Bridging the Semantic Gap Between Diagnostic Histopathology and Image Analysis

With the wider acceptance of Whole Slide Images (WSI) in histopathology domain, automatic image analysis algorithms represent a very promising solution to support pathologist's laborious tasks during the diagnosis process, to create a quantification-based second opinion and to enhance inter-obs...

Full description

Saved in:
Bibliographic Details
Published inStudies in health technology and informatics Vol. 235; p. 436
Main Authors Traore, Lamine, Kergosien, Yannick, Racoceanu, Daniel
Format Journal Article
LanguageEnglish
Published Netherlands 2017
Subjects
Online AccessGet more information

Cover

Loading…
Abstract With the wider acceptance of Whole Slide Images (WSI) in histopathology domain, automatic image analysis algorithms represent a very promising solution to support pathologist's laborious tasks during the diagnosis process, to create a quantification-based second opinion and to enhance inter-observer agreement. In this context, reference vocabularies and formalization of the associated knowledge are especially needed to annotate histopathology images with labels complying with semantic standards. In this work, we elaborate a sustainable triptych able to bridge the gap between pathologists and image analysis scientists. The proposed paradigm is structured along three components: i) extracting a relevant semantic repository from the College of American Pathologists (CAP) organ-specific Cancer Checklists and associated Protocols (CC&P); ii) identifying imaging formalized knowledge issued from effective histopathology imaging methods highlighted by recent Digital Pathology (DP) contests and iii) proposing a formal representation of the imaging concepts and functionalities issued from major biomedical imaging software (MATLAB, ITK, ImageJ). Since the first step i) has been the object of a recent publication of our team, this study focuses on the steps ii) and iii). Our hypothesis is that the management of available semantic resources concerning the histopathology imaging tasks associated with effective methods highlighted by the recent DP challenges will facilitate the integration of WSI in clinical routine and support new generation of DP protocols.
AbstractList With the wider acceptance of Whole Slide Images (WSI) in histopathology domain, automatic image analysis algorithms represent a very promising solution to support pathologist's laborious tasks during the diagnosis process, to create a quantification-based second opinion and to enhance inter-observer agreement. In this context, reference vocabularies and formalization of the associated knowledge are especially needed to annotate histopathology images with labels complying with semantic standards. In this work, we elaborate a sustainable triptych able to bridge the gap between pathologists and image analysis scientists. The proposed paradigm is structured along three components: i) extracting a relevant semantic repository from the College of American Pathologists (CAP) organ-specific Cancer Checklists and associated Protocols (CC&P); ii) identifying imaging formalized knowledge issued from effective histopathology imaging methods highlighted by recent Digital Pathology (DP) contests and iii) proposing a formal representation of the imaging concepts and functionalities issued from major biomedical imaging software (MATLAB, ITK, ImageJ). Since the first step i) has been the object of a recent publication of our team, this study focuses on the steps ii) and iii). Our hypothesis is that the management of available semantic resources concerning the histopathology imaging tasks associated with effective methods highlighted by the recent DP challenges will facilitate the integration of WSI in clinical routine and support new generation of DP protocols.
Author Traore, Lamine
Racoceanu, Daniel
Kergosien, Yannick
Author_xml – sequence: 1
  givenname: Lamine
  surname: Traore
  fullname: Traore, Lamine
  organization: Sorbonne Universités, UPMC Univ Paris 6, INSERM, Univ Paris 13, Sorbonne Paris Cité, Laboratoire d'Informatique Médicale et Ingénierie des Connaissances en eSanté (LIMICS), 15 rue de l'école de médecine, Paris, France
– sequence: 2
  givenname: Yannick
  surname: Kergosien
  fullname: Kergosien, Yannick
  organization: Sorbonne Universités, UPMC Univ Paris 6, INSERM, Univ Paris 13, Sorbonne Paris Cité, Laboratoire d'Informatique Médicale et Ingénierie des Connaissances en eSanté (LIMICS), 15 rue de l'école de médecine, Paris, France
– sequence: 3
  givenname: Daniel
  surname: Racoceanu
  fullname: Racoceanu, Daniel
  organization: Sorbonne Universités, UPMC Univ Paris 6, CNRS, INSERM, Laboratoire d'Imagerie Biomédicale (LIB), 75013, Paris, France
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28423830$$D View this record in MEDLINE/PubMed
BookMark eNo1j8lOwzAURb0oogN8Asg_YPAUD8u20EGqYAGsq1fnJTVKnKgOQv17QMDqSmdxdO6UjFKXkJAbwe-UVOreW8cEM0J7z2yhWMG0MiMy4V4a5o3iYzLN-Z1zqY23l2QsnZbKKT4hT4tTLOuYajockb5gC2mIga6hpwscPhETfYhQpy7_4E3MQ9fDcOyarj5TSCXdtlAjnSdozjnmK3JRQZPx-m9n5G31-LrcsN3zeruc71gvhRhYkMpbAZyLEKwDG3zwLkhXVYC6Kk3phfFaWmNRBK2NRjTf6U4ED6awBzkjt7_e_uPQYrnvT7GF03n_f0x-Ad9cUG4
ContentType Journal Article
DBID CGR
CUY
CVF
ECM
EIF
NPM
DOI 10.3233/978-1-61499-753-5-436
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
DatabaseTitleList MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod no_fulltext_linktorsrc
ExternalDocumentID 28423830
Genre Journal Article
GroupedDBID ---
36B
53G
AAWTL
ACGFO
ACGFS
AIAGR
ALMA_UNASSIGNED_HOLDINGS
CGR
CUY
CVF
DU5
ECM
EIF
EMB
EMOBN
F5P
MBS
MIO
NPM
P2P
SV3
ID FETCH-LOGICAL-p211t-c23971a001cc78a7c9c98c28ffae4fd6d916942767e1c4464ee646981c9a657b2
ISSN 0926-9630
IngestDate Fri May 24 00:05:30 EDT 2024
IsPeerReviewed true
IsScholarly true
Keywords formal representation
Histopathology image analysis
semantic annotation
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-p211t-c23971a001cc78a7c9c98c28ffae4fd6d916942767e1c4464ee646981c9a657b2
PMID 28423830
ParticipantIDs pubmed_primary_28423830
PublicationCentury 2000
PublicationDate 2017-00-00
PublicationDateYYYYMMDD 2017-01-01
PublicationDate_xml – year: 2017
  text: 2017-00-00
PublicationDecade 2010
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Studies in health technology and informatics
PublicationTitleAlternate Stud Health Technol Inform
PublicationYear 2017
SSID ssj0024697
Score 2.1534667
Snippet With the wider acceptance of Whole Slide Images (WSI) in histopathology domain, automatic image analysis algorithms represent a very promising solution to...
SourceID pubmed
SourceType Index Database
StartPage 436
SubjectTerms Algorithms
Histological Techniques
Humans
Image Interpretation, Computer-Assisted
Observer Variation
Pathology
Semantics
Software
Title Bridging the Semantic Gap Between Diagnostic Histopathology and Image Analysis
URI https://www.ncbi.nlm.nih.gov/pubmed/28423830
Volume 235
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV05T8MwFLYoLCwIxH3JA1tlaBwnTkYKlHJ1gFYqU-U4DuqQtoKy8Ot5jp2DqCBgiSK7yuH3-eV7r-9A6IQBBY1aVBAVy4SwOEyI4NwnnqNYIMMg4lnnuYee3x2w26E3LEOHsuySeXQqPxbmlfxHqjAGctVZsn-QbHFRGIBzkC8cQcJw_JWM2zrbKs93elIprNJYNq_FrNm24VeXJpJOD2cFQXQD4rLq0k2qI3byuiRVnmrDC7U3xGRKNueFD94WbLJstwyWh8-eDdq9F2nl7_o79foyfRsb_faseyTJIj3oUStkJSbvZbp71Q_h8IofwjoUqU9gO7equpW6XkU7MlPrpK61Xaq9yh1jzwJdCEMCRhTxSO33sPizNBMlfFOBaphb_TxbK6adTzVQgwe600dPO3fy0oymF0_xIibhSz_d2cJn04Wk7fVqRklGTvrraM1aFfjcQGQDLanJJurl8MAAD5zDAwM8sIUHLuGBv8IDg4xxBg-cw2MLDTpX_Ysuse0zyAys-jmRFLimI4CHSMkDwWUIe0_SIEmEYknsx2AZhIxynytHMuYzpXzdT9SRofA9HtFttDyZTtQuwiKIpdsCZqjbAwVJEEoqHReoJ_Vi4XpiD-2Y1x_NTI2UUb4w-9_OHKDVEkaHaCWBTamOgOHNo-NMLp-0jEyY
link.rule.ids 780
linkProvider National Library of Medicine
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bridging+the+Semantic+Gap+Between+Diagnostic+Histopathology+and+Image+Analysis&rft.jtitle=Studies+in+health+technology+and+informatics&rft.au=Traore%2C+Lamine&rft.au=Kergosien%2C+Yannick&rft.au=Racoceanu%2C+Daniel&rft.date=2017-01-01&rft.issn=0926-9630&rft.volume=235&rft.spage=436&rft_id=info:doi/10.3233%2F978-1-61499-753-5-436&rft_id=info%3Apmid%2F28423830&rft_id=info%3Apmid%2F28423830&rft.externalDocID=28423830
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0926-9630&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0926-9630&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0926-9630&client=summon