Eigenspectra Versus Eigenfaces: Classification with a Kernel-Based Nonlinear Representor
This short paper proposes a face recognition scheme, wherein features called eigenspectra are extracted successively by the fast Fourier transform (FFT) and the principle component analysis (PCA) and classification results are obtained by a classifier called kernel-based nonlinear representor (KNR)....
Saved in:
Published in | Advances in Natural Computation pp. 660 - 663 |
---|---|
Main Authors | , |
Format | Book Chapter Conference Proceeding |
Language | English |
Published |
Berlin, Heidelberg
Springer Berlin Heidelberg
2005
Springer |
Series | Lecture Notes in Computer Science |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | This short paper proposes a face recognition scheme, wherein features called eigenspectra are extracted successively by the fast Fourier transform (FFT) and the principle component analysis (PCA) and classification results are obtained by a classifier called kernel-based nonlinear representor (KNR). Its effectiveness is shown by experimental results on the Olivetti Research Laboratory (ORL) face database. |
---|---|
Bibliography: | Supported by the Key Project of Chinese Ministry of Education (No.105150). Thanks to Prof. H. Ogawa of Tokyo Institute of Technology for helpful discussions. |
ISBN: | 3540283234 9783540283232 |
ISSN: | 0302-9743 1611-3349 |
DOI: | 10.1007/11539087_83 |