformation_xml – fundername: Fonds Wetenschappelijk Onderzoek
– fundername: Nemzeti Kutatási Fejlesztési és Innovációs Hivatal
– fundername: Onderzoeksraad, KU Leuven
GroupedDBID -DZ
-~X
.3N
.GA
.Y3
05W
0R~
10A
186
1L6
1OB
1OC
1ZS
3-9
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABDPE
ABEML
ABIJN
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACIWK
ACNCT
ACPOU
ACRPL
ACSCC
ACUHS
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AI.
AIAGR
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
EJD
F00
F01
F04
FEDTE
FSPIC
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HVGLF
HZ~
H~9
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M6L
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MVM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RWI
RX1
SAMSI
SUPJJ
TN5
UB1
UPT
V2E
V8K
VH1
VJK
VQA
W8V
W99
WBKPD
WH7
WIB
WIH
WIK
WOHZO
WQJ
WRC
WWM
WXSBR
WYISQ
XBAML
XG1
XJT
XPP
XV2
XXG
YQT
ZZTAW
~IA
~WT
AAMMB
AEFGJ
AEYWJ
AGHNM
AGXDD
AGYGG
AIDQK
AIDYY
AMVHM
ID FETCH-LOGICAL-p2237-3a56c7ace4ab1e921ee9ed8289239e840e5affeb88b0fef05ccec04b94144b3a3
IEDL.DBID DR2
ISSN 0364-9024
IngestDate Tue Aug 12 13:11:58 EDT 2025
Wed Jan 22 16:16:03 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-p2237-3a56c7ace4ab1e921ee9ed8289239e840e5affeb88b0fef05ccec04b94144b3a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-1147-1460
0000-0002-9673-410X
0000-0001-8984-2463
0000-0002-3940-3144
PQID 2925041436
PQPubID 1006407
PageCount 32
ParticipantIDs proquest_journals_2925041436
wiley_primary_10_1002_jgt_23057_JGT23057
PublicationCentury 2000
PublicationDate April 2024
20240401
PublicationDateYYYYMMDD 2024-04-01
PublicationDate_xml – month: 04
  year: 2024
  text: April 2024
PublicationDecade 2020
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
PublicationTitle Journal of graph theory
PublicationYear 2024
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2017; 84
2015; 79
2017; 86
2017; 85
1989; 45
1993; 22
1968; 4
1997; 23
2022; 91
1973; 16
2023; 325
2013; 103
1973
1978; 3
2011; 13
1974; 7
1995; 1
2018; 87
2011; 18
2014; 60
2007; 58
1994; 62
1974; 17
2021; 35
1976; 14
1956; 82
1977; 18
2017; 13
2019
2020; 89
2011; 67
1978; 642
2014; 30
1975; 82
1981; 30
1996; 21
2018; 14
1972; 15
References_xml – volume: 79
  start-page: 63
  year: 2015
  end-page: 81
  article-title: Hypohamiltonian and almost hypohamiltonian graphs
  publication-title: J. Graph Theory
– volume: 35
  start-page: 1706
  year: 2021
  end-page: 1728
  article-title: ‐Hamiltonian graphs: I
  publication-title: SIAM J. Discrete Math
– volume: 1
  year: 1995
– volume: 22
  start-page: 67
  year: 1993
  end-page: 78
  article-title: Two open problems in graph theory
  publication-title: New Zealand J. Math
– volume: 30
  start-page: 783
  year: 2014
  end-page: 800
  article-title: Infinite families of 2‐hypohamiltonian/2‐hypotraceable oriented graphs
  publication-title: Graphs Combin
– volume: 103
  start-page: 468
  year: 2013
  end-page: 488
  article-title: Generation and properties of Snarks
  publication-title: J. Combin. Theory, Ser. B
– volume: 67
  start-page: 55
  year: 2011
  end-page: 68
  article-title: On planar hypohamiltonian graphs
  publication-title: J. Graph Theory
– volume: 18
  start-page: 265
  year: 1977
  end-page: 271
  article-title: New flip‐flop constructions for hypohamiltonian graphs
  publication-title: Discrete Math
– volume: 30
  start-page: 36
  year: 1981
  end-page: 44
  article-title: Planar cubic hypohamiltonian and hypotraceable graphs
  publication-title: J. Combin. Theory, Ser. B
– volume: 4
  start-page: 51
  year: 1968
  end-page: 58
  article-title: Plane homogeneous graphs of degree three without Hamiltonian circuits
  publication-title: Latvian Math. Yearbook, Izdat. Zinatne, Riga
– year: 1973
– volume: 325
  start-page: 97
  year: 2023
  end-page: 107
  article-title: House of graphs 2.0: a database of interesting graphs and more
  publication-title: Discret. Appl. Math
– volume: 3
  start-page: 259
  year: 1978
  end-page: 268
  article-title: Hamiltonian cycles and uniquely edge colourable graphs
  publication-title: Ann. Discrete Math
– volume: 17
  start-page: 31
  year: 1974
  end-page: 38
  article-title: Vertices missed by longest paths or circuits
  publication-title: J. Combin. Theory, Ser. A
– volume: 45
  start-page: 25
  year: 1989
  end-page: 29
  article-title: Locally Hamiltonian graphs
  publication-title: Math. Notes Acad. Sci. USSR
– volume: 84
  start-page: 121
  year: 2017
  end-page: 133
  article-title: Planar hypohamiltonian graphs on 40 vertices
  publication-title: J. Graph Theory
– volume: 15
  start-page: 57
  year: 1972
  end-page: 62
  article-title: Variations on the Hamiltonian theme
  publication-title: Canad. Math. Bull
– volume: 58
  start-page: 323
  year: 2007
  end-page: 357
  article-title: Fast generation of planar graphs
  publication-title: MATCH Commun. Math. Comput. Chem
– volume: 91
  start-page: 1483
  year: 2022
  end-page: 1500
  article-title: The minimality of the Georges‐Kelmans graph
  publication-title: Math. Comp
– volume: 16
  start-page: 33
  year: 1973
  end-page: 41
  article-title: Flip‐flops in hypohamiltonian graphs
  publication-title: Canad. Math. Bull
– volume: 7
  start-page: 67
  year: 1974
  end-page: 74
  article-title: Non‐hamiltonian cubic planar maps
  publication-title: Discrete Math
– volume: 82
  start-page: 221
  issue: 3
  year: 1975
  end-page: 239
  article-title: Infinite families of nontrivial trivalent graphs which are not Tait colorable
  publication-title: Amer. Math. Monthly
– volume: 60
  start-page: 94
  year: 2014
  end-page: 112
  article-title: Practical graph isomorphism, II
  publication-title: J. Symb. Comput
– volume: 21
  start-page: 43
  year: 1996
  end-page: 50
  article-title: On Hamiltonian cycles in certain planar graphs
  publication-title: J. Graph Theory
– volume: 14
  start-page: 377
  year: 1976
  end-page: 389
  article-title: Planar and infinite hypohamiltonian and hypotraceable graphs
  publication-title: Discrete Math
– volume: 85
  start-page: 7
  year: 2017
  end-page: 11
  article-title: Hypohamiltonian cubic planar graphs with girth 5
  publication-title: J. Graph Theory
– volume: 13
  start-page: 235
  year: 2017
  end-page: 257
  article-title: Improved bounds for hypohamiltonian graphs
  publication-title: Ars Math. Contemp
– volume: 86
  start-page: 255
  year: 2017
  end-page: 272
  article-title: Generation of cubic graphs and snarks with large girth
  publication-title: J. Graph Theory
– volume: 89
  start-page: 965
  year: 2020
  end-page: 991
  article-title: Graphs with few Hamiltonian cycles
  publication-title: Math. Comp
– volume: 18
  year: 2011
  article-title: On cubic planar hypohamiltonian and hypotraceable graphs
  publication-title: Electron. J. Combin
– volume: 87
  start-page: 526
  year: 2018
  end-page: 535
  article-title: New constructions of hypohamiltonian and hypotraceable graphs
  publication-title: J. Graph Theory
– volume: 62
  start-page: 114
  year: 1994
  end-page: 132
  article-title: 4‐connected projective‐planar graphs are Hamiltonian
  publication-title: J. Combin. Theory, Ser. B
– volume: 23
  start-page: 143
  year: 1997
  end-page: 152
  article-title: Small hypohamiltonian graphs
  publication-title: J. Combin. Math. Combin. Comput
– year: 2019
– volume: 14
  start-page: 227
  issue: 2
  year: 2018
  end-page: 249
  article-title: On hypohamiltonian snarks and a theorem of Fiorini
  publication-title: Ars Math. Contemp
– volume: 13
  start-page: 69
  year: 2011
  end-page: 80
  article-title: Generation of cubic graphs
  publication-title: Discrete Math. Theor. Comput. Sci
– volume: 82
  start-page: 99
  year: 1956
  end-page: 116
  article-title: A theorem on planar graphs
  publication-title: Trans. Amer. Math. Soc
– volume: 642
  start-page: 557
  year: 1978
  end-page: 571
SSID ssj0011508
Score 2.3626137
Snippet In this paper, we use theoretical and computational tools to continue our investigation of K2 ${K}_{2}$‐hamiltonian graphs, that is, graphs in which the...
SourceID proquest
wiley
SourceType Aggregation Database
Publisher
StartPage 580
SubjectTerms Apexes
dot product
exhaustive generation
Graph theory
Graphs
hamiltonian cycle
hypohamiltonian
snark
Software
Title K2‐Hamiltonian graphs: II
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjgt.23057
https://www.proquest.com/docview/2925041436
Volume 105
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ29TsMwEMdPVScY-EaUFpSBgSVtYjtuAhMCSltUBtRKHZAiOzkjFalUJF2YeASekSfBdprwMSG2DLFkXc6-_zl3PwOcUC9NKZPUReorl6lAuIJ0Ixe5jn0i5Ki4aRQe3fH-hA2nwbQG52UvTMGHqA7czMqw-7VZ4EJmnS9o6OwxN1XMgekk9yk33Pyr-wodZYROWPynZG6kA1FJFfJIpxr5Q1V-16Y2uPQ24aGcVlFT8tRe5rKdvP4iNv5z3luwsRKdzkXhJdtQw_kOrI8qYmu2C81b8vH23jfHHVoNap9xLMo6O3MGgz2Y9K7Hl313dXGCu9DRXm8aIuBJVyTIhPQxIj5ihKnJrQiNUKd0GAilUIah9BQqL0gSTDwmI6bTK0kF3Yf6_HmOB-BIj6QUkbOUc5YEyg4Qoku4kKnPVQNapQnjlfdnMYkMGE0rMd6AU2uLeFGwM-KCkkxibYXYWiEe3oztw-HfX23CGtGftCigaUE9f1nikdYGuTy2TvAJsvq1jA
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ07T8MwEMdPpQzAwBtRWiADA0vaxHGcBLEgXulzQK3UBUV2ckYCqVQ0XZj4CHxGPgl20oTHhNgyxJJ1ufP9zzn_DHDiWEniUOGY6NjSpNLlJideYCJTuY_7DCXTB4X7AxaOaGfsjitwXpyFyfkQ5YabjoxsvdYBrjekW1_U0MeHVLcxu94SLFMlNHTpdXVXwqO01PHzP5XUDFQqKrhCFmmVQ3_oyu_qNEsvNxtwX0ws7yp5as5T0YxffzEb_zvzTVhf6E7jIneULajgZBvW-iW0dbYD9S75eHsP9Y6HEoTKbYyMZj07M9rtXRjdXA8vQ3Nxd4I5VQlfrRvcZbHHY6Rc2BgQGzHARJdXxAlQVXXocilR-L6wJErLjWOMLSoCqios4XBnD6qT5wnugyEskjiIjCaM0diV2QDOPcK4SGwma9AobBgtAmAWkUCz0ZQYYzU4zYwRTXN8RpSDkkmkrBBlVog6t8Ps4eDvrx7DSjjs96Jee9CtwypR3zfvp2lANX2Z46GSCqk4yjziEysCuas
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ07T8MwEMdPpUgIBt6I0gIZGFhSEsdxEpgQUPqgFUKt1AEpspMzEkilou3CxEfgM_JJsJ0mPCbElsGWrPPZ9z_n_DPAkeekqUeFZ6PnSptKn9ucBJGNTMU-HjKUTF8U7vZYc0DbQ39YgrP8LkzGhygO3PTKMPu1XuDjVJ58QUMfH6a6itkPFmCRMqUktCK6K9hRWumE2Y9KakcqEuVYIYecFF1_yMrv4tREl8Ya3OfjyopKnuqzqagnr7-Qjf8c-DqszlWndZ65yQaUcLQJK90C2TrZgmqHfLy9N_V5h5KDymksw7KenFqt1jYMGlf9i6Y9fznBHqtwr3YN7rMk4AlSLlyMiIsYYaqTK-JFqHI69LmUKMJQOBKl4ycJJg4VEVX5lfC4twPl0fMId8ESDkk9REZTxmjiS9OB84AwLlKXyQrUchPGc_efxCTSZDQlxVgFjo0t4nEGz4gzTDKJlRViY4W4fd03H3t_b3oIS7eXjfim1etUYZmo2c2KaWpQnr7McF_phKk4MP7wCT8vuFo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=K2%E2%80%90Hamiltonian+graphs%3A+II&rft.jtitle=Journal+of+graph+theory&rft.au=Goedgebeur%2C+Jan&rft.au=Renders%2C+Jarne&rft.au=Wiener%2C+G%C3%A1bor&rft.au=Zamfirescu%2C+Carol+T&rft.date=2024-04-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0364-9024&rft.eissn=1097-0118&rft.volume=105&rft.issue=4&rft.spage=580&rft.epage=611&rft_id=info:doi/10.1002%2Fjgt.23057&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0364-9024&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0364-9024&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0364-9024&client=summon