Gender Recognition Using a Min-Max Modular Support Vector Machine
Considering the fast respond and high generalization accuracy of the min-max modular support vector machine (M3-SVM), we apply M3-SVM to solving the gender recognition problem and propose a novel task decomposition method in this paper. Firstly, we extract features from the face images by using a fa...
Saved in:
Published in | Advances in Natural Computation pp. 438 - 441 |
---|---|
Main Authors | , , , |
Format | Book Chapter Conference Proceeding |
Language | English |
Published |
Berlin, Heidelberg
Springer Berlin Heidelberg
2005
Springer |
Series | Lecture Notes in Computer Science |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Considering the fast respond and high generalization accuracy of the min-max modular support vector machine (M3-SVM), we apply M3-SVM to solving the gender recognition problem and propose a novel task decomposition method in this paper. Firstly, we extract features from the face images by using a facial point detection and Gabor wavelet transform method. Then we divide the training data set into several subsets with the ‘part-versus-part’ task decomposition method. The most important advantage of the proposed task decomposition method over existing random method is that the explicit prior knowledge about ages contained in the face images is used in task decomposition. We perform simulations on a real-world gender data set and compare the performance of the traditional SVMs and that of M3-SVM with the proposed task decomposition method. The experimental results indicate that M3-SVM with our new method have better performance than traditional SVMs and M3-SVM with random task decomposition method. |
---|---|
AbstractList | Considering the fast respond and high generalization accuracy of the min-max modular support vector machine (M3-SVM), we apply M3-SVM to solving the gender recognition problem and propose a novel task decomposition method in this paper. Firstly, we extract features from the face images by using a facial point detection and Gabor wavelet transform method. Then we divide the training data set into several subsets with the ‘part-versus-part’ task decomposition method. The most important advantage of the proposed task decomposition method over existing random method is that the explicit prior knowledge about ages contained in the face images is used in task decomposition. We perform simulations on a real-world gender data set and compare the performance of the traditional SVMs and that of M3-SVM with the proposed task decomposition method. The experimental results indicate that M3-SVM with our new method have better performance than traditional SVMs and M3-SVM with random task decomposition method. |
Author | Hosoi, Satoshi Takikawa, Erina Lu, Bao-Liang Lian, Hui-Cheng |
Author_xml | – sequence: 1 givenname: Hui-Cheng surname: Lian fullname: Lian, Hui-Cheng email: lianhc@cs.sjtu.edu.cn organization: Department of Computer Science and Engineering, Shanghai Jiao Tong University, Shanghai, China – sequence: 2 givenname: Bao-Liang surname: Lu fullname: Lu, Bao-Liang email: blu@cs.sjtu.edu.cn organization: Department of Computer Science and Engineering, Shanghai Jiao Tong University, Shanghai, China – sequence: 3 givenname: Erina surname: Takikawa fullname: Takikawa, Erina email: erinat@ari.ncl.omron.co.jp organization: Sensing and Control Technology Laboratory, OMRON Corporation, – sequence: 4 givenname: Satoshi surname: Hosoi fullname: Hosoi, Satoshi email: hosoi@ari.ncl.omron.co.jp organization: Sensing and Control Technology Laboratory, OMRON Corporation, |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=17135600$$DView record in Pascal Francis |
BookMark | eNpNkE1LAzEYhKNWsNae_AO5ePCwmjffOZaiVegiqPW6ZLPZulqTJdmC_nsrFXEuc3iGgZlTNAoxeITOgVwBIeoaQDADoCrJD9DUKM0EJwy00OwQjUECFIxxc_THqGZUyBEaE0ZoYRRnJ2ia8xvZiYEkVIzRbOFD4xN-9C6uQzd0MeBV7sIaW1x2oSjtJy5js93YhJ-2fR_TgF-8G2LCpXWvXfBn6Li1m-ynvz5Bq9ub5_ldsXxY3M9ny6KnYIbC1Ka2BpxpjRKG1I2gSirgzptWUqgb2XLJbE0tJZprLcG2RDdc6VYxoJJN0MW-t7fZ2U2bbHBdrvrUfdj0VYECJuRu2ARd7nN5h8Lap6qO8T1XQKqfG6t_N7JvU2lehQ |
ContentType | Book Chapter Conference Proceeding |
Copyright | Springer-Verlag Berlin Heidelberg 2005 2005 INIST-CNRS |
Copyright_xml | – notice: Springer-Verlag Berlin Heidelberg 2005 – notice: 2005 INIST-CNRS |
DBID | IQODW |
DOI | 10.1007/11539117_64 |
DatabaseName | Pascal-Francis |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science Applied Sciences |
EISBN | 9783540318583 3540318585 |
EISSN | 1611-3349 |
Editor | Wang, Lipo Ong, Yew Soon Chen, Ke |
Editor_xml | – sequence: 1 givenname: Lipo surname: Wang fullname: Wang, Lipo email: elpwang@ntu.edu.sg – sequence: 2 givenname: Ke surname: Chen fullname: Chen, Ke email: chenk@cs.zju.edu.cn – sequence: 3 givenname: Yew Soon surname: Ong fullname: Ong, Yew Soon email: asysong@ntu.edu.sg |
EndPage | 441 |
ExternalDocumentID | 17135600 |
GroupedDBID | -DT -GH -~X 1SB 29L 2HA 2HV 5QI 875 AASHB ABMNI ACGFS ADCXD AEFIE ALMA_UNASSIGNED_HOLDINGS EJD F5P FEDTE HVGLF LAS LDH P2P RIG RNI RSU SVGTG VI1 ~02 IQODW |
ID | FETCH-LOGICAL-p219t-9b9ba91c9f97590bd5276714ce9f621bd6f463ab2a20848861af08d478f731263 |
ISBN | 9783540283256 3540283250 3540283234 9783540283232 |
ISSN | 0302-9743 |
IngestDate | Mon Jul 21 09:10:25 EDT 2025 Tue Jul 29 20:06:58 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Gabor filter Image analysis Statistical analysis Probabilistic approach Face recognition Sexing Facies Minimax method High precision Vector support machine Problem solving Pattern extraction |
Language | English |
License | CC BY 4.0 |
LinkModel | OpenURL |
MeetingName | Advances in natural computation (Changsha, 27-29 August 2005) |
MergedId | FETCHMERGED-LOGICAL-p219t-9b9ba91c9f97590bd5276714ce9f621bd6f463ab2a20848861af08d478f731263 |
PageCount | 4 |
ParticipantIDs | pascalfrancis_primary_17135600 springer_books_10_1007_11539117_64 |
PublicationCentury | 2000 |
PublicationDate | 2005 |
PublicationDateYYYYMMDD | 2005-01-01 |
PublicationDate_xml | – year: 2005 text: 2005 |
PublicationDecade | 2000 |
PublicationPlace | Berlin, Heidelberg |
PublicationPlace_xml | – name: Berlin, Heidelberg – name: Berlin |
PublicationSeriesTitle | Lecture Notes in Computer Science |
PublicationSubtitle | First International Conference, ICNC 2005, Changsha, China, August 27-29, 2005, Proceedings, Part II |
PublicationTitle | Advances in Natural Computation |
PublicationYear | 2005 |
Publisher | Springer Berlin Heidelberg Springer |
Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer |
RelatedPersons | Kleinberg, Jon M. Mattern, Friedemann Nierstrasz, Oscar Tygar, Dough Steffen, Bernhard Kittler, Josef Vardi, Moshe Y. Weikum, Gerhard Sudan, Madhu Naor, Moni Mitchell, John C. Terzopoulos, Demetri Pandu Rangan, C. Kanade, Takeo Hutchison, David |
RelatedPersons_xml | – sequence: 1 givenname: David surname: Hutchison fullname: Hutchison, David organization: Lancaster University, UK – sequence: 2 givenname: Takeo surname: Kanade fullname: Kanade, Takeo organization: Carnegie Mellon University, Pittsburgh, USA – sequence: 3 givenname: Josef surname: Kittler fullname: Kittler, Josef organization: University of Surrey, Guildford, UK – sequence: 4 givenname: Jon M. surname: Kleinberg fullname: Kleinberg, Jon M. organization: Cornell University, Ithaca, USA – sequence: 5 givenname: Friedemann surname: Mattern fullname: Mattern, Friedemann organization: ETH Zurich, Switzerland – sequence: 6 givenname: John C. surname: Mitchell fullname: Mitchell, John C. organization: Stanford University, CA, USA – sequence: 7 givenname: Moni surname: Naor fullname: Naor, Moni organization: Weizmann Institute of Science, Rehovot, Israel – sequence: 8 givenname: Oscar surname: Nierstrasz fullname: Nierstrasz, Oscar organization: University of Bern, Switzerland – sequence: 9 givenname: C. surname: Pandu Rangan fullname: Pandu Rangan, C. organization: Indian Institute of Technology, Madras, India – sequence: 10 givenname: Bernhard surname: Steffen fullname: Steffen, Bernhard organization: University of Dortmund, Germany – sequence: 11 givenname: Madhu surname: Sudan fullname: Sudan, Madhu organization: Massachusetts Institute of Technology, MA, USA – sequence: 12 givenname: Demetri surname: Terzopoulos fullname: Terzopoulos, Demetri organization: New York University, NY, USA – sequence: 13 givenname: Dough surname: Tygar fullname: Tygar, Dough organization: University of California, Berkeley, USA – sequence: 14 givenname: Moshe Y. surname: Vardi fullname: Vardi, Moshe Y. organization: Rice University, Houston, USA – sequence: 15 givenname: Gerhard surname: Weikum fullname: Weikum, Gerhard organization: Max-Planck Institute of Computer Science, Saarbruecken, Germany |
SSID | ssj0000316025 ssj0002792 ssj0000316024 |
Score | 1.9298253 |
Snippet | Considering the fast respond and high generalization accuracy of the min-max modular support vector machine (M3-SVM), we apply M3-SVM to solving the gender... |
SourceID | pascalfrancis springer |
SourceType | Index Database Publisher |
StartPage | 438 |
SubjectTerms | Applied sciences Artificial intelligence Computer science; control theory; systems Exact sciences and technology Pattern recognition. Digital image processing. Computational geometry |
Title | Gender Recognition Using a Min-Max Modular Support Vector Machine |
URI | http://link.springer.com/10.1007/11539117_64 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Na9swFBdpdhk77Ju124oYuwUNf8iSfdihlI5QkpzS0puRLJmYgV1qh43-9XvykxOnHWPbxRjF2Mr7yU_P7-P3CPlcFAHXiZWsDI1h3JQhU0ZqlkiTpCaUNusr5JYrMb_ilzfJzWQyzlradvpLcf_bupL_QRXGAFdXJfsPyO5uCgNwDvjCERCG4wPj99DNiunFGL3v81lXCukzsEfDQXB9UaGLc76t2PnG-o3K_bDFeEPD3CW74TWYlN_VD-WVZL1T2_OmbSp0IndNu6nGiw0b0jkbFLORYElhLoKaLauaLdVP13Stz3h1bUTB5J9d9-EC1_hoM4T2ncxs-3XhwxqrpsN_N3SeGBTRgacieeCpGDyVsz8QeXlHlOufhHzjQ20X6G348kFVaFFVC0fAGCPhqVe_HJli_E7OkVLr0SaBeSFgCseg6WUu-BE5kmkyJU_OLi4X1zsXHeg7EeypGwPHtYhBKZyMLxXqJ-vpw_aT97Wgrkxz9CSXeqtaePtKbJvyKP7emzXrF-SZK3WhrgYFxPuSTGz9ijwfxE29uF-TM8SXjvClPb5UUY8v9fhSjy9FfKnH9w25-naxPp8z33uD3cIe1rFMZ1plYZGVmUyyQJskkkKGvLBZKaJQG1FyESsdqch1ZEhFqMogNVympYzDSMRvybRuavuOULhVFBUx7Kwm4ZY7J5sMrART1QhRGHtMTg9kkt8iz0oeuvaRYJAfk0-DkHL3urX5wLU9kuzJ31z0njzdL8wPZNrdbe1HMCo7ferB_wVEVm7x |
linkProvider | Library Specific Holdings |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.title=Advances+in+Natural+Computation&rft.au=Lian%2C+Hui-Cheng&rft.au=Lu%2C+Bao-Liang&rft.au=Takikawa%2C+Erina&rft.au=Hosoi%2C+Satoshi&rft.atitle=Gender+Recognition+Using+a+Min-Max+Modular+Support+Vector+Machine&rft.series=Lecture+Notes+in+Computer+Science&rft.date=2005-01-01&rft.pub=Springer+Berlin+Heidelberg&rft.isbn=9783540283256&rft.issn=0302-9743&rft.eissn=1611-3349&rft.spage=438&rft.epage=441&rft_id=info:doi/10.1007%2F11539117_64 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0302-9743&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0302-9743&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0302-9743&client=summon |