Structure and magnetic properties of highly oriented LaBaCo2O5+δ films deposited on Si wafers with Pt/Ti buffer layer
Fabrication of highly crystalline oxide films onto silicon wafers has long been a critical obstacle for integrating multi-functional oxides into silicon-based technology. Herein, Pt/Ti is used as a buffer layer for the integration of highly oriented crystalline LaBaCo2O5+δ (LBCO) thin films onto sil...
Saved in:
Published in | Physical chemistry chemical physics : PCCP Vol. 21; no. 40; pp. 22390 - 22395 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Cambridge
Royal Society of Chemistry
28.10.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Fabrication of highly crystalline oxide films onto silicon wafers has long been a critical obstacle for integrating multi-functional oxides into silicon-based technology. Herein, Pt/Ti is used as a buffer layer for the integration of highly oriented crystalline LaBaCo2O5+δ (LBCO) thin films onto silicon via pulsed laser deposition. LBCO films are highly (00l) oriented with smooth and sharp LBCO/Pt interfaces. The highly oriented LBCO films exhibit a high magnetic transition temperature (TC) and large coercive field (HC) with superparamagnetism over those deposited on single crystal substrates. What is more, the metallic-like behavior with enhanced magnetoresistance is also observed. The opportunity of using a Pt/Ti buffer layer as the growth template opens an alternative route for integrating functional transition metal oxides with tunable magnetic properties into Si-based technology. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ISSN: | 1463-9076 1463-9084 1463-9084 |
DOI: | 10.1039/c9cp04484a |