A two-dimensional Te/ReS2 van der Waals heterostructure photodetector with high photoresponsivity and fast photoresponse

Two-dimensional (2D) semiconductors are the building blocks for high-performance optoelectronic devices. However, the performance of photoconductive photodetectors based on 2D semiconductors is hampered by low photoresponsivity and large dark current. Herein, a van der Waals heterostructure (vdWH) c...

Full description

Saved in:
Bibliographic Details
Published inNanoscale Vol. 15; no. 17; pp. 7730 - 7736
Main Authors Yan, Yafei, Li, Minxin, Xia, Kai, Yang, Kemeng, Wu, Dun, Li, Liang, Guangtao Fei, Gan, Wei
Format Journal Article
LanguageEnglish
Published Cambridge Royal Society of Chemistry 04.05.2023
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Two-dimensional (2D) semiconductors are the building blocks for high-performance optoelectronic devices. However, the performance of photoconductive photodetectors based on 2D semiconductors is hampered by low photoresponsivity and large dark current. Herein, a van der Waals heterostructure (vdWH) composed of rhenium disulfide (ReS2) and tellurium (Te) is fabricated. The Te/ReS2 vdWH photodetector exhibits a sensitive and broadband photoresponse and has high photoresponse on/off ratios under ultraviolet and visible light illumination, especially over 102 in visible light. The Te/ReS2 vdWH photodetector achieves the responsivity of 7.9 A W−1 at 365 nm, 3.02 A W−1 at 450 nm, 2.37 A W−1 at 532 nm, and 2.45 A W−1 at 660 nm. In addition, the device achieves a high specific detectivity of 1011 Jones and a fast photoresponse speed of 11.9 μs. Such high responsivity could be attributed to the efficient absorption of phonons by the Te/ReS2 vdWH and the high-quality heterostructure interfaces with a small amount of trap states. The highly crystalline structure of Te/ReS2 with a low density of defects reduces the grain boundary scattering, leading to the rapid diffusion of charge carriers. Moreover, the Te/ReS2 vdWH device exhibits a photovoltaic effect and can be employed as a self-powered photodetector (SPPD), which is sensitive to visible light of 450 nm, 532 nm, and 660 nm. Our findings demonstrate that the Te/ReS2 vdWH photodetector is an ideal building block for the next-generation electronic and optoelectronic devices in practical applications.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2040-3364
2040-3372
DOI:10.1039/d2nr07185a