Sulfur‐Vacancy Engineering Accelerates Rapid Surface Reconstruction in Ni‐Co Bimetal Sulfide Nanosheet for Urea Oxidation Electrocatalysis
Developing a highly efficient catalyst for electrocatalytic urea oxidation reaction (UOR) is not only beneficial for the degradation of urea pollutants in wastewater but also provides a benign route for hydrogen production. Herein, a sulfur‐vacancy (Sv) engineering is proposed to accelerate the form...
Saved in:
Published in | Small (Weinheim an der Bergstrasse, Germany) Vol. 20; no. 42; pp. e2403311 - n/a |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
01.10.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Developing a highly efficient catalyst for electrocatalytic urea oxidation reaction (UOR) is not only beneficial for the degradation of urea pollutants in wastewater but also provides a benign route for hydrogen production. Herein, a sulfur‐vacancy (Sv) engineering is proposed to accelerate the formation of metal (oxy)hydroxide on the surface of Ni‐Co bimetal sulfide nanosheet arrays on nickel foam (Sv‐CoNiS@NF) for boosting the urea oxidation electrocatalysis. As a result, the obtained Sv‐CoNiS@NF demonstrates an outstanding electrocatalytic UOR performance, which requires a low potential of only 1.397 V versus the reversible hydrogen electrode to achieve the current density of 100 mA cm−2. The ex situ Raman spectra and density functional theory calculations reveal the key roles of the Sv site and Co9S8 in promoting the electrocatalytic UOR performance. This work provides a new strategy for accelerating the transformation of electrocatalysts to active metallic (oxy)hydroxide for urea electrolysis via engineering the surface vacancies.
This work proposes a sulfur‐vacancy (Sv) engineering to accelerate the formation of metal (oxy)hydroxide on the surface of Ni‐Co bimetal sulfide nanosheet arrays on nickel foam for boosting urea oxidation electrocatalysis. The abundant Sv combining the unique heterointerface structure in the CoNiS nanosheet not only provides reaction sites but also regulates the electron structure for electrocatalytic urea oxidation. |
---|---|
AbstractList | Developing a highly efficient catalyst for electrocatalytic urea oxidation reaction (UOR) is not only beneficial for the degradation of urea pollutants in wastewater but also provides a benign route for hydrogen production. Herein, a sulfur‐vacancy (Sv) engineering is proposed to accelerate the formation of metal (oxy)hydroxide on the surface of Ni‐Co bimetal sulfide nanosheet arrays on nickel foam (Sv‐CoNiS@NF) for boosting the urea oxidation electrocatalysis. As a result, the obtained Sv‐CoNiS@NF demonstrates an outstanding electrocatalytic UOR performance, which requires a low potential of only 1.397 V versus the reversible hydrogen electrode to achieve the current density of 100 mA cm−2. The ex situ Raman spectra and density functional theory calculations reveal the key roles of the Sv site and Co9S8 in promoting the electrocatalytic UOR performance. This work provides a new strategy for accelerating the transformation of electrocatalysts to active metallic (oxy)hydroxide for urea electrolysis via engineering the surface vacancies. Developing a highly efficient catalyst for electrocatalytic urea oxidation reaction (UOR) is not only beneficial for the degradation of urea pollutants in wastewater but also provides a benign route for hydrogen production. Herein, a sulfur-vacancy (Sv) engineering is proposed to accelerate the formation of metal (oxy)hydroxide on the surface of Ni-Co bimetal sulfide nanosheet arrays on nickel foam (Sv-CoNiS@NF) for boosting the urea oxidation electrocatalysis. As a result, the obtained Sv-CoNiS@NF demonstrates an outstanding electrocatalytic UOR performance, which requires a low potential of only 1.397 V versus the reversible hydrogen electrode to achieve the current density of 100 mA cm-2. The ex situ Raman spectra and density functional theory calculations reveal the key roles of the Sv site and Co9S8 in promoting the electrocatalytic UOR performance. This work provides a new strategy for accelerating the transformation of electrocatalysts to active metallic (oxy)hydroxide for urea electrolysis via engineering the surface vacancies.Developing a highly efficient catalyst for electrocatalytic urea oxidation reaction (UOR) is not only beneficial for the degradation of urea pollutants in wastewater but also provides a benign route for hydrogen production. Herein, a sulfur-vacancy (Sv) engineering is proposed to accelerate the formation of metal (oxy)hydroxide on the surface of Ni-Co bimetal sulfide nanosheet arrays on nickel foam (Sv-CoNiS@NF) for boosting the urea oxidation electrocatalysis. As a result, the obtained Sv-CoNiS@NF demonstrates an outstanding electrocatalytic UOR performance, which requires a low potential of only 1.397 V versus the reversible hydrogen electrode to achieve the current density of 100 mA cm-2. The ex situ Raman spectra and density functional theory calculations reveal the key roles of the Sv site and Co9S8 in promoting the electrocatalytic UOR performance. This work provides a new strategy for accelerating the transformation of electrocatalysts to active metallic (oxy)hydroxide for urea electrolysis via engineering the surface vacancies. Developing a highly efficient catalyst for electrocatalytic urea oxidation reaction (UOR) is not only beneficial for the degradation of urea pollutants in wastewater but also provides a benign route for hydrogen production. Herein, a sulfur-vacancy (S ) engineering is proposed to accelerate the formation of metal (oxy)hydroxide on the surface of Ni-Co bimetal sulfide nanosheet arrays on nickel foam (S -CoNiS@NF) for boosting the urea oxidation electrocatalysis. As a result, the obtained S -CoNiS@NF demonstrates an outstanding electrocatalytic UOR performance, which requires a low potential of only 1.397 V versus the reversible hydrogen electrode to achieve the current density of 100 mA cm . The ex situ Raman spectra and density functional theory calculations reveal the key roles of the S site and Co S in promoting the electrocatalytic UOR performance. This work provides a new strategy for accelerating the transformation of electrocatalysts to active metallic (oxy)hydroxide for urea electrolysis via engineering the surface vacancies. Developing a highly efficient catalyst for electrocatalytic urea oxidation reaction (UOR) is not only beneficial for the degradation of urea pollutants in wastewater but also provides a benign route for hydrogen production. Herein, a sulfur‐vacancy (Sv) engineering is proposed to accelerate the formation of metal (oxy)hydroxide on the surface of Ni‐Co bimetal sulfide nanosheet arrays on nickel foam (Sv‐CoNiS@NF) for boosting the urea oxidation electrocatalysis. As a result, the obtained Sv‐CoNiS@NF demonstrates an outstanding electrocatalytic UOR performance, which requires a low potential of only 1.397 V versus the reversible hydrogen electrode to achieve the current density of 100 mA cm−2. The ex situ Raman spectra and density functional theory calculations reveal the key roles of the Sv site and Co9S8 in promoting the electrocatalytic UOR performance. This work provides a new strategy for accelerating the transformation of electrocatalysts to active metallic (oxy)hydroxide for urea electrolysis via engineering the surface vacancies. This work proposes a sulfur‐vacancy (Sv) engineering to accelerate the formation of metal (oxy)hydroxide on the surface of Ni‐Co bimetal sulfide nanosheet arrays on nickel foam for boosting urea oxidation electrocatalysis. The abundant Sv combining the unique heterointerface structure in the CoNiS nanosheet not only provides reaction sites but also regulates the electron structure for electrocatalytic urea oxidation. |
Author | Duan, Tao Li, Wenhao Li, Haoyuan Yan, Zitong Deng, Ruojing Zhang, Youkui Shi, Fanyue Zhao, Chenhao Pu, Yujuan |
Author_xml | – sequence: 1 givenname: Haoyuan surname: Li fullname: Li, Haoyuan organization: Southwest University of Science and Technology – sequence: 2 givenname: Yujuan surname: Pu fullname: Pu, Yujuan email: yujuanpu@stu.cqu.edu.cn organization: Chongqing University – sequence: 3 givenname: Wenhao surname: Li fullname: Li, Wenhao organization: Southwest University of Science and Technology – sequence: 4 givenname: Zitong surname: Yan fullname: Yan, Zitong organization: Southwest University of Science and Technology – sequence: 5 givenname: Ruojing surname: Deng fullname: Deng, Ruojing organization: Southwest University of Science and Technology – sequence: 6 givenname: Fanyue surname: Shi fullname: Shi, Fanyue organization: Southwest University of Science and Technology – sequence: 7 givenname: Chenhao surname: Zhao fullname: Zhao, Chenhao organization: Southwest University of Science and Technology – sequence: 8 givenname: Youkui orcidid: 0000-0003-4258-5820 surname: Zhang fullname: Zhang, Youkui email: zyk224@mail.ustc.edu.cn organization: Southwest University of Science and Technology – sequence: 9 givenname: Tao surname: Duan fullname: Duan, Tao organization: Southwest University of Science and Technology |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38874118$$D View this record in MEDLINE/PubMed |
BookMark | eNpdkU1v1DAQhi1URD_gyhFZ4sJli8dOYudYVsuHtLRSl3KNJs6kuHLsxU4Ee-MXIH4jv4QsLXvgNDOaZ17NzHvKjkIMxNhzEOcghHydB-_PpZCFUArgETuBCtSiMrI-OuQgjtlpzndCKJCFfsKOlTG6ADAn7Odm8v2Ufv_49RktBrvjq3DrAlFy4ZZfWEueEo6U-TVuXcc3U-rREr8mG0Me02RHFwN3gV-6WWQZ-Rs30Iie74VdR_wSQ8xfiEbex8RvEiG_-u46_Du38mTHFC3OE7vs8lP2uEef6dlDPGM3b1eflu8X66t3H5YX68VWQg0L6BClUjXpwlRlbwsqSCMRdR1SWVPdYm1KsrbVtrKyNC32HWhsy9ZoBUqdsVf3utsUv06Ux2Zweb7VY6A45UaJyugSoKhm9OV_6F2cUpi3a-aPa2NKqcVMvXigpnagrtkmN2DaNf8-PQP1PfDNedod-iCavY_N3sfm4GOz-bheHyr1B318l-8 |
ContentType | Journal Article |
Copyright | 2024 Wiley‐VCH GmbH 2024 Wiley‐VCH GmbH. |
Copyright_xml | – notice: 2024 Wiley‐VCH GmbH – notice: 2024 Wiley‐VCH GmbH. |
DBID | NPM 7SR 7U5 8BQ 8FD JG9 L7M 7X8 |
DOI | 10.1002/smll.202403311 |
DatabaseName | PubMed Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace MEDLINE - Academic |
DatabaseTitle | PubMed Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX MEDLINE - Academic |
DatabaseTitleList | Materials Research Database MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1613-6829 |
EndPage | n/a |
ExternalDocumentID | 38874118 SMLL202403311 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: Southwest University of Science and Technology funderid: 20fksy12; 21fksy15 – fundername: National Natural Science Foundation of China funderid: 21902129 – fundername: Sichuan Province Science and Technology Support Program funderid: 2022NSFSC0260; 2021JDTD0019 – fundername: Sichuan Province Science and Technology Support Program grantid: 2022NSFSC0260 – fundername: National Natural Science Foundation of China grantid: 21902129 – fundername: Southwest University of Science and Technology grantid: 20fksy12 – fundername: Southwest University of Science and Technology grantid: 21fksy15 – fundername: Sichuan Province Science and Technology Support Program grantid: 2021JDTD0019 |
GroupedDBID | --- 05W 0R~ 123 1L6 1OC 33P 3SF 3WU 4.4 50Y 52U 53G 5VS 66C 8-0 8-1 8UM A00 AAESR AAEVG AAHHS AAIHA AANLZ AAONW AAXRX AAZKR ABCUV ABIJN ABJNI ABLJU ABRTZ ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ATUGU AUFTA AZVAB BFHJK BHBCM BMNLL BMXJE BNHUX BOGZA BRXPI CS3 DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS F5P G-S GNP HBH HGLYW HHY HHZ HZ~ IX1 KQQ LATKE LAW LEEKS LITHE LOXES LUTES LYRES MEWTI MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM MY~ O66 O9- OIG P2P P2W P4E QRW R.K RIWAO RNS ROL RWI RX1 RYL SUPJJ V2E W99 WBKPD WFSAM WIH WIK WJL WOHZO WXSBR WYISQ WYJ XV2 Y6R ZZTAW ~S- 31~ AASGY AAYOK ACBWZ ASPBG AVWKF AZFZN BDRZF EBD EJD EMOBN FEDTE GODZA HVGLF NPM SV3 7SR 7U5 8BQ 8FD JG9 L7M 7X8 |
ID | FETCH-LOGICAL-p2191-1daa2339e74865fc4e4e7aeeeddae59e9ba985eccb7c6c258bafd17ab5b873133 |
IEDL.DBID | DR2 |
ISSN | 1613-6810 1613-6829 |
IngestDate | Fri Oct 18 23:48:18 EDT 2024 Fri Oct 18 23:19:55 EDT 2024 Sat Nov 02 12:29:57 EDT 2024 Fri Oct 18 09:55:05 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 42 |
Keywords | electrochemical reconstruction Raman spectroscopy urea oxidation electrocatalysis sulfur‐vacancy |
Language | English |
License | 2024 Wiley‐VCH GmbH. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-p2191-1daa2339e74865fc4e4e7aeeeddae59e9ba985eccb7c6c258bafd17ab5b873133 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0003-4258-5820 |
PMID | 38874118 |
PQID | 3117885270 |
PQPubID | 1046358 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_3068751146 proquest_journals_3117885270 pubmed_primary_38874118 wiley_primary_10_1002_smll_202403311_SMLL202403311 |
PublicationCentury | 2000 |
PublicationDate | 2024-10-01 |
PublicationDateYYYYMMDD | 2024-10-01 |
PublicationDate_xml | – month: 10 year: 2024 text: 2024-10-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Small (Weinheim an der Bergstrasse, Germany) |
PublicationTitleAlternate | Small |
PublicationYear | 2024 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2019; 7 2021; 8 2021; 6 2023; 35 2023; 13 2023; 17 2023; 5 2023; 580 2023; 6 2023; 16 2019; 10 2023; 19 2015; 54 2019; 58 2022; 67 2019; 248 2020; 59 2020; 12 2024; 12 2020; 11 2022; 435 2021; 14 2023; 62 2021; 32 2020; 3 2015; 137 2020; 30 2022; 61 2021; 411 2022; 7 2018; 376 2022; 9 2022; 12 2023; 456 2021; 591 2021; 870 2022; 10 2022; 32 2022; 449 2018; 11 2021; 60 2018; 10 2022; 18 |
References_xml | – volume: 11 start-page: 1890 year: 2018 publication-title: Energy Environ. Sci. – volume: 17 year: 2023 publication-title: ACS Nano – volume: 7 start-page: 4198 year: 2022 publication-title: ACS Energy Lett. – volume: 11 start-page: 5462 year: 2020 publication-title: Nat. Commun. – volume: 18 year: 2022 publication-title: Small – volume: 5 year: 2023 publication-title: Carbon Energy – volume: 32 year: 2022 publication-title: Adv. Funct. Mater. – volume: 60 year: 2021 publication-title: Angew. Chem., Int. Ed. – volume: 411 year: 2021 publication-title: Chem. Eng. J. – volume: 67 start-page: 1763 year: 2022 publication-title: Sci. Bull. – volume: 449 year: 2022 publication-title: Chem. Eng. J. – volume: 870 year: 2021 publication-title: J. Alloys Compd. – volume: 13 start-page: 4091 year: 2023 publication-title: ACS Catal. – volume: 14 start-page: 6494 year: 2021 publication-title: Energy Environ. Sci. – volume: 137 year: 2015 publication-title: J. Am. Chem. Soc. – volume: 10 start-page: 3367 year: 2019 publication-title: Nat. Commun. – volume: 35 year: 2023 publication-title: Adv. Mater. – volume: 12 year: 2020 publication-title: Nanoscale – volume: 248 start-page: 193 year: 2019 publication-title: Appl. Catal. B. – volume: 59 start-page: 8255 year: 2020 publication-title: Angew. Chem., Int. Ed. – volume: 376 start-page: 42 year: 2018 publication-title: Top. Curr. Chem. – volume: 12 start-page: 569 year: 2022 publication-title: ACS Catal. – volume: 61 year: 2022 publication-title: Angew. Chem., Int. Ed. – volume: 3 start-page: 7651 year: 2020 publication-title: ACS Appl. Nano Mater. – volume: 456 year: 2023 publication-title: Chem. Eng. J. – volume: 11 start-page: 5075 year: 2020 publication-title: Nat. Commun. – volume: 435 year: 2022 publication-title: Chem. Eng. J. – volume: 12 start-page: 998 year: 2024 publication-title: ACS Sustainable Chem. Eng. – volume: 62 year: 2023 publication-title: Angew. Chem., Int. Ed. – volume: 54 start-page: 8722 year: 2015 publication-title: Angew. Chem., Int. Ed. – volume: 30 year: 2020 publication-title: Adv. Funct. Mater. – volume: 32 year: 2021 publication-title: J Mater Sci‐Mater El – volume: 6 start-page: 904 year: 2021 publication-title: Nat. Energy. – volume: 58 year: 2019 publication-title: Angew. Chem., Int. Ed. – volume: 591 start-page: 148 year: 2021 publication-title: J. Colloid Interface Sci. – volume: 60 start-page: 7297 year: 2021 publication-title: Angew. Chem., Int. Ed. – volume: 6 year: 2023 publication-title: ACS Appl. Nano Mater. – volume: 7 year: 2019 publication-title: J. Mater. Chem. A. – volume: 10 year: 2022 publication-title: J. Mater. Chem. A. – volume: 580 year: 2023 publication-title: J. Power Sources. – volume: 19 year: 2023 publication-title: Small – volume: 12 year: 2020 publication-title: ACS Appl. Mater. Interfaces. – volume: 16 start-page: 6015 year: 2023 publication-title: Energy Environ. Sci. – volume: 12 year: 2022 publication-title: Adv. Energy Mater. – volume: 10 year: 2018 publication-title: ACS Appl. Mater. Interfaces. – volume: 9 year: 2022 publication-title: ChemElectroChem – volume: 8 year: 2021 publication-title: Adv. Sci. |
SSID | ssj0031247 |
Score | 2.49767 |
Snippet | Developing a highly efficient catalyst for electrocatalytic urea oxidation reaction (UOR) is not only beneficial for the degradation of urea pollutants in... |
SourceID | proquest pubmed wiley |
SourceType | Aggregation Database Index Database Publisher |
StartPage | e2403311 |
SubjectTerms | Bimetals Cobalt sulfide Density functional theory Electrocatalysis Electrocatalysts electrochemical reconstruction Electrolysis Hydrogen production Metal foams Nanosheets Oxidation Raman spectra Raman spectroscopy Sulfur sulfur‐vacancy urea oxidation electrocatalysis Ureas |
Title | Sulfur‐Vacancy Engineering Accelerates Rapid Surface Reconstruction in Ni‐Co Bimetal Sulfide Nanosheet for Urea Oxidation Electrocatalysis |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsmll.202403311 https://www.ncbi.nlm.nih.gov/pubmed/38874118 https://www.proquest.com/docview/3117885270 https://www.proquest.com/docview/3068751146 |
Volume | 20 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwELZQT3Dg_2ehICNxTZvETuwcS2lVobZIXRb1Fo2diYhos6tmIyFOPAHiGXkSZuLddIs4wS2RYyvJeGa-sT3fCPGG4mJb-ERHSvs80jUmEQABOaV8DNZrl9WcnHxymh_N9Pvz7Hwjiz_wQ4wLbqwZg71mBQfX7V6ThnaXF7x1wHxyakjuTZThM13vzkb-KEXOa6iuQj4rYuKtNWtjnO7e7P43fHkTrg7-5vCegPWbhmMmX3b6pdvx3_4gcfyfT7kv7q7AqNwLs-eBuIXtQ3Fng6Lwkfgx7S_q_urX95-fwLMllhvNcs97clvMNtHJM1g0lZz2VzV4lBzWXpPTyqaVpw0Nsj-Xb5tLJMQveeCmQkn2fd59RlxKws9yRiBWfvjahFJP8iBU6RkWmZg75bGYHR583D-KVjUcogXZwiRKKoBUqQKNtjnJXaNGA0ieuQLMCiwcFDajeeSMz32aWQd1lRhwmbNGUQD9RGy18xafCWlsXSQaM7RQa1OnBaTa-9g6xyu5rpqI7bUMy5UidiX9Twrys9TEE_F6bCYV4n0RaHHe0zNxTlEbp2dPxNMg-3IRuD5KRUZYUxA2EekgwbEh0D2nJcuuHGVXTk-Oj8e75__S6YW4zdfhwOC22CJJ4UsCPkv3apjcvwGumQD8 |
link.rule.ids | 315,783,787,1378,27936,27937,46306,46730 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwEB6hcgAO_FMWChiJa9okdhLnWEqrBXYXqdtF3CLbmYiINrvqbiTEiSdAPCNPwky8m7aIExwTx1aS8cx8M7a_AXhFcbHOXaQCqVwaqAqjwBgCclK60GinbFLx4eTxJB3O1LtPyWY3IZ-F8fwQfcKNNaOz16zgnJDeu2ANXZ6d8toBE8pJPt17nXRecvWGN8c9g5Qk99XVVyGvFTD11oa3MYz3rvb_G8K8Clg7j3N0B-zmXf1Gky-77cruum9_0Dj-18fchdtrPCr2_QS6B9ewuQ-3LrEUPoAf0_a0as9_ff_50Tg2xuJSs9h3jjwXE04sxbFZ1KWYtueVcSg4sr3gpxV1IyY1DXIwF6_rMyTQL3jgukRBJn6-_Iy4EgShxYxwrPjwtfbVnsShL9TT5ZmYPuUhzI4OTw6GwbqMQ7AgcxgFUWlMLGWOmdIpiV6hwswgOefSYJJjbk2uE5pKNnOpixNtTVVGmbGJ1ZmkGPoRbDXzBh-DyHSVRwoT1KZSWRXnJlbOhdpaTubacgA7GyEWa11cFvQ_Kc5P4iwcwMu-mbSIl0ZMg_OWnglTCtz4hPYAtr3wi4Wn-ygk2WFFcdgA4k6EfYNnfI4Lll3Ry66Yjkej_urJv3R6ATeGJ-NRMXo7ef8UbvJ9v39wB7ZIaviMcNDKPu9m-m-gvwUU |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwELaqIlVw4Kf8LbTgSlzTJrGTOMfSdlXodou6LOotsp2xiGizq-5GQpx4AsQz8iTMxLvpFnGCY-LYSjKemW9szzeMvcG4WOU2koGQNg2kgyjQGoGcEDbUykqTOEpOPh2mx2P5_iK5WMni9_wQ3YIbaUZrr0nBp6XbuyENnV1d0tYB8ckJSu69I1OEvwSLzjsCKYHeqy2vgk4rIOatJW1jGO_d7v83gHkbr7YOp_-A6eWr-nMmX3abudm13_5gcfyfb3nI7i_QKN_30-cRW4N6k91b4Sh8zH6MmkvXXP_6_vOTtmSK-Uoz37cW_RbRTcz4uZ5WJR81105b4BTX3rDT8qrmwwoHOZjwt9UVIOTnNHBVAkcDP5l9BphzBNB8jCiWn32tfK0nfuTL9LSrTESe8oSN-0cfD46DRRGHYIrGMAqiUutYiBwyqVIUvAQJmQZ0zaWGJIfc6FwlOJFMZlMbJ8poV0aZNolRmcAI-ilbryc1PGc8Uy6PJCSgtJOZi3MdS2tDZQwt5Zqyx7aWMiwWmjgr8H9ilJ_EWdhjO10z6hBtjOgaJg0-E6YYtlF-do8987Ivpp7soxBohSVGYT0WtxLsGjzfc1yQ7IpOdsXodDDorl78S6fXbOPDYb8YvBuevGR36bY_PLjF1lFosI0gaG5etfP8N5qLA8M |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sulfur-Vacancy+Engineering+Accelerates+Rapid+Surface+Reconstruction+in+Ni-Co+Bimetal+Sulfide+Nanosheet+for+Urea+Oxidation+Electrocatalysis&rft.jtitle=Small+%28Weinheim+an+der+Bergstrasse%2C+Germany%29&rft.au=Li%2C+Haoyuan&rft.au=Pu%2C+Yujuan&rft.au=Li%2C+Wenhao&rft.au=Yan%2C+Zitong&rft.date=2024-10-01&rft.eissn=1613-6829&rft.volume=20&rft.issue=42&rft.spage=e2403311&rft_id=info:doi/10.1002%2Fsmll.202403311&rft_id=info%3Apmid%2F38874118&rft.externalDocID=38874118 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1613-6810&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1613-6810&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1613-6810&client=summon |