Gender Recognition Using a Min-Max Modular Support Vector Machine

Considering the fast respond and high generalization accuracy of the min-max modular support vector machine (M3-SVM), we apply M3-SVM to solving the gender recognition problem and propose a novel task decomposition method in this paper. Firstly, we extract features from the face images by using a fa...

Full description

Saved in:
Bibliographic Details
Published inAdvances in Natural Computation pp. 438 - 441
Main Authors Lian, Hui-Cheng, Lu, Bao-Liang, Takikawa, Erina, Hosoi, Satoshi
Format Book Chapter Conference Proceeding
LanguageEnglish
Published Berlin, Heidelberg Springer Berlin Heidelberg 2005
Springer
SeriesLecture Notes in Computer Science
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Considering the fast respond and high generalization accuracy of the min-max modular support vector machine (M3-SVM), we apply M3-SVM to solving the gender recognition problem and propose a novel task decomposition method in this paper. Firstly, we extract features from the face images by using a facial point detection and Gabor wavelet transform method. Then we divide the training data set into several subsets with the ‘part-versus-part’ task decomposition method. The most important advantage of the proposed task decomposition method over existing random method is that the explicit prior knowledge about ages contained in the face images is used in task decomposition. We perform simulations on a real-world gender data set and compare the performance of the traditional SVMs and that of M3-SVM with the proposed task decomposition method. The experimental results indicate that M3-SVM with our new method have better performance than traditional SVMs and M3-SVM with random task decomposition method.
AbstractList Considering the fast respond and high generalization accuracy of the min-max modular support vector machine (M3-SVM), we apply M3-SVM to solving the gender recognition problem and propose a novel task decomposition method in this paper. Firstly, we extract features from the face images by using a facial point detection and Gabor wavelet transform method. Then we divide the training data set into several subsets with the ‘part-versus-part’ task decomposition method. The most important advantage of the proposed task decomposition method over existing random method is that the explicit prior knowledge about ages contained in the face images is used in task decomposition. We perform simulations on a real-world gender data set and compare the performance of the traditional SVMs and that of M3-SVM with the proposed task decomposition method. The experimental results indicate that M3-SVM with our new method have better performance than traditional SVMs and M3-SVM with random task decomposition method.
Author Hosoi, Satoshi
Takikawa, Erina
Lu, Bao-Liang
Lian, Hui-Cheng
Author_xml – sequence: 1
  givenname: Hui-Cheng
  surname: Lian
  fullname: Lian, Hui-Cheng
  email: lianhc@cs.sjtu.edu.cn
  organization: Department of Computer Science and Engineering, Shanghai Jiao Tong University, Shanghai, China
– sequence: 2
  givenname: Bao-Liang
  surname: Lu
  fullname: Lu, Bao-Liang
  email: blu@cs.sjtu.edu.cn
  organization: Department of Computer Science and Engineering, Shanghai Jiao Tong University, Shanghai, China
– sequence: 3
  givenname: Erina
  surname: Takikawa
  fullname: Takikawa, Erina
  email: erinat@ari.ncl.omron.co.jp
  organization: Sensing and Control Technology Laboratory, OMRON Corporation,  
– sequence: 4
  givenname: Satoshi
  surname: Hosoi
  fullname: Hosoi, Satoshi
  email: hosoi@ari.ncl.omron.co.jp
  organization: Sensing and Control Technology Laboratory, OMRON Corporation,  
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=17135600$$DView record in Pascal Francis
BookMark eNpNkE1LAzEYhKNWsNae_AO5ePCwmjffOZaiVegiqPW6ZLPZulqTJdmC_nsrFXEuc3iGgZlTNAoxeITOgVwBIeoaQDADoCrJD9DUKM0EJwy00OwQjUECFIxxc_THqGZUyBEaE0ZoYRRnJ2ia8xvZiYEkVIzRbOFD4xN-9C6uQzd0MeBV7sIaW1x2oSjtJy5js93YhJ-2fR_TgF-8G2LCpXWvXfBn6Li1m-ynvz5Bq9ub5_ldsXxY3M9ny6KnYIbC1Ka2BpxpjRKG1I2gSirgzptWUqgb2XLJbE0tJZprLcG2RDdc6VYxoJJN0MW-t7fZ2U2bbHBdrvrUfdj0VYECJuRu2ARd7nN5h8Lap6qO8T1XQKqfG6t_N7JvU2lehQ
ContentType Book Chapter
Conference Proceeding
Copyright Springer-Verlag Berlin Heidelberg 2005
2005 INIST-CNRS
Copyright_xml – notice: Springer-Verlag Berlin Heidelberg 2005
– notice: 2005 INIST-CNRS
DBID IQODW
DOI 10.1007/11539117_64
DatabaseName Pascal-Francis
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
Applied Sciences
EISBN 9783540318583
3540318585
EISSN 1611-3349
Editor Wang, Lipo
Ong, Yew Soon
Chen, Ke
Editor_xml – sequence: 1
  givenname: Lipo
  surname: Wang
  fullname: Wang, Lipo
  email: elpwang@ntu.edu.sg
– sequence: 2
  givenname: Ke
  surname: Chen
  fullname: Chen, Ke
  email: chenk@cs.zju.edu.cn
– sequence: 3
  givenname: Yew Soon
  surname: Ong
  fullname: Ong, Yew Soon
  email: asysong@ntu.edu.sg
EndPage 441
ExternalDocumentID 17135600
GroupedDBID -DT
-GH
-~X
1SB
29L
2HA
2HV
5QI
875
AASHB
ABMNI
ACGFS
ADCXD
AEFIE
ALMA_UNASSIGNED_HOLDINGS
EJD
F5P
FEDTE
HVGLF
LAS
LDH
P2P
RIG
RNI
RSU
SVGTG
VI1
~02
IQODW
ID FETCH-LOGICAL-p219t-9b9ba91c9f97590bd5276714ce9f621bd6f463ab2a20848861af08d478f731263
ISBN 9783540283256
3540283250
3540283234
9783540283232
ISSN 0302-9743
IngestDate Mon Jul 21 09:10:25 EDT 2025
Tue Jul 29 20:06:58 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Gabor filter
Image analysis
Statistical analysis
Probabilistic approach
Face recognition
Sexing
Facies
Minimax method
High precision
Vector support machine
Problem solving
Pattern extraction
Language English
License CC BY 4.0
LinkModel OpenURL
MeetingName Advances in natural computation (Changsha, 27-29 August 2005)
MergedId FETCHMERGED-LOGICAL-p219t-9b9ba91c9f97590bd5276714ce9f621bd6f463ab2a20848861af08d478f731263
PageCount 4
ParticipantIDs pascalfrancis_primary_17135600
springer_books_10_1007_11539117_64
PublicationCentury 2000
PublicationDate 2005
PublicationDateYYYYMMDD 2005-01-01
PublicationDate_xml – year: 2005
  text: 2005
PublicationDecade 2000
PublicationPlace Berlin, Heidelberg
PublicationPlace_xml – name: Berlin, Heidelberg
– name: Berlin
PublicationSeriesTitle Lecture Notes in Computer Science
PublicationSubtitle First International Conference, ICNC 2005, Changsha, China, August 27-29, 2005, Proceedings, Part II
PublicationTitle Advances in Natural Computation
PublicationYear 2005
Publisher Springer Berlin Heidelberg
Springer
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer
RelatedPersons Kleinberg, Jon M.
Mattern, Friedemann
Nierstrasz, Oscar
Tygar, Dough
Steffen, Bernhard
Kittler, Josef
Vardi, Moshe Y.
Weikum, Gerhard
Sudan, Madhu
Naor, Moni
Mitchell, John C.
Terzopoulos, Demetri
Pandu Rangan, C.
Kanade, Takeo
Hutchison, David
RelatedPersons_xml – sequence: 1
  givenname: David
  surname: Hutchison
  fullname: Hutchison, David
  organization: Lancaster University, UK
– sequence: 2
  givenname: Takeo
  surname: Kanade
  fullname: Kanade, Takeo
  organization: Carnegie Mellon University, Pittsburgh, USA
– sequence: 3
  givenname: Josef
  surname: Kittler
  fullname: Kittler, Josef
  organization: University of Surrey, Guildford, UK
– sequence: 4
  givenname: Jon M.
  surname: Kleinberg
  fullname: Kleinberg, Jon M.
  organization: Cornell University, Ithaca, USA
– sequence: 5
  givenname: Friedemann
  surname: Mattern
  fullname: Mattern, Friedemann
  organization: ETH Zurich, Switzerland
– sequence: 6
  givenname: John C.
  surname: Mitchell
  fullname: Mitchell, John C.
  organization: Stanford University, CA, USA
– sequence: 7
  givenname: Moni
  surname: Naor
  fullname: Naor, Moni
  organization: Weizmann Institute of Science, Rehovot, Israel
– sequence: 8
  givenname: Oscar
  surname: Nierstrasz
  fullname: Nierstrasz, Oscar
  organization: University of Bern, Switzerland
– sequence: 9
  givenname: C.
  surname: Pandu Rangan
  fullname: Pandu Rangan, C.
  organization: Indian Institute of Technology, Madras, India
– sequence: 10
  givenname: Bernhard
  surname: Steffen
  fullname: Steffen, Bernhard
  organization: University of Dortmund, Germany
– sequence: 11
  givenname: Madhu
  surname: Sudan
  fullname: Sudan, Madhu
  organization: Massachusetts Institute of Technology, MA, USA
– sequence: 12
  givenname: Demetri
  surname: Terzopoulos
  fullname: Terzopoulos, Demetri
  organization: New York University, NY, USA
– sequence: 13
  givenname: Dough
  surname: Tygar
  fullname: Tygar, Dough
  organization: University of California, Berkeley, USA
– sequence: 14
  givenname: Moshe Y.
  surname: Vardi
  fullname: Vardi, Moshe Y.
  organization: Rice University, Houston, USA
– sequence: 15
  givenname: Gerhard
  surname: Weikum
  fullname: Weikum, Gerhard
  organization: Max-Planck Institute of Computer Science, Saarbruecken, Germany
SSID ssj0000316025
ssj0002792
ssj0000316024
Score 1.9298253
Snippet Considering the fast respond and high generalization accuracy of the min-max modular support vector machine (M3-SVM), we apply M3-SVM to solving the gender...
SourceID pascalfrancis
springer
SourceType Index Database
Publisher
StartPage 438
SubjectTerms Applied sciences
Artificial intelligence
Computer science; control theory; systems
Exact sciences and technology
Pattern recognition. Digital image processing. Computational geometry
Title Gender Recognition Using a Min-Max Modular Support Vector Machine
URI http://link.springer.com/10.1007/11539117_64
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Na9swFBdpdhk77Ju124oYuwUNf8iSfdihlI5QkpzS0puRLJmYgV1qh43-9XvykxOnHWPbxRjF2Mr7yU_P7-P3CPlcFAHXiZWsDI1h3JQhU0ZqlkiTpCaUNusr5JYrMb_ilzfJzWQyzlradvpLcf_bupL_QRXGAFdXJfsPyO5uCgNwDvjCERCG4wPj99DNiunFGL3v81lXCukzsEfDQXB9UaGLc76t2PnG-o3K_bDFeEPD3CW74TWYlN_VD-WVZL1T2_OmbSp0IndNu6nGiw0b0jkbFLORYElhLoKaLauaLdVP13Stz3h1bUTB5J9d9-EC1_hoM4T2ncxs-3XhwxqrpsN_N3SeGBTRgacieeCpGDyVsz8QeXlHlOufhHzjQ20X6G348kFVaFFVC0fAGCPhqVe_HJli_E7OkVLr0SaBeSFgCseg6WUu-BE5kmkyJU_OLi4X1zsXHeg7EeypGwPHtYhBKZyMLxXqJ-vpw_aT97Wgrkxz9CSXeqtaePtKbJvyKP7emzXrF-SZK3WhrgYFxPuSTGz9ijwfxE29uF-TM8SXjvClPb5UUY8v9fhSjy9FfKnH9w25-naxPp8z33uD3cIe1rFMZ1plYZGVmUyyQJskkkKGvLBZKaJQG1FyESsdqch1ZEhFqMogNVympYzDSMRvybRuavuOULhVFBUx7Kwm4ZY7J5sMrART1QhRGHtMTg9kkt8iz0oeuvaRYJAfk0-DkHL3urX5wLU9kuzJ31z0njzdL8wPZNrdbe1HMCo7ferB_wVEVm7x
linkProvider Library Specific Holdings
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.title=Advances+in+Natural+Computation&rft.au=Lian%2C+Hui-Cheng&rft.au=Lu%2C+Bao-Liang&rft.au=Takikawa%2C+Erina&rft.au=Hosoi%2C+Satoshi&rft.atitle=Gender+Recognition+Using+a+Min-Max+Modular+Support+Vector+Machine&rft.series=Lecture+Notes+in+Computer+Science&rft.date=2005-01-01&rft.pub=Springer+Berlin+Heidelberg&rft.isbn=9783540283256&rft.issn=0302-9743&rft.eissn=1611-3349&rft.spage=438&rft.epage=441&rft_id=info:doi/10.1007%2F11539117_64
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0302-9743&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0302-9743&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0302-9743&client=summon