Sulfur‐Vacancy Engineering Accelerates Rapid Surface Reconstruction in Ni‐Co Bimetal Sulfide Nanosheet for Urea Oxidation Electrocatalysis

Developing a highly efficient catalyst for electrocatalytic urea oxidation reaction (UOR) is not only beneficial for the degradation of urea pollutants in wastewater but also provides a benign route for hydrogen production. Herein, a sulfur‐vacancy (Sv) engineering is proposed to accelerate the form...

Full description

Saved in:
Bibliographic Details
Published inSmall (Weinheim an der Bergstrasse, Germany) Vol. 20; no. 42; pp. e2403311 - n/a
Main Authors Li, Haoyuan, Pu, Yujuan, Li, Wenhao, Yan, Zitong, Deng, Ruojing, Shi, Fanyue, Zhao, Chenhao, Zhang, Youkui, Duan, Tao
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 01.10.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Developing a highly efficient catalyst for electrocatalytic urea oxidation reaction (UOR) is not only beneficial for the degradation of urea pollutants in wastewater but also provides a benign route for hydrogen production. Herein, a sulfur‐vacancy (Sv) engineering is proposed to accelerate the formation of metal (oxy)hydroxide on the surface of Ni‐Co bimetal sulfide nanosheet arrays on nickel foam (Sv‐CoNiS@NF) for boosting the urea oxidation electrocatalysis. As a result, the obtained Sv‐CoNiS@NF demonstrates an outstanding electrocatalytic UOR performance, which requires a low potential of only 1.397 V versus the reversible hydrogen electrode to achieve the current density of 100 mA cm−2. The ex situ Raman spectra and density functional theory calculations reveal the key roles of the Sv site and Co9S8 in promoting the electrocatalytic UOR performance. This work provides a new strategy for accelerating the transformation of electrocatalysts to active metallic (oxy)hydroxide for urea electrolysis via engineering the surface vacancies. This work proposes a sulfur‐vacancy (Sv) engineering to accelerate the formation of metal (oxy)hydroxide on the surface of Ni‐Co bimetal sulfide nanosheet arrays on nickel foam for boosting urea oxidation electrocatalysis. The abundant Sv combining the unique heterointerface structure in the CoNiS nanosheet not only provides reaction sites but also regulates the electron structure for electrocatalytic urea oxidation.
AbstractList Developing a highly efficient catalyst for electrocatalytic urea oxidation reaction (UOR) is not only beneficial for the degradation of urea pollutants in wastewater but also provides a benign route for hydrogen production. Herein, a sulfur‐vacancy (Sv) engineering is proposed to accelerate the formation of metal (oxy)hydroxide on the surface of Ni‐Co bimetal sulfide nanosheet arrays on nickel foam (Sv‐CoNiS@NF) for boosting the urea oxidation electrocatalysis. As a result, the obtained Sv‐CoNiS@NF demonstrates an outstanding electrocatalytic UOR performance, which requires a low potential of only 1.397 V versus the reversible hydrogen electrode to achieve the current density of 100 mA cm−2. The ex situ Raman spectra and density functional theory calculations reveal the key roles of the Sv site and Co9S8 in promoting the electrocatalytic UOR performance. This work provides a new strategy for accelerating the transformation of electrocatalysts to active metallic (oxy)hydroxide for urea electrolysis via engineering the surface vacancies.
Developing a highly efficient catalyst for electrocatalytic urea oxidation reaction (UOR) is not only beneficial for the degradation of urea pollutants in wastewater but also provides a benign route for hydrogen production. Herein, a sulfur-vacancy (Sv) engineering is proposed to accelerate the formation of metal (oxy)hydroxide on the surface of Ni-Co bimetal sulfide nanosheet arrays on nickel foam (Sv-CoNiS@NF) for boosting the urea oxidation electrocatalysis. As a result, the obtained Sv-CoNiS@NF demonstrates an outstanding electrocatalytic UOR performance, which requires a low potential of only 1.397 V versus the reversible hydrogen electrode to achieve the current density of 100 mA cm-2. The ex situ Raman spectra and density functional theory calculations reveal the key roles of the Sv site and Co9S8 in promoting the electrocatalytic UOR performance. This work provides a new strategy for accelerating the transformation of electrocatalysts to active metallic (oxy)hydroxide for urea electrolysis via engineering the surface vacancies.Developing a highly efficient catalyst for electrocatalytic urea oxidation reaction (UOR) is not only beneficial for the degradation of urea pollutants in wastewater but also provides a benign route for hydrogen production. Herein, a sulfur-vacancy (Sv) engineering is proposed to accelerate the formation of metal (oxy)hydroxide on the surface of Ni-Co bimetal sulfide nanosheet arrays on nickel foam (Sv-CoNiS@NF) for boosting the urea oxidation electrocatalysis. As a result, the obtained Sv-CoNiS@NF demonstrates an outstanding electrocatalytic UOR performance, which requires a low potential of only 1.397 V versus the reversible hydrogen electrode to achieve the current density of 100 mA cm-2. The ex situ Raman spectra and density functional theory calculations reveal the key roles of the Sv site and Co9S8 in promoting the electrocatalytic UOR performance. This work provides a new strategy for accelerating the transformation of electrocatalysts to active metallic (oxy)hydroxide for urea electrolysis via engineering the surface vacancies.
Developing a highly efficient catalyst for electrocatalytic urea oxidation reaction (UOR) is not only beneficial for the degradation of urea pollutants in wastewater but also provides a benign route for hydrogen production. Herein, a sulfur-vacancy (S ) engineering is proposed to accelerate the formation of metal (oxy)hydroxide on the surface of Ni-Co bimetal sulfide nanosheet arrays on nickel foam (S -CoNiS@NF) for boosting the urea oxidation electrocatalysis. As a result, the obtained S -CoNiS@NF demonstrates an outstanding electrocatalytic UOR performance, which requires a low potential of only 1.397 V versus the reversible hydrogen electrode to achieve the current density of 100 mA cm . The ex situ Raman spectra and density functional theory calculations reveal the key roles of the S site and Co S in promoting the electrocatalytic UOR performance. This work provides a new strategy for accelerating the transformation of electrocatalysts to active metallic (oxy)hydroxide for urea electrolysis via engineering the surface vacancies.
Developing a highly efficient catalyst for electrocatalytic urea oxidation reaction (UOR) is not only beneficial for the degradation of urea pollutants in wastewater but also provides a benign route for hydrogen production. Herein, a sulfur‐vacancy (Sv) engineering is proposed to accelerate the formation of metal (oxy)hydroxide on the surface of Ni‐Co bimetal sulfide nanosheet arrays on nickel foam (Sv‐CoNiS@NF) for boosting the urea oxidation electrocatalysis. As a result, the obtained Sv‐CoNiS@NF demonstrates an outstanding electrocatalytic UOR performance, which requires a low potential of only 1.397 V versus the reversible hydrogen electrode to achieve the current density of 100 mA cm−2. The ex situ Raman spectra and density functional theory calculations reveal the key roles of the Sv site and Co9S8 in promoting the electrocatalytic UOR performance. This work provides a new strategy for accelerating the transformation of electrocatalysts to active metallic (oxy)hydroxide for urea electrolysis via engineering the surface vacancies. This work proposes a sulfur‐vacancy (Sv) engineering to accelerate the formation of metal (oxy)hydroxide on the surface of Ni‐Co bimetal sulfide nanosheet arrays on nickel foam for boosting urea oxidation electrocatalysis. The abundant Sv combining the unique heterointerface structure in the CoNiS nanosheet not only provides reaction sites but also regulates the electron structure for electrocatalytic urea oxidation.
Author Duan, Tao
Li, Wenhao
Li, Haoyuan
Yan, Zitong
Deng, Ruojing
Zhang, Youkui
Shi, Fanyue
Zhao, Chenhao
Pu, Yujuan
Author_xml – sequence: 1
  givenname: Haoyuan
  surname: Li
  fullname: Li, Haoyuan
  organization: Southwest University of Science and Technology
– sequence: 2
  givenname: Yujuan
  surname: Pu
  fullname: Pu, Yujuan
  email: yujuanpu@stu.cqu.edu.cn
  organization: Chongqing University
– sequence: 3
  givenname: Wenhao
  surname: Li
  fullname: Li, Wenhao
  organization: Southwest University of Science and Technology
– sequence: 4
  givenname: Zitong
  surname: Yan
  fullname: Yan, Zitong
  organization: Southwest University of Science and Technology
– sequence: 5
  givenname: Ruojing
  surname: Deng
  fullname: Deng, Ruojing
  organization: Southwest University of Science and Technology
– sequence: 6
  givenname: Fanyue
  surname: Shi
  fullname: Shi, Fanyue
  organization: Southwest University of Science and Technology
– sequence: 7
  givenname: Chenhao
  surname: Zhao
  fullname: Zhao, Chenhao
  organization: Southwest University of Science and Technology
– sequence: 8
  givenname: Youkui
  orcidid: 0000-0003-4258-5820
  surname: Zhang
  fullname: Zhang, Youkui
  email: zyk224@mail.ustc.edu.cn
  organization: Southwest University of Science and Technology
– sequence: 9
  givenname: Tao
  surname: Duan
  fullname: Duan, Tao
  organization: Southwest University of Science and Technology
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38874118$$D View this record in MEDLINE/PubMed
BookMark eNpdkU1v1DAQhi1URD_gyhFZ4sJli8dOYudYVsuHtLRSl3KNJs6kuHLsxU4Ee-MXIH4jv4QsLXvgNDOaZ17NzHvKjkIMxNhzEOcghHydB-_PpZCFUArgETuBCtSiMrI-OuQgjtlpzndCKJCFfsKOlTG6ADAn7Odm8v2Ufv_49RktBrvjq3DrAlFy4ZZfWEueEo6U-TVuXcc3U-rREr8mG0Me02RHFwN3gV-6WWQZ-Rs30Iie74VdR_wSQ8xfiEbex8RvEiG_-u46_Du38mTHFC3OE7vs8lP2uEef6dlDPGM3b1eflu8X66t3H5YX68VWQg0L6BClUjXpwlRlbwsqSCMRdR1SWVPdYm1KsrbVtrKyNC32HWhsy9ZoBUqdsVf3utsUv06Ux2Zweb7VY6A45UaJyugSoKhm9OV_6F2cUpi3a-aPa2NKqcVMvXigpnagrtkmN2DaNf8-PQP1PfDNedod-iCavY_N3sfm4GOz-bheHyr1B318l-8
ContentType Journal Article
Copyright 2024 Wiley‐VCH GmbH
2024 Wiley‐VCH GmbH.
Copyright_xml – notice: 2024 Wiley‐VCH GmbH
– notice: 2024 Wiley‐VCH GmbH.
DBID NPM
7SR
7U5
8BQ
8FD
JG9
L7M
7X8
DOI 10.1002/smll.202403311
DatabaseName PubMed
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitle PubMed
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
MEDLINE - Academic
DatabaseTitleList Materials Research Database
MEDLINE - Academic
PubMed

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1613-6829
EndPage n/a
ExternalDocumentID 38874118
SMLL202403311
Genre article
Journal Article
GrantInformation_xml – fundername: Southwest University of Science and Technology
  funderid: 20fksy12; 21fksy15
– fundername: National Natural Science Foundation of China
  funderid: 21902129
– fundername: Sichuan Province Science and Technology Support Program
  funderid: 2022NSFSC0260; 2021JDTD0019
– fundername: Sichuan Province Science and Technology Support Program
  grantid: 2022NSFSC0260
– fundername: National Natural Science Foundation of China
  grantid: 21902129
– fundername: Southwest University of Science and Technology
  grantid: 20fksy12
– fundername: Southwest University of Science and Technology
  grantid: 21fksy15
– fundername: Sichuan Province Science and Technology Support Program
  grantid: 2021JDTD0019
GroupedDBID ---
05W
0R~
123
1L6
1OC
33P
3SF
3WU
4.4
50Y
52U
53G
5VS
66C
8-0
8-1
8UM
A00
AAESR
AAEVG
AAHHS
AAIHA
AANLZ
AAONW
AAXRX
AAZKR
ABCUV
ABIJN
ABJNI
ABLJU
ABRTZ
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ATUGU
AUFTA
AZVAB
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BOGZA
BRXPI
CS3
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
F5P
G-S
GNP
HBH
HGLYW
HHY
HHZ
HZ~
IX1
KQQ
LATKE
LAW
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
MY~
O66
O9-
OIG
P2P
P2W
P4E
QRW
R.K
RIWAO
RNS
ROL
RWI
RX1
RYL
SUPJJ
V2E
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WXSBR
WYISQ
WYJ
XV2
Y6R
ZZTAW
~S-
31~
AASGY
AAYOK
ACBWZ
ASPBG
AVWKF
AZFZN
BDRZF
EBD
EJD
EMOBN
FEDTE
GODZA
HVGLF
NPM
SV3
7SR
7U5
8BQ
8FD
JG9
L7M
7X8
ID FETCH-LOGICAL-p2191-1daa2339e74865fc4e4e7aeeeddae59e9ba985eccb7c6c258bafd17ab5b873133
IEDL.DBID DR2
ISSN 1613-6810
1613-6829
IngestDate Fri Oct 18 23:48:18 EDT 2024
Fri Oct 18 23:19:55 EDT 2024
Sat Nov 02 12:29:57 EDT 2024
Fri Oct 18 09:55:05 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 42
Keywords electrochemical reconstruction
Raman spectroscopy
urea oxidation electrocatalysis
sulfur‐vacancy
Language English
License 2024 Wiley‐VCH GmbH.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-p2191-1daa2339e74865fc4e4e7aeeeddae59e9ba985eccb7c6c258bafd17ab5b873133
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-4258-5820
PMID 38874118
PQID 3117885270
PQPubID 1046358
PageCount 9
ParticipantIDs proquest_miscellaneous_3068751146
proquest_journals_3117885270
pubmed_primary_38874118
wiley_primary_10_1002_smll_202403311_SMLL202403311
PublicationCentury 2000
PublicationDate 2024-10-01
PublicationDateYYYYMMDD 2024-10-01
PublicationDate_xml – month: 10
  year: 2024
  text: 2024-10-01
  day: 01
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Small (Weinheim an der Bergstrasse, Germany)
PublicationTitleAlternate Small
PublicationYear 2024
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2019; 7
2021; 8
2021; 6
2023; 35
2023; 13
2023; 17
2023; 5
2023; 580
2023; 6
2023; 16
2019; 10
2023; 19
2015; 54
2019; 58
2022; 67
2019; 248
2020; 59
2020; 12
2024; 12
2020; 11
2022; 435
2021; 14
2023; 62
2021; 32
2020; 3
2015; 137
2020; 30
2022; 61
2021; 411
2022; 7
2018; 376
2022; 9
2022; 12
2023; 456
2021; 591
2021; 870
2022; 10
2022; 32
2022; 449
2018; 11
2021; 60
2018; 10
2022; 18
References_xml – volume: 11
  start-page: 1890
  year: 2018
  publication-title: Energy Environ. Sci.
– volume: 17
  year: 2023
  publication-title: ACS Nano
– volume: 7
  start-page: 4198
  year: 2022
  publication-title: ACS Energy Lett.
– volume: 11
  start-page: 5462
  year: 2020
  publication-title: Nat. Commun.
– volume: 18
  year: 2022
  publication-title: Small
– volume: 5
  year: 2023
  publication-title: Carbon Energy
– volume: 32
  year: 2022
  publication-title: Adv. Funct. Mater.
– volume: 60
  year: 2021
  publication-title: Angew. Chem., Int. Ed.
– volume: 411
  year: 2021
  publication-title: Chem. Eng. J.
– volume: 67
  start-page: 1763
  year: 2022
  publication-title: Sci. Bull.
– volume: 449
  year: 2022
  publication-title: Chem. Eng. J.
– volume: 870
  year: 2021
  publication-title: J. Alloys Compd.
– volume: 13
  start-page: 4091
  year: 2023
  publication-title: ACS Catal.
– volume: 14
  start-page: 6494
  year: 2021
  publication-title: Energy Environ. Sci.
– volume: 137
  year: 2015
  publication-title: J. Am. Chem. Soc.
– volume: 10
  start-page: 3367
  year: 2019
  publication-title: Nat. Commun.
– volume: 35
  year: 2023
  publication-title: Adv. Mater.
– volume: 12
  year: 2020
  publication-title: Nanoscale
– volume: 248
  start-page: 193
  year: 2019
  publication-title: Appl. Catal. B.
– volume: 59
  start-page: 8255
  year: 2020
  publication-title: Angew. Chem., Int. Ed.
– volume: 376
  start-page: 42
  year: 2018
  publication-title: Top. Curr. Chem.
– volume: 12
  start-page: 569
  year: 2022
  publication-title: ACS Catal.
– volume: 61
  year: 2022
  publication-title: Angew. Chem., Int. Ed.
– volume: 3
  start-page: 7651
  year: 2020
  publication-title: ACS Appl. Nano Mater.
– volume: 456
  year: 2023
  publication-title: Chem. Eng. J.
– volume: 11
  start-page: 5075
  year: 2020
  publication-title: Nat. Commun.
– volume: 435
  year: 2022
  publication-title: Chem. Eng. J.
– volume: 12
  start-page: 998
  year: 2024
  publication-title: ACS Sustainable Chem. Eng.
– volume: 62
  year: 2023
  publication-title: Angew. Chem., Int. Ed.
– volume: 54
  start-page: 8722
  year: 2015
  publication-title: Angew. Chem., Int. Ed.
– volume: 30
  year: 2020
  publication-title: Adv. Funct. Mater.
– volume: 32
  year: 2021
  publication-title: J Mater Sci‐Mater El
– volume: 6
  start-page: 904
  year: 2021
  publication-title: Nat. Energy.
– volume: 58
  year: 2019
  publication-title: Angew. Chem., Int. Ed.
– volume: 591
  start-page: 148
  year: 2021
  publication-title: J. Colloid Interface Sci.
– volume: 60
  start-page: 7297
  year: 2021
  publication-title: Angew. Chem., Int. Ed.
– volume: 6
  year: 2023
  publication-title: ACS Appl. Nano Mater.
– volume: 7
  year: 2019
  publication-title: J. Mater. Chem. A.
– volume: 10
  year: 2022
  publication-title: J. Mater. Chem. A.
– volume: 580
  year: 2023
  publication-title: J. Power Sources.
– volume: 19
  year: 2023
  publication-title: Small
– volume: 12
  year: 2020
  publication-title: ACS Appl. Mater. Interfaces.
– volume: 16
  start-page: 6015
  year: 2023
  publication-title: Energy Environ. Sci.
– volume: 12
  year: 2022
  publication-title: Adv. Energy Mater.
– volume: 10
  year: 2018
  publication-title: ACS Appl. Mater. Interfaces.
– volume: 9
  year: 2022
  publication-title: ChemElectroChem
– volume: 8
  year: 2021
  publication-title: Adv. Sci.
SSID ssj0031247
Score 2.49767
Snippet Developing a highly efficient catalyst for electrocatalytic urea oxidation reaction (UOR) is not only beneficial for the degradation of urea pollutants in...
SourceID proquest
pubmed
wiley
SourceType Aggregation Database
Index Database
Publisher
StartPage e2403311
SubjectTerms Bimetals
Cobalt sulfide
Density functional theory
Electrocatalysis
Electrocatalysts
electrochemical reconstruction
Electrolysis
Hydrogen production
Metal foams
Nanosheets
Oxidation
Raman spectra
Raman spectroscopy
Sulfur
sulfur‐vacancy
urea oxidation electrocatalysis
Ureas
Title Sulfur‐Vacancy Engineering Accelerates Rapid Surface Reconstruction in Ni‐Co Bimetal Sulfide Nanosheet for Urea Oxidation Electrocatalysis
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsmll.202403311
https://www.ncbi.nlm.nih.gov/pubmed/38874118
https://www.proquest.com/docview/3117885270
https://www.proquest.com/docview/3068751146
Volume 20
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwELZQT3Dg_2ehICNxTZvETuwcS2lVobZIXRb1Fo2diYhos6tmIyFOPAHiGXkSZuLddIs4wS2RYyvJeGa-sT3fCPGG4mJb-ERHSvs80jUmEQABOaV8DNZrl9WcnHxymh_N9Pvz7Hwjiz_wQ4wLbqwZg71mBQfX7V6ThnaXF7x1wHxyakjuTZThM13vzkb-KEXOa6iuQj4rYuKtNWtjnO7e7P43fHkTrg7-5vCegPWbhmMmX3b6pdvx3_4gcfyfT7kv7q7AqNwLs-eBuIXtQ3Fng6Lwkfgx7S_q_urX95-fwLMllhvNcs97clvMNtHJM1g0lZz2VzV4lBzWXpPTyqaVpw0Nsj-Xb5tLJMQveeCmQkn2fd59RlxKws9yRiBWfvjahFJP8iBU6RkWmZg75bGYHR583D-KVjUcogXZwiRKKoBUqQKNtjnJXaNGA0ieuQLMCiwcFDajeeSMz32aWQd1lRhwmbNGUQD9RGy18xafCWlsXSQaM7RQa1OnBaTa-9g6xyu5rpqI7bUMy5UidiX9Twrys9TEE_F6bCYV4n0RaHHe0zNxTlEbp2dPxNMg-3IRuD5KRUZYUxA2EekgwbEh0D2nJcuuHGVXTk-Oj8e75__S6YW4zdfhwOC22CJJ4UsCPkv3apjcvwGumQD8
link.rule.ids 315,783,787,1378,27936,27937,46306,46730
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwEB6hcgAO_FMWChiJa9okdhLnWEqrBXYXqdtF3CLbmYiINrvqbiTEiSdAPCNPwky8m7aIExwTx1aS8cx8M7a_AXhFcbHOXaQCqVwaqAqjwBgCclK60GinbFLx4eTxJB3O1LtPyWY3IZ-F8fwQfcKNNaOz16zgnJDeu2ANXZ6d8toBE8pJPt17nXRecvWGN8c9g5Qk99XVVyGvFTD11oa3MYz3rvb_G8K8Clg7j3N0B-zmXf1Gky-77cruum9_0Dj-18fchdtrPCr2_QS6B9ewuQ-3LrEUPoAf0_a0as9_ff_50Tg2xuJSs9h3jjwXE04sxbFZ1KWYtueVcSg4sr3gpxV1IyY1DXIwF6_rMyTQL3jgukRBJn6-_Iy4EgShxYxwrPjwtfbVnsShL9TT5ZmYPuUhzI4OTw6GwbqMQ7AgcxgFUWlMLGWOmdIpiV6hwswgOefSYJJjbk2uE5pKNnOpixNtTVVGmbGJ1ZmkGPoRbDXzBh-DyHSVRwoT1KZSWRXnJlbOhdpaTubacgA7GyEWa11cFvQ_Kc5P4iwcwMu-mbSIl0ZMg_OWnglTCtz4hPYAtr3wi4Wn-ygk2WFFcdgA4k6EfYNnfI4Lll3Ry66Yjkej_urJv3R6ATeGJ-NRMXo7ef8UbvJ9v39wB7ZIaviMcNDKPu9m-m-gvwUU
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwELaqIlVw4Kf8LbTgSlzTJrGTOMfSdlXodou6LOotsp2xiGizq-5GQpx4AsQz8iTMxLvpFnGCY-LYSjKemW9szzeMvcG4WOU2koGQNg2kgyjQGoGcEDbUykqTOEpOPh2mx2P5_iK5WMni9_wQ3YIbaUZrr0nBp6XbuyENnV1d0tYB8ckJSu69I1OEvwSLzjsCKYHeqy2vgk4rIOatJW1jGO_d7v83gHkbr7YOp_-A6eWr-nMmX3abudm13_5gcfyfb3nI7i_QKN_30-cRW4N6k91b4Sh8zH6MmkvXXP_6_vOTtmSK-Uoz37cW_RbRTcz4uZ5WJR81105b4BTX3rDT8qrmwwoHOZjwt9UVIOTnNHBVAkcDP5l9BphzBNB8jCiWn32tfK0nfuTL9LSrTESe8oSN-0cfD46DRRGHYIrGMAqiUutYiBwyqVIUvAQJmQZ0zaWGJIfc6FwlOJFMZlMbJ8poV0aZNolRmcAI-ilbryc1PGc8Uy6PJCSgtJOZi3MdS2tDZQwt5Zqyx7aWMiwWmjgr8H9ilJ_EWdhjO10z6hBtjOgaJg0-E6YYtlF-do8987Ivpp7soxBohSVGYT0WtxLsGjzfc1yQ7IpOdsXodDDorl78S6fXbOPDYb8YvBuevGR36bY_PLjF1lFosI0gaG5etfP8N5qLA8M
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sulfur-Vacancy+Engineering+Accelerates+Rapid+Surface+Reconstruction+in+Ni-Co+Bimetal+Sulfide+Nanosheet+for+Urea+Oxidation+Electrocatalysis&rft.jtitle=Small+%28Weinheim+an+der+Bergstrasse%2C+Germany%29&rft.au=Li%2C+Haoyuan&rft.au=Pu%2C+Yujuan&rft.au=Li%2C+Wenhao&rft.au=Yan%2C+Zitong&rft.date=2024-10-01&rft.eissn=1613-6829&rft.volume=20&rft.issue=42&rft.spage=e2403311&rft_id=info:doi/10.1002%2Fsmll.202403311&rft_id=info%3Apmid%2F38874118&rft.externalDocID=38874118
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1613-6810&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1613-6810&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1613-6810&client=summon