Cooperative Co-evolutionary Differential Evolution for Function Optimization
The differential evolution (DE) is a stochastic, population-based, and relatively unknown evolutionary algorithm for global optimization that has recently been successfully applied to many optimization problems. This paper presents a new variation on the DE algorithm, called the cooperative co-evolu...
Saved in:
Published in | Advances in Natural Computation pp. 1080 - 1088 |
---|---|
Main Authors | , , |
Format | Book Chapter Conference Proceeding |
Language | English |
Published |
Berlin, Heidelberg
Springer Berlin Heidelberg
2005
Springer |
Series | Lecture Notes in Computer Science |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | The differential evolution (DE) is a stochastic, population-based, and relatively unknown evolutionary algorithm for global optimization that has recently been successfully applied to many optimization problems. This paper presents a new variation on the DE algorithm, called the cooperative co-evolutionary differential evolution (CCDE). CCDE adopts the cooperative co-evolutionary architecture, which was proposed by Potter and had been successfully applied to genetic algorithm, to improve significantly the performance of the DE. Such improvement is achieved by partitioning a high-dimensional search space by splitting the solution vectors of DE into smaller vectors, then using multiple cooperating subpopulations (or smaller vectors) to co-evolve subcomponents of a solution. Applying the new DE algorithm to on 11 benchmark functions, we show that CCDE has a marked improvement in performance over the traditional DE and cooperative co-evolutionary genetic algorithm (CCGA). |
---|---|
ISBN: | 9783540283256 3540283250 3540283234 9783540283232 |
ISSN: | 0302-9743 1611-3349 |
DOI: | 10.1007/11539117_147 |