Dicationic ionic liquid‐grafted UiO‐66 as efficient catalyst for CO2 conversion into cyclocarbonate under cocatalyst‐free and solventless conditions

CO2 chemical fixation offers a feasible approach for carbon mitigation and high‐value utilization, but it is still challenging to develop an efficient catalyst for CO2 conversion into cyclic carbonate. Herein, the triethylenediamine‐derived dicationic ionic liquids (DIL‐X, X = Cl, Br, and I) were gr...

Full description

Saved in:
Bibliographic Details
Published inApplied organometallic chemistry Vol. 38; no. 11
Main Authors Li, Fangfang, Hou, Xiaofang, Zhou, Ying‐Hua
Format Journal Article
LanguageEnglish
Published Chichester Wiley Subscription Services, Inc 01.11.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract CO2 chemical fixation offers a feasible approach for carbon mitigation and high‐value utilization, but it is still challenging to develop an efficient catalyst for CO2 conversion into cyclic carbonate. Herein, the triethylenediamine‐derived dicationic ionic liquids (DIL‐X, X = Cl, Br, and I) were grafted into UiO‐66 linkers through self‐assembly of Zr4+ ions and the mixed ligands of terephthalic acid and DIL‐bearing dicarboxylic acid, resulting in UiO‐66‐DIL‐Xn, (n designated as molar amount of the feeding DIL‐X). Their catalytic performance was evaluated by the epoxide cycloaddition reaction in the absence of solvent and cocatalyst. Among them, the UiO‐66‐DIL‐Cl0.4 catalyst exhibited outstanding performance, with a chloropropene carbonate yield of 92% and a high selectivity of 99% under 0.1 MPa CO2 at 110 °C for 16 h. Its high activity could be ascribed to the cooperativity among Lewis acidity of MOF nodes, the enhanced CO2 absorption, and the strong nucleophilicity offered by halogen ions of ionic liquid‐modified MOF. Moreover, UiO‐66‐DIL‐Cl0.4 presented excellent recyclability and substrate extension. A potential catalytic mechanism for the epoxide‐CO2 cycloaddition into cyclic carbonate has been proposed. This work will shed light on the rational design of functionalized MOFs‐based catalysts for CO₂ utilization. Grafting dicationic ionic liquids into UiO‐66 can significantly improve the catalytic activity of CO2 cycloaddition with an epoxide in the absence of a cocatalyst and solvent.
AbstractList CO2 chemical fixation offers a feasible approach for carbon mitigation and high‐value utilization, but it is still challenging to develop an efficient catalyst for CO2 conversion into cyclic carbonate. Herein, the triethylenediamine‐derived dicationic ionic liquids (DIL‐X, X = Cl, Br, and I) were grafted into UiO‐66 linkers through self‐assembly of Zr4+ ions and the mixed ligands of terephthalic acid and DIL‐bearing dicarboxylic acid, resulting in UiO‐66‐DIL‐Xn, (n designated as molar amount of the feeding DIL‐X). Their catalytic performance was evaluated by the epoxide cycloaddition reaction in the absence of solvent and cocatalyst. Among them, the UiO‐66‐DIL‐Cl0.4 catalyst exhibited outstanding performance, with a chloropropene carbonate yield of 92% and a high selectivity of 99% under 0.1 MPa CO2 at 110 °C for 16 h. Its high activity could be ascribed to the cooperativity among Lewis acidity of MOF nodes, the enhanced CO2 absorption, and the strong nucleophilicity offered by halogen ions of ionic liquid‐modified MOF. Moreover, UiO‐66‐DIL‐Cl0.4 presented excellent recyclability and substrate extension. A potential catalytic mechanism for the epoxide‐CO2 cycloaddition into cyclic carbonate has been proposed. This work will shed light on the rational design of functionalized MOFs‐based catalysts for CO₂ utilization. Grafting dicationic ionic liquids into UiO‐66 can significantly improve the catalytic activity of CO2 cycloaddition with an epoxide in the absence of a cocatalyst and solvent.
CO2 chemical fixation offers a feasible approach for carbon mitigation and high‐value utilization, but it is still challenging to develop an efficient catalyst for CO2 conversion into cyclic carbonate. Herein, the triethylenediamine‐derived dicationic ionic liquids (DIL‐X, X = Cl, Br, and I) were grafted into UiO‐66 linkers through self‐assembly of Zr4+ ions and the mixed ligands of terephthalic acid and DIL‐bearing dicarboxylic acid, resulting in UiO‐66‐DIL‐Xn, (n designated as molar amount of the feeding DIL‐X). Their catalytic performance was evaluated by the epoxide cycloaddition reaction in the absence of solvent and cocatalyst. Among them, the UiO‐66‐DIL‐Cl0.4 catalyst exhibited outstanding performance, with a chloropropene carbonate yield of 92% and a high selectivity of 99% under 0.1 MPa CO2 at 110 °C for 16 h. Its high activity could be ascribed to the cooperativity among Lewis acidity of MOF nodes, the enhanced CO2 absorption, and the strong nucleophilicity offered by halogen ions of ionic liquid‐modified MOF. Moreover, UiO‐66‐DIL‐Cl0.4 presented excellent recyclability and substrate extension. A potential catalytic mechanism for the epoxide‐CO2 cycloaddition into cyclic carbonate has been proposed. This work will shed light on the rational design of functionalized MOFs‐based catalysts for CO₂ utilization.
Author Zhou, Ying‐Hua
Hou, Xiaofang
Li, Fangfang
Author_xml – sequence: 1
  givenname: Fangfang
  orcidid: 0009-0007-2461-1315
  surname: Li
  fullname: Li, Fangfang
  organization: Anhui Normal University
– sequence: 2
  givenname: Xiaofang
  orcidid: 0009-0001-4370-1478
  surname: Hou
  fullname: Hou, Xiaofang
  organization: Anhui Normal University
– sequence: 3
  givenname: Ying‐Hua
  orcidid: 0000-0002-0355-723X
  surname: Zhou
  fullname: Zhou, Ying‐Hua
  email: yhzhou@ahnu.edu.cn
  organization: Anhui Normal University
BookMark eNo1kM1KAzEUhYMo2FbBRwi4npqf-cuyjL9QmI1dD5nMjaSMSZtMK7PzEVz7eD6JGaqbe7hwzncvZ47OrbOA0A0lS0oIu5NOLYs8JWdoRokQCSm4OEczwvIyYTnJLtE8hC0hROQ0naHve6PkYJw1Cp9mb_YH0_18fr15qQfo8MbUcctzLAMGrY0yYAccU7Ifw4C187iqGVbOHsGHCMHGDg6rUfVOSd86KwfAB9uBj6b_XERqD4Cl7XBw_TEyewhhwnRmeihcoQst-wDXf7pAm8eH1-o5WddPL9VqnewYoyThOeEtT9uCCi6zDKQGEKTTaZlrIbTKQGhGZdtlbdmWVHKqSqWKFjiLIWB8gW5P3J13-wOEodm6g7fxZMMpTVkpCC2iKzm5PkwPY7Pz5l36saGkmWpvYu3NVHuzqqtJ-S9YRn9X
ContentType Journal Article
Copyright 2024 John Wiley & Sons Ltd.
2024 John Wiley & Sons, Ltd.
Copyright_xml – notice: 2024 John Wiley & Sons Ltd.
– notice: 2024 John Wiley & Sons, Ltd.
DBID 7U5
8BQ
8FD
JG9
L7M
DOI 10.1002/aoc.7640
DatabaseName Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle Materials Research Database
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList
Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1099-0739
EndPage n/a
ExternalDocumentID AOC7640
Genre article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 21771004
GroupedDBID -~X
.3N
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
6J9
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABEML
ABIJN
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACIWK
ACPOU
ACRPL
ACSCC
ACUHS
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AIAGR
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BTSUX
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBD
EBS
EJD
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M21
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RWI
RWK
RX1
RYL
SAMSI
SUPJJ
TUS
UB1
V8K
W8V
W99
WBFHL
WBKPD
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
YCJ
ZZTAW
~IA
~WT
7U5
8BQ
8FD
AAMMB
AEFGJ
AEYWJ
AGHNM
AGXDD
AGYGG
AIDQK
AIDYY
JG9
L7M
ID FETCH-LOGICAL-p2210-3603b34b7193a55eafee90df486f99fc5e9f21abd5b8b81a31c8cc7be324b7e23
IEDL.DBID DR2
ISSN 0268-2605
IngestDate Fri Jul 25 23:02:20 EDT 2025
Wed Jan 22 17:14:03 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-p2210-3603b34b7193a55eafee90df486f99fc5e9f21abd5b8b81a31c8cc7be324b7e23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0009-0001-4370-1478
0000-0002-0355-723X
0009-0007-2461-1315
PQID 3114289017
PQPubID 2045198
PageCount 12
ParticipantIDs proquest_journals_3114289017
wiley_primary_10_1002_aoc_7640_AOC7640
PublicationCentury 2000
PublicationDate November 2024
20241101
PublicationDateYYYYMMDD 2024-11-01
PublicationDate_xml – month: 11
  year: 2024
  text: November 2024
PublicationDecade 2020
PublicationPlace Chichester
PublicationPlace_xml – name: Chichester
PublicationTitle Applied organometallic chemistry
PublicationYear 2024
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2017; 5
2017; 8
2021; 21
2021; 23
2013; 68
2019; 58
2022; 24
2019; 245
2020; 12
2024; 146
2024; 38
2017; 9
2020; 8
2021; 35
2021; 318
2018; 6
2018; 8
2015; 137
2021; 310
2021; 312
2018; 332
2023; 337
2020; 49
2022; 36
2022; 37
2014; 7
2011; 123
2021; 9
2017; 219
2023; 52
2023; 14
2015; 5
2023; 11
2024; 489
2002; 74
2023; 15
2022; 51
2015; 245
2021; 624
2024; 365
2024; 16
2021; 51
2021; 13
2022; 61
2023; 476
2023; 474
2017; 56
2022; 12
2020; 599
2020; 26
2020; 22
2024; 45
2022; 10
2022; 427
2021; 60
2018; 54
2022; 305
2008; 130
2024; 490
2018; 57
References_xml – volume: 8
  year: 2020
  publication-title: J. Environ. Chem. Eng.
– volume: 146
  start-page: 10599
  year: 2024
  publication-title: J. Am. Chem. Soc.
– volume: 36
  year: 2022
  publication-title: Appl. Organomet. Chem.
– volume: 8
  start-page: 3194
  year: 2018
  publication-title: ACS Catal.
– volume: 58
  start-page: 18808
  year: 2019
  publication-title: Angew. Chem., Int. Ed.
– volume: 60
  start-page: 5071
  year: 2021
  publication-title: Inorg. Chem.
– volume: 245
  start-page: 240
  year: 2019
  publication-title: Appl Catal B
– volume: 11
  start-page: 6183
  year: 2023
  publication-title: ACS Sustainable Chem. Eng.
– volume: 12
  start-page: 563
  year: 2022
  publication-title: Catalysts
– volume: 6
  start-page: 10778
  year: 2018
  publication-title: ACS Sustainable Chem. Eng.
– volume: 10
  year: 2022
  publication-title: J. Environ. Chem. Eng.
– volume: 61
  start-page: 17438
  year: 2022
  publication-title: Inorg. Chem.
– volume: 337
  year: 2023
  publication-title: Appl Catal B
– volume: 52
  start-page: 659
  year: 2023
  publication-title: Dalton Trans.
– volume: 61
  year: 2022
  publication-title: J. CO2 Util.
– volume: 22
  start-page: 3965
  year: 2020
  publication-title: CrstEngComm
– volume: 61
  start-page: 17937
  year: 2022
  publication-title: Inorg. Chem.
– volume: 49
  start-page: 312
  year: 2020
  publication-title: Dalton Trans.
– volume: 60
  start-page: 20915
  year: 2021
  publication-title: Angew. Chem., Int. Ed.
– volume: 137
  start-page: 15988
  year: 2015
  publication-title: J. Am. Chem. Soc.
– volume: 56
  start-page: 2581
  year: 2017
  publication-title: Inorg. Chem.
– volume: 13
  start-page: 61334
  year: 2021
  publication-title: Mater. Interfaces
– volume: 9
  start-page: 41043
  year: 2017
  publication-title: Mater. Interfaces
– volume: 68
  start-page: 797
  year: 2013
  publication-title: Z. Naturforsch.
– volume: 123
  start-page: 1486
  year: 2011
  publication-title: J. Appl. Polym. Sci.
– volume: 9
  start-page: 16210
  year: 2021
  publication-title: ACS Sustainable Chem. Eng.
– volume: 51
  start-page: 6417
  year: 2022
  publication-title: Chem. Soc. Rev.
– volume: 9
  start-page: 2694
  year: 2021
  publication-title: J. Mater. Chem.
– volume: 489
  year: 2024
  publication-title: Chem. Eng. J.
– volume: 490
  year: 2024
  publication-title: Chem. Eng. J.
– volume: 312
  year: 2021
  publication-title: Micropo.Mesopo.Mater.
– volume: 54
  start-page: 342
  year: 2018
  publication-title: Chem. Commun.
– volume: 7
  start-page: 459
  year: 2014
  publication-title: ChemCatChem
– volume: 37
  year: 2022
  publication-title: Appl. Organomet. Chem.
– volume: 5
  start-page: 14277
  year: 2015
  publication-title: RSC Adv.
– volume: 219
  start-page: 603
  year: 2017
  publication-title: Appl Catal B
– volume: 8
  start-page: 1570
  year: 2017
  publication-title: Chem. Sci.
– volume: 26
  start-page: 17445
  year: 2020
  publication-title: Chem. Eur. J.
– volume: 22
  start-page: 1639
  year: 2020
  publication-title: Green Chem.
– volume: 427
  year: 2022
  publication-title: Chem. Eng. J.
– volume: 8
  start-page: 419
  year: 2017
  publication-title: ACS Catal.
– volume: 74
  start-page: 157
  year: 2002
  publication-title: Catal. Today
– volume: 21
  start-page: 3689
  year: 2021
  publication-title: Cryst. Growth des.
– volume: 310
  year: 2021
  publication-title: Micropo. Mesopo. Mater.
– volume: 14
  start-page: 13851
  year: 2023
  publication-title: Chem. Sci.
– volume: 52
  start-page: 10795
  year: 2023
  publication-title: Dalton Trans.
– volume: 624
  year: 2021
  publication-title: Appl. Catal., a
– volume: 5
  start-page: 22372
  year: 2017
  publication-title: J. Mater. Chem. A
– volume: 24
  start-page: 3433
  year: 2022
  publication-title: Green Chem.
– volume: 474
  year: 2023
  publication-title: Chem. Rev.
– volume: 38
  year: 2024
  publication-title: Appl. Organomet. Chem.
– volume: 51
  year: 2021
  publication-title: J. CO2 Util.
– volume: 16
  start-page: 10277
  year: 2024
  publication-title: Mater. Interfaces
– volume: 15
  year: 2023
  publication-title: ChemCatChem
– volume: 45
  year: 2024
  publication-title: Surf. Interfaces
– volume: 130
  start-page: 13850
  year: 2008
  publication-title: J. Am. Chem. Soc.
– volume: 476
  year: 2023
  publication-title: Chem. Eng. J.
– volume: 11
  start-page: 25605
  year: 2023
  publication-title: J. Mater. Chem.
– volume: 12
  start-page: 24868
  year: 2020
  publication-title: Mater. Interfaces
– volume: 365
  year: 2024
  publication-title: Micropo. Mesopo. Mater.
– volume: 332
  start-page: 608
  year: 2018
  publication-title: Chem. Eng. J.
– volume: 57
  start-page: 2584
  year: 2018
  publication-title: Inorg. Chem.
– volume: 305
  year: 2022
  publication-title: J. Solid State Chem.
– volume: 245
  start-page: 61
  year: 2015
  publication-title: Catal. Today
– volume: 599
  year: 2020
  publication-title: Colloids Surf., a
– volume: 23
  start-page: 5195
  year: 2021
  publication-title: Green Chem.
– volume: 318
  year: 2021
  publication-title: Micropo.Mesopo.Mater.
– volume: 35
  year: 2021
  publication-title: Appl. Organomet. Chem.
SSID ssj0009614
Score 2.413444
Snippet CO2 chemical fixation offers a feasible approach for carbon mitigation and high‐value utilization, but it is still challenging to develop an efficient catalyst...
SourceID proquest
wiley
SourceType Aggregation Database
Publisher
SubjectTerms Carbon dioxide
Catalysts
Cycloaddition
Dicarboxylic acids
epoxide cycloaddition
heterogeneous catalysis
ionic liquid
Ionic liquids
Metal-organic frameworks
Performance evaluation
Recyclability
Self-assembly
Substrates
Terephthalic acid
UiO‐66
Title Dicationic ionic liquid‐grafted UiO‐66 as efficient catalyst for CO2 conversion into cyclocarbonate under cocatalyst‐free and solventless conditions
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Faoc.7640
https://www.proquest.com/docview/3114289017
Volume 38
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELYQF7jQAkXQLsiHiluWrJM4zhEtrBASXQmxElIPkZ8oKspCNnugp_6Envl5_BJm7ITXqeolD8keWRqP5_No5htCvjvwmjx3SZTF3EYpc3EkUi0jw3kqdW5d4kPZFz_42Sw9v86uu6xKrIUJ_BAvATe0DH9eo4FLtTh6JQ2Vcz3MeYrXdUzVQjx0-cocVfBA6804bASA7D3vbMyO-onvMOVbZOpdy-QT-dkvKmSU_BouWzXUvz_wNf7fqj-TjQ5x0uOwRTbJiq23yNq4b_S2TR5PurhdpWl43lb3y8o8_fl702APcUNn1RT-OKdyQa0nnQBfRX3o52HRUgC-dDxl1Kew-_gbrep2TvWDRl_ZKAzRW4r1ag0M6ueBSNdYS2VtKJgAZl7ewsGLYkzIJPtCZpPTq_FZ1LVsiO4YwxOdx4lKUpUDLpRZZqWztoiNSwV3ReF0ZgvHRlKZTAklRjIZaaF1rizgOpVbluyQ1Xpe211CZayY5pmB-5BMOY8FfhUgVwgjVBHvkUGvvrKzu0WZYGmwAIyT75FDr4fyLrB2lIGfmZWggRI1UB5Px_j--q8Dv5F1BogmFCIOyGrbLO0-IJJWHfi99wxiKuNH
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtQwFLWqsigboAVEoaVeALtMPU7iOIsuqplW0-dIqCN1F_xEEVWmZDJCw6qfwJpf6K_0K_olXNtJC6zYdMEmDymxIt-Hj2_uPRehdxZWTZbZOEoJM1FCLYl4okSkGUuEyoyNfSj75JSNJsnheXq-hK67WpjAD3EXcHOW4f21M3AXkN6-Zw0VU9XLWELajMojs_gG-7XZzsEQhPue0v29s8EoalsKRJeUOo_DSCzjRGaAW0SaGmGNyYm2CWc2z61KTW5pX0idSi55X8R9xZXKpAHcITPjWA7A3z9yDcQdUf_w4z1XVc4CkThloHqwSeiYbgnd7r70DxT7Oxb2i9n-U3TTTUPIYfnSmzeyp77_xRD5n8zTM_SkBdV4N1jBKloy1RpaGXS97J6jn8M2NFkqHI4X5dd5qW-vfnyuXZt0jSflGO4Yw2KGjefVgOUY--jWYtZgwPZ4MKbYZ-n7ECMuq2aK1UI5OFBL9xfCYFeSV8ND3XswpK2NwaLSGKzcJZdewNrihtEhWe4FmjzI1LxEy9W0Mq8QFkRSxVINWz6RMEa4u8phXM41lzlZRxudvhSta5kVsat-5gDjsnX0wQu-uAzEJEWgoKYFSLxwEi92xwN3fv2vD26hldHZyXFxfHB69AY9pgDgQt3lBlpu6rnZBADWyLde8TH69NAa9Au9aULu
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtQwFLWqIgEb3ohCAS-AXaYex3GcBYtqhlFLoYMQI3UX_EQRVWbIZISmq34C635Cf4W_4Eu4thMKrNh0wSYPKbEi34ePb-49F6FnDlZNnrs0yQi3CaOOJIJpmRjOmdS5dWkIZb895Hsz9vooO9pA530tTOSH-BVw85YR_LU38IVxOxekoXKuBzlnpEuoPLDrr7BdW77cH4Nsn1M6efVhtJd0HQWSBaXe4XCSqpSpHGCLzDIrnbUFMY4J7orC6cwWjg6lMpkSSgxlOtRC61xZgB0qt57kANz9FcZJ4dtEjN9fUFUVPPKIUw6aB3uEnuiW0J3-S_8Asb9D4bCWTW6i7_0sxBSWz4NVqwb65C-CyP9jmm6hGx2kxrvRBm6jDVvfQddGfSe7u-hs3AUmK43j8bj6sqrMj9NvnxrfJN3gWTWFO86xXGIbWDVgMcYhtrVethiQPR5NKQ45-iHAiKu6nWO91h4MNMr_g7DYF-Q18FD_HgzpGmuxrA0GG_eppcewsvhhTEyVu4dmlzI199FmPa_tA4QlUVTzzMCGTzLOifBXBYwrhBGqIFtou1eXsnMsyzL1tc8CQFy-hV4EuZeLSEtSRgJqWoLESy_xcnc68ueH__rgU3T13XhSvtk_PHiErlNAb7Hochttts3KPgb01aonQe0x-njZCvQTrchBnQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dicationic+ionic+liquid%E2%80%90grafted+UiO%E2%80%9066+as+efficient+catalyst+for+CO2+conversion+into+cyclocarbonate+under+cocatalyst%E2%80%90free+and+solventless+conditions&rft.jtitle=Applied+organometallic+chemistry&rft.au=Li%2C+Fangfang&rft.au=Hou%2C+Xiaofang&rft.au=Zhou%2C+Ying%E2%80%90Hua&rft.date=2024-11-01&rft.issn=0268-2605&rft.eissn=1099-0739&rft.volume=38&rft.issue=11&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Faoc.7640&rft.externalDBID=10.1002%252Faoc.7640&rft.externalDocID=AOC7640
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0268-2605&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0268-2605&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0268-2605&client=summon