Bridging the Semantic Gap Between Diagnostic Histopathology and Image Analysis
With the wider acceptance of Whole Slide Images (WSI) in histopathology domain, automatic image analysis algorithms represent a very promising solution to support pathologist's laborious tasks during the diagnosis process, to create a quantification-based second opinion and to enhance inter-obs...
Saved in:
Published in | Studies in health technology and informatics Vol. 235; p. 436 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
2017
|
Subjects | |
Online Access | Get more information |
Cover
Loading…
Abstract | With the wider acceptance of Whole Slide Images (WSI) in histopathology domain, automatic image analysis algorithms represent a very promising solution to support pathologist's laborious tasks during the diagnosis process, to create a quantification-based second opinion and to enhance inter-observer agreement. In this context, reference vocabularies and formalization of the associated knowledge are especially needed to annotate histopathology images with labels complying with semantic standards. In this work, we elaborate a sustainable triptych able to bridge the gap between pathologists and image analysis scientists. The proposed paradigm is structured along three components: i) extracting a relevant semantic repository from the College of American Pathologists (CAP) organ-specific Cancer Checklists and associated Protocols (CC&P); ii) identifying imaging formalized knowledge issued from effective histopathology imaging methods highlighted by recent Digital Pathology (DP) contests and iii) proposing a formal representation of the imaging concepts and functionalities issued from major biomedical imaging software (MATLAB, ITK, ImageJ). Since the first step i) has been the object of a recent publication of our team, this study focuses on the steps ii) and iii). Our hypothesis is that the management of available semantic resources concerning the histopathology imaging tasks associated with effective methods highlighted by the recent DP challenges will facilitate the integration of WSI in clinical routine and support new generation of DP protocols. |
---|---|
AbstractList | With the wider acceptance of Whole Slide Images (WSI) in histopathology domain, automatic image analysis algorithms represent a very promising solution to support pathologist's laborious tasks during the diagnosis process, to create a quantification-based second opinion and to enhance inter-observer agreement. In this context, reference vocabularies and formalization of the associated knowledge are especially needed to annotate histopathology images with labels complying with semantic standards. In this work, we elaborate a sustainable triptych able to bridge the gap between pathologists and image analysis scientists. The proposed paradigm is structured along three components: i) extracting a relevant semantic repository from the College of American Pathologists (CAP) organ-specific Cancer Checklists and associated Protocols (CC&P); ii) identifying imaging formalized knowledge issued from effective histopathology imaging methods highlighted by recent Digital Pathology (DP) contests and iii) proposing a formal representation of the imaging concepts and functionalities issued from major biomedical imaging software (MATLAB, ITK, ImageJ). Since the first step i) has been the object of a recent publication of our team, this study focuses on the steps ii) and iii). Our hypothesis is that the management of available semantic resources concerning the histopathology imaging tasks associated with effective methods highlighted by the recent DP challenges will facilitate the integration of WSI in clinical routine and support new generation of DP protocols. |
Author | Traore, Lamine Racoceanu, Daniel Kergosien, Yannick |
Author_xml | – sequence: 1 givenname: Lamine surname: Traore fullname: Traore, Lamine organization: Sorbonne Universités, UPMC Univ Paris 6, INSERM, Univ Paris 13, Sorbonne Paris Cité, Laboratoire d'Informatique Médicale et Ingénierie des Connaissances en eSanté (LIMICS), 15 rue de l'école de médecine, Paris, France – sequence: 2 givenname: Yannick surname: Kergosien fullname: Kergosien, Yannick organization: Sorbonne Universités, UPMC Univ Paris 6, INSERM, Univ Paris 13, Sorbonne Paris Cité, Laboratoire d'Informatique Médicale et Ingénierie des Connaissances en eSanté (LIMICS), 15 rue de l'école de médecine, Paris, France – sequence: 3 givenname: Daniel surname: Racoceanu fullname: Racoceanu, Daniel organization: Sorbonne Universités, UPMC Univ Paris 6, CNRS, INSERM, Laboratoire d'Imagerie Biomédicale (LIB), 75013, Paris, France |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28423830$$D View this record in MEDLINE/PubMed |
BookMark | eNo1j8lOwzAURb0oogN8Asg_YPAUD8u20EGqYAGsq1fnJTVKnKgOQv17QMDqSmdxdO6UjFKXkJAbwe-UVOreW8cEM0J7z2yhWMG0MiMy4V4a5o3iYzLN-Z1zqY23l2QsnZbKKT4hT4tTLOuYajockb5gC2mIga6hpwscPhETfYhQpy7_4E3MQ9fDcOyarj5TSCXdtlAjnSdozjnmK3JRQZPx-m9n5G31-LrcsN3zeruc71gvhRhYkMpbAZyLEKwDG3zwLkhXVYC6Kk3phfFaWmNRBK2NRjTf6U4ED6awBzkjt7_e_uPQYrnvT7GF03n_f0x-Ad9cUG4 |
ContentType | Journal Article |
DBID | CGR CUY CVF ECM EIF NPM |
DOI | 10.3233/978-1-61499-753-5-436 |
DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) |
DatabaseTitleList | MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | no_fulltext_linktorsrc |
ExternalDocumentID | 28423830 |
Genre | Journal Article |
GroupedDBID | --- 36B 53G AAWTL ACGFO ACGFS AIAGR ALMA_UNASSIGNED_HOLDINGS CGR CUY CVF DU5 ECM EIF EMB EMOBN F5P MBS MIO NPM P2P SV3 |
ID | FETCH-LOGICAL-p211t-c23971a001cc78a7c9c98c28ffae4fd6d916942767e1c4464ee646981c9a657b2 |
ISSN | 0926-9630 |
IngestDate | Fri May 24 00:05:30 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | formal representation Histopathology image analysis semantic annotation |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-p211t-c23971a001cc78a7c9c98c28ffae4fd6d916942767e1c4464ee646981c9a657b2 |
PMID | 28423830 |
ParticipantIDs | pubmed_primary_28423830 |
PublicationCentury | 2000 |
PublicationDate | 2017-00-00 |
PublicationDateYYYYMMDD | 2017-01-01 |
PublicationDate_xml | – year: 2017 text: 2017-00-00 |
PublicationDecade | 2010 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | Studies in health technology and informatics |
PublicationTitleAlternate | Stud Health Technol Inform |
PublicationYear | 2017 |
SSID | ssj0024697 |
Score | 2.1534667 |
Snippet | With the wider acceptance of Whole Slide Images (WSI) in histopathology domain, automatic image analysis algorithms represent a very promising solution to... |
SourceID | pubmed |
SourceType | Index Database |
StartPage | 436 |
SubjectTerms | Algorithms Histological Techniques Humans Image Interpretation, Computer-Assisted Observer Variation Pathology Semantics Software |
Title | Bridging the Semantic Gap Between Diagnostic Histopathology and Image Analysis |
URI | https://www.ncbi.nlm.nih.gov/pubmed/28423830 |
Volume | 235 |
hasFullText | |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV05T8MwFLYoLCwIxH3JA1tlaBwnTkYKlHJ1gFYqU-U4DuqQtoKy8Ot5jp2DqCBgiSK7yuH3-eV7r-9A6IQBBY1aVBAVy4SwOEyI4NwnnqNYIMMg4lnnuYee3x2w26E3LEOHsuySeXQqPxbmlfxHqjAGctVZsn-QbHFRGIBzkC8cQcJw_JWM2zrbKs93elIprNJYNq_FrNm24VeXJpJOD2cFQXQD4rLq0k2qI3byuiRVnmrDC7U3xGRKNueFD94WbLJstwyWh8-eDdq9F2nl7_o79foyfRsb_faseyTJIj3oUStkJSbvZbp71Q_h8IofwjoUqU9gO7equpW6XkU7MlPrpK61Xaq9yh1jzwJdCEMCRhTxSO33sPizNBMlfFOBaphb_TxbK6adTzVQgwe600dPO3fy0oymF0_xIibhSz_d2cJn04Wk7fVqRklGTvrraM1aFfjcQGQDLanJJurl8MAAD5zDAwM8sIUHLuGBv8IDg4xxBg-cw2MLDTpX_Ysuse0zyAys-jmRFLimI4CHSMkDwWUIe0_SIEmEYknsx2AZhIxynytHMuYzpXzdT9SRofA9HtFttDyZTtQuwiKIpdsCZqjbAwVJEEoqHReoJ_Vi4XpiD-2Y1x_NTI2UUb4w-9_OHKDVEkaHaCWBTamOgOHNo-NMLp-0jEyY |
link.rule.ids | 780 |
linkProvider | National Library of Medicine |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bridging+the+Semantic+Gap+Between+Diagnostic+Histopathology+and+Image+Analysis&rft.jtitle=Studies+in+health+technology+and+informatics&rft.au=Traore%2C+Lamine&rft.au=Kergosien%2C+Yannick&rft.au=Racoceanu%2C+Daniel&rft.date=2017-01-01&rft.issn=0926-9630&rft.volume=235&rft.spage=436&rft_id=info:doi/10.3233%2F978-1-61499-753-5-436&rft_id=info%3Apmid%2F28423830&rft_id=info%3Apmid%2F28423830&rft.externalDocID=28423830 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0926-9630&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0926-9630&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0926-9630&client=summon |