Dicationic ionic liquid‐grafted UiO‐66 as efficient catalyst for CO2 conversion into cyclocarbonate under cocatalyst‐free and solventless conditions
CO2 chemical fixation offers a feasible approach for carbon mitigation and high‐value utilization, but it is still challenging to develop an efficient catalyst for CO2 conversion into cyclic carbonate. Herein, the triethylenediamine‐derived dicationic ionic liquids (DIL‐X, X = Cl, Br, and I) were gr...
Saved in:
Published in | Applied organometallic chemistry Vol. 38; no. 11 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Chichester
Wiley Subscription Services, Inc
01.11.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | CO2 chemical fixation offers a feasible approach for carbon mitigation and high‐value utilization, but it is still challenging to develop an efficient catalyst for CO2 conversion into cyclic carbonate. Herein, the triethylenediamine‐derived dicationic ionic liquids (DIL‐X, X = Cl, Br, and I) were grafted into UiO‐66 linkers through self‐assembly of Zr4+ ions and the mixed ligands of terephthalic acid and DIL‐bearing dicarboxylic acid, resulting in UiO‐66‐DIL‐Xn, (n designated as molar amount of the feeding DIL‐X). Their catalytic performance was evaluated by the epoxide cycloaddition reaction in the absence of solvent and cocatalyst. Among them, the UiO‐66‐DIL‐Cl0.4 catalyst exhibited outstanding performance, with a chloropropene carbonate yield of 92% and a high selectivity of 99% under 0.1 MPa CO2 at 110 °C for 16 h. Its high activity could be ascribed to the cooperativity among Lewis acidity of MOF nodes, the enhanced CO2 absorption, and the strong nucleophilicity offered by halogen ions of ionic liquid‐modified MOF. Moreover, UiO‐66‐DIL‐Cl0.4 presented excellent recyclability and substrate extension. A potential catalytic mechanism for the epoxide‐CO2 cycloaddition into cyclic carbonate has been proposed. This work will shed light on the rational design of functionalized MOFs‐based catalysts for CO₂ utilization.
Grafting dicationic ionic liquids into UiO‐66 can significantly improve the catalytic activity of CO2 cycloaddition with an epoxide in the absence of a cocatalyst and solvent. |
---|---|
AbstractList | CO2 chemical fixation offers a feasible approach for carbon mitigation and high‐value utilization, but it is still challenging to develop an efficient catalyst for CO2 conversion into cyclic carbonate. Herein, the triethylenediamine‐derived dicationic ionic liquids (DIL‐X, X = Cl, Br, and I) were grafted into UiO‐66 linkers through self‐assembly of Zr4+ ions and the mixed ligands of terephthalic acid and DIL‐bearing dicarboxylic acid, resulting in UiO‐66‐DIL‐Xn, (n designated as molar amount of the feeding DIL‐X). Their catalytic performance was evaluated by the epoxide cycloaddition reaction in the absence of solvent and cocatalyst. Among them, the UiO‐66‐DIL‐Cl0.4 catalyst exhibited outstanding performance, with a chloropropene carbonate yield of 92% and a high selectivity of 99% under 0.1 MPa CO2 at 110 °C for 16 h. Its high activity could be ascribed to the cooperativity among Lewis acidity of MOF nodes, the enhanced CO2 absorption, and the strong nucleophilicity offered by halogen ions of ionic liquid‐modified MOF. Moreover, UiO‐66‐DIL‐Cl0.4 presented excellent recyclability and substrate extension. A potential catalytic mechanism for the epoxide‐CO2 cycloaddition into cyclic carbonate has been proposed. This work will shed light on the rational design of functionalized MOFs‐based catalysts for CO₂ utilization.
Grafting dicationic ionic liquids into UiO‐66 can significantly improve the catalytic activity of CO2 cycloaddition with an epoxide in the absence of a cocatalyst and solvent. CO2 chemical fixation offers a feasible approach for carbon mitigation and high‐value utilization, but it is still challenging to develop an efficient catalyst for CO2 conversion into cyclic carbonate. Herein, the triethylenediamine‐derived dicationic ionic liquids (DIL‐X, X = Cl, Br, and I) were grafted into UiO‐66 linkers through self‐assembly of Zr4+ ions and the mixed ligands of terephthalic acid and DIL‐bearing dicarboxylic acid, resulting in UiO‐66‐DIL‐Xn, (n designated as molar amount of the feeding DIL‐X). Their catalytic performance was evaluated by the epoxide cycloaddition reaction in the absence of solvent and cocatalyst. Among them, the UiO‐66‐DIL‐Cl0.4 catalyst exhibited outstanding performance, with a chloropropene carbonate yield of 92% and a high selectivity of 99% under 0.1 MPa CO2 at 110 °C for 16 h. Its high activity could be ascribed to the cooperativity among Lewis acidity of MOF nodes, the enhanced CO2 absorption, and the strong nucleophilicity offered by halogen ions of ionic liquid‐modified MOF. Moreover, UiO‐66‐DIL‐Cl0.4 presented excellent recyclability and substrate extension. A potential catalytic mechanism for the epoxide‐CO2 cycloaddition into cyclic carbonate has been proposed. This work will shed light on the rational design of functionalized MOFs‐based catalysts for CO₂ utilization. |
Author | Zhou, Ying‐Hua Hou, Xiaofang Li, Fangfang |
Author_xml | – sequence: 1 givenname: Fangfang orcidid: 0009-0007-2461-1315 surname: Li fullname: Li, Fangfang organization: Anhui Normal University – sequence: 2 givenname: Xiaofang orcidid: 0009-0001-4370-1478 surname: Hou fullname: Hou, Xiaofang organization: Anhui Normal University – sequence: 3 givenname: Ying‐Hua orcidid: 0000-0002-0355-723X surname: Zhou fullname: Zhou, Ying‐Hua email: yhzhou@ahnu.edu.cn organization: Anhui Normal University |
BookMark | eNo1kM1KAzEUhYMo2FbBRwi4npqf-cuyjL9QmI1dD5nMjaSMSZtMK7PzEVz7eD6JGaqbe7hwzncvZ47OrbOA0A0lS0oIu5NOLYs8JWdoRokQCSm4OEczwvIyYTnJLtE8hC0hROQ0naHve6PkYJw1Cp9mb_YH0_18fr15qQfo8MbUcctzLAMGrY0yYAccU7Ifw4C187iqGVbOHsGHCMHGDg6rUfVOSd86KwfAB9uBj6b_XERqD4Cl7XBw_TEyewhhwnRmeihcoQst-wDXf7pAm8eH1-o5WddPL9VqnewYoyThOeEtT9uCCi6zDKQGEKTTaZlrIbTKQGhGZdtlbdmWVHKqSqWKFjiLIWB8gW5P3J13-wOEodm6g7fxZMMpTVkpCC2iKzm5PkwPY7Pz5l36saGkmWpvYu3NVHuzqqtJ-S9YRn9X |
ContentType | Journal Article |
Copyright | 2024 John Wiley & Sons Ltd. 2024 John Wiley & Sons, Ltd. |
Copyright_xml | – notice: 2024 John Wiley & Sons Ltd. – notice: 2024 John Wiley & Sons, Ltd. |
DBID | 7U5 8BQ 8FD JG9 L7M |
DOI | 10.1002/aoc.7640 |
DatabaseName | Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | Materials Research Database Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX |
DatabaseTitleList | Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1099-0739 |
EndPage | n/a |
ExternalDocumentID | AOC7640 |
Genre | article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 21771004 |
GroupedDBID | -~X .3N .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 31~ 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5VS 66C 6J9 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABDBF ABEML ABIJN ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACGFO ACGFS ACIWK ACPOU ACRPL ACSCC ACUHS ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN ADZOD AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AIAGR AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BTSUX BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBD EBS EJD F00 F01 F04 F5P FEDTE G-S G.N GNP GODZA H.T H.X HBH HF~ HGLYW HHZ HVGLF HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M21 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PALCI Q.N Q11 QB0 QRW R.K RIWAO RJQFR ROL RWI RWK RX1 RYL SAMSI SUPJJ TUS UB1 V8K W8V W99 WBFHL WBKPD WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 YCJ ZZTAW ~IA ~WT 7U5 8BQ 8FD AAMMB AEFGJ AEYWJ AGHNM AGXDD AGYGG AIDQK AIDYY JG9 L7M |
ID | FETCH-LOGICAL-p2210-3603b34b7193a55eafee90df486f99fc5e9f21abd5b8b81a31c8cc7be324b7e23 |
IEDL.DBID | DR2 |
ISSN | 0268-2605 |
IngestDate | Fri Jul 25 23:02:20 EDT 2025 Wed Jan 22 17:14:03 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-p2210-3603b34b7193a55eafee90df486f99fc5e9f21abd5b8b81a31c8cc7be324b7e23 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0009-0001-4370-1478 0000-0002-0355-723X 0009-0007-2461-1315 |
PQID | 3114289017 |
PQPubID | 2045198 |
PageCount | 12 |
ParticipantIDs | proquest_journals_3114289017 wiley_primary_10_1002_aoc_7640_AOC7640 |
PublicationCentury | 2000 |
PublicationDate | November 2024 20241101 |
PublicationDateYYYYMMDD | 2024-11-01 |
PublicationDate_xml | – month: 11 year: 2024 text: November 2024 |
PublicationDecade | 2020 |
PublicationPlace | Chichester |
PublicationPlace_xml | – name: Chichester |
PublicationTitle | Applied organometallic chemistry |
PublicationYear | 2024 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2017; 5 2017; 8 2021; 21 2021; 23 2013; 68 2019; 58 2022; 24 2019; 245 2020; 12 2024; 146 2024; 38 2017; 9 2020; 8 2021; 35 2021; 318 2018; 6 2018; 8 2015; 137 2021; 310 2021; 312 2018; 332 2023; 337 2020; 49 2022; 36 2022; 37 2014; 7 2011; 123 2021; 9 2017; 219 2023; 52 2023; 14 2015; 5 2023; 11 2024; 489 2002; 74 2023; 15 2022; 51 2015; 245 2021; 624 2024; 365 2024; 16 2021; 51 2021; 13 2022; 61 2023; 476 2023; 474 2017; 56 2022; 12 2020; 599 2020; 26 2020; 22 2024; 45 2022; 10 2022; 427 2021; 60 2018; 54 2022; 305 2008; 130 2024; 490 2018; 57 |
References_xml | – volume: 8 year: 2020 publication-title: J. Environ. Chem. Eng. – volume: 146 start-page: 10599 year: 2024 publication-title: J. Am. Chem. Soc. – volume: 36 year: 2022 publication-title: Appl. Organomet. Chem. – volume: 8 start-page: 3194 year: 2018 publication-title: ACS Catal. – volume: 58 start-page: 18808 year: 2019 publication-title: Angew. Chem., Int. Ed. – volume: 60 start-page: 5071 year: 2021 publication-title: Inorg. Chem. – volume: 245 start-page: 240 year: 2019 publication-title: Appl Catal B – volume: 11 start-page: 6183 year: 2023 publication-title: ACS Sustainable Chem. Eng. – volume: 12 start-page: 563 year: 2022 publication-title: Catalysts – volume: 6 start-page: 10778 year: 2018 publication-title: ACS Sustainable Chem. Eng. – volume: 10 year: 2022 publication-title: J. Environ. Chem. Eng. – volume: 61 start-page: 17438 year: 2022 publication-title: Inorg. Chem. – volume: 337 year: 2023 publication-title: Appl Catal B – volume: 52 start-page: 659 year: 2023 publication-title: Dalton Trans. – volume: 61 year: 2022 publication-title: J. CO2 Util. – volume: 22 start-page: 3965 year: 2020 publication-title: CrstEngComm – volume: 61 start-page: 17937 year: 2022 publication-title: Inorg. Chem. – volume: 49 start-page: 312 year: 2020 publication-title: Dalton Trans. – volume: 60 start-page: 20915 year: 2021 publication-title: Angew. Chem., Int. Ed. – volume: 137 start-page: 15988 year: 2015 publication-title: J. Am. Chem. Soc. – volume: 56 start-page: 2581 year: 2017 publication-title: Inorg. Chem. – volume: 13 start-page: 61334 year: 2021 publication-title: Mater. Interfaces – volume: 9 start-page: 41043 year: 2017 publication-title: Mater. Interfaces – volume: 68 start-page: 797 year: 2013 publication-title: Z. Naturforsch. – volume: 123 start-page: 1486 year: 2011 publication-title: J. Appl. Polym. Sci. – volume: 9 start-page: 16210 year: 2021 publication-title: ACS Sustainable Chem. Eng. – volume: 51 start-page: 6417 year: 2022 publication-title: Chem. Soc. Rev. – volume: 9 start-page: 2694 year: 2021 publication-title: J. Mater. Chem. – volume: 489 year: 2024 publication-title: Chem. Eng. J. – volume: 490 year: 2024 publication-title: Chem. Eng. J. – volume: 312 year: 2021 publication-title: Micropo.Mesopo.Mater. – volume: 54 start-page: 342 year: 2018 publication-title: Chem. Commun. – volume: 7 start-page: 459 year: 2014 publication-title: ChemCatChem – volume: 37 year: 2022 publication-title: Appl. Organomet. Chem. – volume: 5 start-page: 14277 year: 2015 publication-title: RSC Adv. – volume: 219 start-page: 603 year: 2017 publication-title: Appl Catal B – volume: 8 start-page: 1570 year: 2017 publication-title: Chem. Sci. – volume: 26 start-page: 17445 year: 2020 publication-title: Chem. Eur. J. – volume: 22 start-page: 1639 year: 2020 publication-title: Green Chem. – volume: 427 year: 2022 publication-title: Chem. Eng. J. – volume: 8 start-page: 419 year: 2017 publication-title: ACS Catal. – volume: 74 start-page: 157 year: 2002 publication-title: Catal. Today – volume: 21 start-page: 3689 year: 2021 publication-title: Cryst. Growth des. – volume: 310 year: 2021 publication-title: Micropo. Mesopo. Mater. – volume: 14 start-page: 13851 year: 2023 publication-title: Chem. Sci. – volume: 52 start-page: 10795 year: 2023 publication-title: Dalton Trans. – volume: 624 year: 2021 publication-title: Appl. Catal., a – volume: 5 start-page: 22372 year: 2017 publication-title: J. Mater. Chem. A – volume: 24 start-page: 3433 year: 2022 publication-title: Green Chem. – volume: 474 year: 2023 publication-title: Chem. Rev. – volume: 38 year: 2024 publication-title: Appl. Organomet. Chem. – volume: 51 year: 2021 publication-title: J. CO2 Util. – volume: 16 start-page: 10277 year: 2024 publication-title: Mater. Interfaces – volume: 15 year: 2023 publication-title: ChemCatChem – volume: 45 year: 2024 publication-title: Surf. Interfaces – volume: 130 start-page: 13850 year: 2008 publication-title: J. Am. Chem. Soc. – volume: 476 year: 2023 publication-title: Chem. Eng. J. – volume: 11 start-page: 25605 year: 2023 publication-title: J. Mater. Chem. – volume: 12 start-page: 24868 year: 2020 publication-title: Mater. Interfaces – volume: 365 year: 2024 publication-title: Micropo. Mesopo. Mater. – volume: 332 start-page: 608 year: 2018 publication-title: Chem. Eng. J. – volume: 57 start-page: 2584 year: 2018 publication-title: Inorg. Chem. – volume: 305 year: 2022 publication-title: J. Solid State Chem. – volume: 245 start-page: 61 year: 2015 publication-title: Catal. Today – volume: 599 year: 2020 publication-title: Colloids Surf., a – volume: 23 start-page: 5195 year: 2021 publication-title: Green Chem. – volume: 318 year: 2021 publication-title: Micropo.Mesopo.Mater. – volume: 35 year: 2021 publication-title: Appl. Organomet. Chem. |
SSID | ssj0009614 |
Score | 2.413444 |
Snippet | CO2 chemical fixation offers a feasible approach for carbon mitigation and high‐value utilization, but it is still challenging to develop an efficient catalyst... |
SourceID | proquest wiley |
SourceType | Aggregation Database Publisher |
SubjectTerms | Carbon dioxide Catalysts Cycloaddition Dicarboxylic acids epoxide cycloaddition heterogeneous catalysis ionic liquid Ionic liquids Metal-organic frameworks Performance evaluation Recyclability Self-assembly Substrates Terephthalic acid UiO‐66 |
Title | Dicationic ionic liquid‐grafted UiO‐66 as efficient catalyst for CO2 conversion into cyclocarbonate under cocatalyst‐free and solventless conditions |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Faoc.7640 https://www.proquest.com/docview/3114289017 |
Volume | 38 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELYQF7jQAkXQLsiHiluWrJM4zhEtrBASXQmxElIPkZ8oKspCNnugp_6Envl5_BJm7ITXqeolD8keWRqP5_No5htCvjvwmjx3SZTF3EYpc3EkUi0jw3kqdW5d4kPZFz_42Sw9v86uu6xKrIUJ_BAvATe0DH9eo4FLtTh6JQ2Vcz3MeYrXdUzVQjx0-cocVfBA6804bASA7D3vbMyO-onvMOVbZOpdy-QT-dkvKmSU_BouWzXUvz_wNf7fqj-TjQ5x0uOwRTbJiq23yNq4b_S2TR5PurhdpWl43lb3y8o8_fl702APcUNn1RT-OKdyQa0nnQBfRX3o52HRUgC-dDxl1Kew-_gbrep2TvWDRl_ZKAzRW4r1ag0M6ueBSNdYS2VtKJgAZl7ewsGLYkzIJPtCZpPTq_FZ1LVsiO4YwxOdx4lKUpUDLpRZZqWztoiNSwV3ReF0ZgvHRlKZTAklRjIZaaF1rizgOpVbluyQ1Xpe211CZayY5pmB-5BMOY8FfhUgVwgjVBHvkUGvvrKzu0WZYGmwAIyT75FDr4fyLrB2lIGfmZWggRI1UB5Px_j--q8Dv5F1BogmFCIOyGrbLO0-IJJWHfi99wxiKuNH |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtQwFLWqsigboAVEoaVeALtMPU7iOIsuqplW0-dIqCN1F_xEEVWmZDJCw6qfwJpf6K_0K_olXNtJC6zYdMEmDymxIt-Hj2_uPRehdxZWTZbZOEoJM1FCLYl4okSkGUuEyoyNfSj75JSNJsnheXq-hK67WpjAD3EXcHOW4f21M3AXkN6-Zw0VU9XLWELajMojs_gG-7XZzsEQhPue0v29s8EoalsKRJeUOo_DSCzjRGaAW0SaGmGNyYm2CWc2z61KTW5pX0idSi55X8R9xZXKpAHcITPjWA7A3z9yDcQdUf_w4z1XVc4CkThloHqwSeiYbgnd7r70DxT7Oxb2i9n-U3TTTUPIYfnSmzeyp77_xRD5n8zTM_SkBdV4N1jBKloy1RpaGXS97J6jn8M2NFkqHI4X5dd5qW-vfnyuXZt0jSflGO4Yw2KGjefVgOUY--jWYtZgwPZ4MKbYZ-n7ECMuq2aK1UI5OFBL9xfCYFeSV8ND3XswpK2NwaLSGKzcJZdewNrihtEhWe4FmjzI1LxEy9W0Mq8QFkRSxVINWz6RMEa4u8phXM41lzlZRxudvhSta5kVsat-5gDjsnX0wQu-uAzEJEWgoKYFSLxwEi92xwN3fv2vD26hldHZyXFxfHB69AY9pgDgQt3lBlpu6rnZBADWyLde8TH69NAa9Au9aULu |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtQwFLWqIgEb3ohCAS-AXaYex3GcBYtqhlFLoYMQI3UX_EQRVWbIZISmq34C635Cf4W_4Eu4thMKrNh0wSYPKbEi34ePb-49F6FnDlZNnrs0yQi3CaOOJIJpmRjOmdS5dWkIZb895Hsz9vooO9pA530tTOSH-BVw85YR_LU38IVxOxekoXKuBzlnpEuoPLDrr7BdW77cH4Nsn1M6efVhtJd0HQWSBaXe4XCSqpSpHGCLzDIrnbUFMY4J7orC6cwWjg6lMpkSSgxlOtRC61xZgB0qt57kANz9FcZJ4dtEjN9fUFUVPPKIUw6aB3uEnuiW0J3-S_8Asb9D4bCWTW6i7_0sxBSWz4NVqwb65C-CyP9jmm6hGx2kxrvRBm6jDVvfQddGfSe7u-hs3AUmK43j8bj6sqrMj9NvnxrfJN3gWTWFO86xXGIbWDVgMcYhtrVethiQPR5NKQ45-iHAiKu6nWO91h4MNMr_g7DYF-Q18FD_HgzpGmuxrA0GG_eppcewsvhhTEyVu4dmlzI199FmPa_tA4QlUVTzzMCGTzLOifBXBYwrhBGqIFtou1eXsnMsyzL1tc8CQFy-hV4EuZeLSEtSRgJqWoLESy_xcnc68ueH__rgU3T13XhSvtk_PHiErlNAb7Hochttts3KPgb01aonQe0x-njZCvQTrchBnQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dicationic+ionic+liquid%E2%80%90grafted+UiO%E2%80%9066+as+efficient+catalyst+for+CO2+conversion+into+cyclocarbonate+under+cocatalyst%E2%80%90free+and+solventless+conditions&rft.jtitle=Applied+organometallic+chemistry&rft.au=Li%2C+Fangfang&rft.au=Hou%2C+Xiaofang&rft.au=Zhou%2C+Ying%E2%80%90Hua&rft.date=2024-11-01&rft.issn=0268-2605&rft.eissn=1099-0739&rft.volume=38&rft.issue=11&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Faoc.7640&rft.externalDBID=10.1002%252Faoc.7640&rft.externalDocID=AOC7640 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0268-2605&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0268-2605&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0268-2605&client=summon |