Single‐Product Faradaic Efficiency for Electrocatalytic of CO2 to CO at Current Density Larger than 1.2 A cm−2 in Neutral Aqueous Solution by a Single‐Atom Nanozyme
Electroreduction of CO2 to CO is a promising approach for the cycling use of CO2, while it still suffers from impractical current density and durability. Here we report a single‐atom nanozyme (Ni−N5−C) that achieves industrial‐scale performance for CO2‐to‐CO conversion with a Faradaic efficiency (FE...
Saved in:
Published in | Angewandte Chemie International Edition Vol. 61; no. 44; pp. e202210985 - n/a |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
02.11.2022
|
Subjects | |
Online Access | Get full text |
ISSN | 1433-7851 1521-3773 1521-3773 |
DOI | 10.1002/anie.202210985 |
Cover
Loading…
Abstract | Electroreduction of CO2 to CO is a promising approach for the cycling use of CO2, while it still suffers from impractical current density and durability. Here we report a single‐atom nanozyme (Ni−N5−C) that achieves industrial‐scale performance for CO2‐to‐CO conversion with a Faradaic efficiency (FE) exceeded 97 % over −0.8–−2.4 V vs. RHE. The current density at −2.4 V vs. RHE reached a maximum of 1.23 A cm−2 (turnover frequency of 69.7 s−1) with an FE of 99.6 %. No obvious degradation was observed over 100 hours of continuous operation. Compared with the planar Ni−N4 site, the square‐pyramidal Ni−N5 site has an increase and a decrease in the
dz2
${{{\rm d}}_{{z}^{2}}}$
and dxz/yz orbital energy levels, respectively, as revealed by density functional theory calculations. Thus, the Ni−N5 catalytic site is more superior to activate CO2 molecule and reduce the energy barriers as well as promote the CO desorption, thus boosting the kinetic activation process and catalytic activity.
In neutral aqueous solution, a single‐atom nanozyme Ni−N5−C with enzyme‐like catalytic active sites exhibited ultra‐high current density of 1.2 A cm−2 and durability of 100 h for electroreduction of CO2 to CO. |
---|---|
AbstractList | Electroreduction of CO2 to CO is a promising approach for the cycling use of CO2 , while it still suffers from impractical current density and durability. Here we report a single-atom nanozyme (Ni-N5 -C) that achieves industrial-scale performance for CO2 -to-CO conversion with a Faradaic efficiency (FE) exceeded 97 % over -0.8--2.4 V vs. RHE. The current density at -2.4 V vs. RHE reached a maximum of 1.23 A cm-2 (turnover frequency of 69.7 s-1 ) with an FE of 99.6 %. No obvious degradation was observed over 100 hours of continuous operation. Compared with the planar Ni-N4 site, the square-pyramidal Ni-N5 site has an increase and a decrease in the d z 2 ${{{\rm d}}_{{z}^{2}}}$ and dxz/yz orbital energy levels, respectively, as revealed by density functional theory calculations. Thus, the Ni-N5 catalytic site is more superior to activate CO2 molecule and reduce the energy barriers as well as promote the CO desorption, thus boosting the kinetic activation process and catalytic activity.Electroreduction of CO2 to CO is a promising approach for the cycling use of CO2 , while it still suffers from impractical current density and durability. Here we report a single-atom nanozyme (Ni-N5 -C) that achieves industrial-scale performance for CO2 -to-CO conversion with a Faradaic efficiency (FE) exceeded 97 % over -0.8--2.4 V vs. RHE. The current density at -2.4 V vs. RHE reached a maximum of 1.23 A cm-2 (turnover frequency of 69.7 s-1 ) with an FE of 99.6 %. No obvious degradation was observed over 100 hours of continuous operation. Compared with the planar Ni-N4 site, the square-pyramidal Ni-N5 site has an increase and a decrease in the d z 2 ${{{\rm d}}_{{z}^{2}}}$ and dxz/yz orbital energy levels, respectively, as revealed by density functional theory calculations. Thus, the Ni-N5 catalytic site is more superior to activate CO2 molecule and reduce the energy barriers as well as promote the CO desorption, thus boosting the kinetic activation process and catalytic activity. Electroreduction of CO2 to CO is a promising approach for the cycling use of CO2, while it still suffers from impractical current density and durability. Here we report a single‐atom nanozyme (Ni−N5−C) that achieves industrial‐scale performance for CO2‐to‐CO conversion with a Faradaic efficiency (FE) exceeded 97 % over −0.8–−2.4 V vs. RHE. The current density at −2.4 V vs. RHE reached a maximum of 1.23 A cm−2 (turnover frequency of 69.7 s−1) with an FE of 99.6 %. No obvious degradation was observed over 100 hours of continuous operation. Compared with the planar Ni−N4 site, the square‐pyramidal Ni−N5 site has an increase and a decrease in the dz2 ${{{\rm d}}_{{z}^{2}}}$ and dxz/yz orbital energy levels, respectively, as revealed by density functional theory calculations. Thus, the Ni−N5 catalytic site is more superior to activate CO2 molecule and reduce the energy barriers as well as promote the CO desorption, thus boosting the kinetic activation process and catalytic activity. In neutral aqueous solution, a single‐atom nanozyme Ni−N5−C with enzyme‐like catalytic active sites exhibited ultra‐high current density of 1.2 A cm−2 and durability of 100 h for electroreduction of CO2 to CO. |
Author | Zhu, Hao‐Lin Liu, Yan‐Chen Liao, Pei‐Qin Qiu, Xiao‐Feng Shi, Wen Zhao, Zhen‐Hua Chen, Xiao‐Ming Huang, Jia‐Run |
Author_xml | – sequence: 1 givenname: Jia‐Run surname: Huang fullname: Huang, Jia‐Run organization: Sun Yat-sen University – sequence: 2 givenname: Xiao‐Feng surname: Qiu fullname: Qiu, Xiao‐Feng organization: Sun Yat-sen University – sequence: 3 givenname: Zhen‐Hua surname: Zhao fullname: Zhao, Zhen‐Hua organization: Sun Yat-sen University – sequence: 4 givenname: Hao‐Lin surname: Zhu fullname: Zhu, Hao‐Lin organization: Sun Yat-sen University – sequence: 5 givenname: Yan‐Chen surname: Liu fullname: Liu, Yan‐Chen organization: Sun Yat-sen University – sequence: 6 givenname: Wen surname: Shi fullname: Shi, Wen organization: Sun Yat-Sen University – sequence: 7 givenname: Pei‐Qin orcidid: 0000-0001-5888-1283 surname: Liao fullname: Liao, Pei‐Qin email: liaopq3@mail.sysu.edu.cn organization: Sun Yat-sen University – sequence: 8 givenname: Xiao‐Ming surname: Chen fullname: Chen, Xiao‐Ming organization: Sun Yat-sen University |
BookMark | eNo9kU9v1DAQxS1UJNrClfMcuWTxnyR2jtGyhUqrLVLhHE0cpxg59uI4QulpL0hwQ3wQPtR-ErIq2tOb0TyNnt7vilz44A0hrxldMUr5W_TWrDjlnNFKFc_IJSs4y4SU4mKZcyEyqQr2glyN49fFrxQtL8nfe-sfnDkefn-MoZt0ghuM2KHVsOl7q63xeoY-RNg4o1MMGhO6OS330MP6jkMKiwAmWE8xGp_gnfGjTTNsMT6YCOkLemArfjz8qI-HX3o4_vzDwXrYmSlFdFB_m0yYRrgPbko2eGhnQDjnqlMYYIc-PM6DeUme9-hG8-q_XpPPN5tP6w_Z9u797breZntOVZGZQvZSCV12Ks9VJzua5wWi1i1nssxLWRkuy66tqKn6YqlJtbJVWomyLSrWa3FN3jz93cewxBtTM9hRG-fQn7I2XDImqKJSLNbqyfrdOjM3-2gHjHPDaHOi0pyoNGcqTb273Zw38Q9bmop8 |
ContentType | Journal Article |
Copyright | 2022 Wiley‐VCH GmbH 2022 Wiley-VCH GmbH. |
Copyright_xml | – notice: 2022 Wiley‐VCH GmbH – notice: 2022 Wiley-VCH GmbH. |
DBID | 7X8 |
DOI | 10.1002/anie.202210985 |
DatabaseName | MEDLINE - Academic |
DatabaseTitle | MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1521-3773 |
EndPage | n/a |
ExternalDocumentID | ANIE202210985 |
Genre | article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 21890380; 21821003 – fundername: National Key Research and Development Program of China funderid: 2021YFA1500401 – fundername: Local Innovative and Research Teams Project of Guangdong Pearl River Talents Program funderid: 2017BT01C161 – fundername: Guangdong Natural Science Funds for Distinguished Young Scholar funderid: 2018B030306009 |
GroupedDBID | --- -DZ -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5RE 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABLJU ABPPZ ABPVW ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACNCT ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BTSUX BY8 CS3 D-E D-F D0L DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES M53 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ TN5 UB1 UPT UQL V2E VQA W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XSW XV2 YZZ ZZTAW ~IA ~KM ~WT 7X8 ABDBF ABJNI AEYWJ AGHNM AGYGG |
ID | FETCH-LOGICAL-p2085-e57f783c6d8448d7d0445aaccb21764679e276db90e9f55218b7b8c836b591fc3 |
IEDL.DBID | DR2 |
ISSN | 1433-7851 1521-3773 |
IngestDate | Fri Jul 11 08:10:23 EDT 2025 Wed Jan 22 16:22:47 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 44 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-p2085-e57f783c6d8448d7d0445aaccb21764679e276db90e9f55218b7b8c836b591fc3 |
Notes | These authors contributed equally to this work. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0001-5888-1283 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/anie.202210985 |
PQID | 2711308073 |
PQPubID | 23479 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_2711308073 wiley_primary_10_1002_anie_202210985_ANIE202210985 |
PublicationCentury | 2000 |
PublicationDate | November 2, 2022 20221102 |
PublicationDateYYYYMMDD | 2022-11-02 |
PublicationDate_xml | – month: 11 year: 2022 text: November 2, 2022 day: 02 |
PublicationDecade | 2020 |
PublicationTitle | Angewandte Chemie International Edition |
PublicationYear | 2022 |
References | 2021; 7 1990; 53 2018; 28 2021; 5 1991; 38 2017; 2 2021; 4 2019; 3 2018; 140 1953 2021; 143 2020; 10 2020; 32 2021; 50 2019; 141 2014; 114 2019 2019; 58 131 2019; 365 2017; 139 2022; 144 2021; 14 1994; 101 2022 2022; 61 134 2020; 5 2018; 8 2016; 1 2018; 2 2020; 3 2021; 11 2020; 30 2022; 5 2019; 24 2022; 34 2022; 12 2021 2021; 60 133 2022; 13 2019; 575 2022; 15 2022; 32 2022; 2 2017; 200 2022; 16 2014; 544 2005; 12 2018; 57 2020; 29 |
References_xml | – volume: 12 start-page: 537 year: 2005 end-page: 541 publication-title: J. Synchrotron Radiat. – volume: 32 year: 2022 publication-title: Adv. Funct. Mater. – volume: 2 start-page: 0099 year: 2017 publication-title: Nat. Chem. Rev. – volume: 4 start-page: 407 year: 2021 end-page: 417 publication-title: Nat. Catal. – volume: 2 start-page: 610 year: 2022 end-page: 621 publication-title: Chem Catalysis – volume: 101 start-page: 6570 year: 1994 end-page: 6576 publication-title: J. Chem. Phys. – volume: 3 start-page: 584 year: 2019 end-page: 594 publication-title: Joule – volume: 57 start-page: 2165 year: 2018 end-page: 2177 publication-title: Ind. Eng. Chem. Res. – volume: 7 start-page: 1297 year: 2021 end-page: 1307 publication-title: Chem – volume: 11 start-page: 11786 year: 2021 end-page: 11792 publication-title: ACS Catal. – volume: 14 start-page: 3430 year: 2021 end-page: 3437 publication-title: Energy Environ. Sci. – volume: 5 start-page: 737 year: 2021 end-page: 742 publication-title: Joule – volume: 34 year: 2022 publication-title: Adv. Mater. – volume: 8 start-page: 9174 year: 2018 end-page: 9182 publication-title: ACS Catal. – volume: 16 start-page: 2110 year: 2022 end-page: 2119 publication-title: ACS Nano – start-page: 2939 year: 1953 end-page: 2947 publication-title: J. Chem. Soc. – volume: 141 start-page: 2490 year: 2019 end-page: 2499 publication-title: J. Am. Chem. Soc. – volume: 60 133 start-page: 22826 23008 year: 2021 2021 end-page: 22832 23014 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 144 start-page: 7551 year: 2022 end-page: 7556 publication-title: J. Am. Chem. Soc. – volume: 139 start-page: 8078 year: 2017 end-page: 8081 publication-title: J. Am. Chem. Soc. – volume: 144 start-page: 10446 year: 2022 end-page: 10454 publication-title: J. Am. Chem. Soc. – volume: 30 year: 2020 publication-title: Adv. Funct. Mater. – volume: 53 start-page: 1253 year: 1990 end-page: 1295 publication-title: Rep. Prog. Phys. – volume: 365 start-page: 367 year: 2019 end-page: 369 publication-title: Science – volume: 10 start-page: 4854 year: 2020 end-page: 4862 publication-title: ACS Catal. – volume: 60 133 start-page: 20627 20795 year: 2021 2021 end-page: 20648 20816 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 3 start-page: 265 year: 2019 end-page: 278 publication-title: Joule – volume: 144 start-page: 9661 year: 2022 end-page: 9671 publication-title: J. Am. Chem. Soc. – volume: 5 start-page: 268 year: 2022 end-page: 276 publication-title: Nat. Catal. – volume: 144 start-page: 4874 year: 2022 end-page: 4882 publication-title: J. Am. Chem. Soc. – volume: 28 year: 2018 publication-title: Adv. Funct. Mater. – volume: 12 start-page: 2513 year: 2022 end-page: 2521 publication-title: ACS Catal. – volume: 1 start-page: 16009 year: 2016 publication-title: Nat. Rev. Mater. – volume: 61 134 year: 2022 2022 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 29 start-page: 1071 year: 2020 end-page: 1089 publication-title: Protein Sci. – volume: 50 start-page: 12897 year: 2021 end-page: 12914 publication-title: Chem. Soc. Rev. – volume: 24 start-page: 103 year: 2019 end-page: 119 publication-title: Nano Today – volume: 140 start-page: 4218 year: 2018 end-page: 4221 publication-title: J. Am. Chem. Soc. – volume: 3 start-page: 487 year: 2020 end-page: 497 publication-title: Matter – volume: 143 start-page: 7242 year: 2021 end-page: 7246 publication-title: J. Am. Chem. Soc. – volume: 200 start-page: 530 year: 2017 end-page: 542 publication-title: Appl. Catal. B – volume: 60 133 start-page: 4192 4238 year: 2021 2021 end-page: 4198 4244 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 3 start-page: 478 year: 2020 end-page: 487 publication-title: Nat. Catal. – volume: 2 start-page: 825 year: 2018 end-page: 832 publication-title: Joule – volume: 4 start-page: 134 year: 2021 end-page: 143 publication-title: Nat. Catal. – volume: 139 start-page: 14889 year: 2017 end-page: 14892 publication-title: J. Am. Chem. Soc. – volume: 38 start-page: 103 year: 1991 end-page: 144 publication-title: Prog. Surf. Sci. – volume: 5 start-page: 684 year: 2020 end-page: 692 publication-title: Nat. Energy – volume: 60 133 start-page: 26622 26826 year: 2021 2021 end-page: 26629 26833 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 114 start-page: 1709 year: 2014 end-page: 1742 publication-title: Chem. Rev. – volume: 13 start-page: 3080 year: 2022 publication-title: Nat. Commun. – volume: 143 start-page: 925 year: 2021 end-page: 933 publication-title: J. Am. Chem. Soc. – volume: 58 131 start-page: 6271 6337 year: 2019 2019 end-page: 6275 6341 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 15 start-page: 2108 year: 2022 end-page: 2119 publication-title: Energy Environ. Sci. – volume: 575 start-page: 639 year: 2019 end-page: 642 publication-title: Nature – volume: 144 start-page: 2079 year: 2022 end-page: 2084 publication-title: J. Am. Chem. Soc. – volume: 32 year: 2020 publication-title: Adv. Mater. – volume: 114 start-page: 4081 year: 2014 end-page: 4148 publication-title: Chem. Rev. – volume: 143 start-page: 11317 year: 2021 end-page: 11324 publication-title: J. Am. Chem. Soc. – volume: 60 133 start-page: 18178 18326 year: 2021 2021 end-page: 18184 18332 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 544 start-page: 142 year: 2014 end-page: 152 publication-title: Arch. Biochem. Biophys. – volume: 143 start-page: 7819 year: 2021 end-page: 7827 publication-title: J. Am. Chem. Soc. |
SSID | ssj0028806 |
Score | 2.6386802 |
Snippet | Electroreduction of CO2 to CO is a promising approach for the cycling use of CO2, while it still suffers from impractical current density and durability. Here... Electroreduction of CO2 to CO is a promising approach for the cycling use of CO2 , while it still suffers from impractical current density and durability. Here... |
SourceID | proquest wiley |
SourceType | Aggregation Database Publisher |
StartPage | e202210985 |
SubjectTerms | CO2 Reduction Electrocatalysis Industrial-Level Current Orbital Splitting Single-Atom Catalysts |
Title | Single‐Product Faradaic Efficiency for Electrocatalytic of CO2 to CO at Current Density Larger than 1.2 A cm−2 in Neutral Aqueous Solution by a Single‐Atom Nanozyme |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202210985 https://www.proquest.com/docview/2711308073 |
Volume | 61 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELaqXuiFV0HQUjRIvabNOg_bx2i7q4Jgi4BKvUV-RaroJtU2e9ie9oIEN9Qf0h-1v4SZZBNajuWURIoj22N7vpnMfMPYvipiZQZ4-jlR-CA2iQ0k6rlAcGtcbJ2xDc_sp0l6fBp_OEvO7mTxt_wQvcONdkZzXtMG1-bq8C9pKGVgo33H0WZRkrLMKWCLUNGXnj-K4-Js04uiKKAq9B1rY8gP7ze_hy_votRGzYyfMN11sI0u-X4wr82Bvf6Hu_F_RvCUPV5jUMjaRfOMbfjyOXs07Eq_bbPbr6jQLvxq-ftzSwgLYz3TTp9bGDWUE5SvCQh3YdRW0WmcQAv8HFQFDE841BVeQNew5n-CIwqUrxfwkSLPZ0AOe0DDebX8ka2Wv-x09fOGw3kJEz8n3wtkOEvV_Ao6tx2YBWjo-5XV1RRQM1TXi6l_wU7Ho2_D42Bd2CG4pJKggU9EIWRkUyfROnTChXGcaG2tQQMpxaNbeS5SZ1ToVZEgwJBGGGlllJpEDQobvWSbZVX6VwwQr0htuPexsrFTysgwsSJBmJWKSIvoNXvXCTbHSaS_Ibqk_udcDFB_y5De4Y2Y8suW4CNvqZx5TgLKewHl2eT9qH_aeUijXbZF900uI3_DNuvZ3O8hqKnN22bh_gHnIvTM |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwELagHMql_It_Bolr2qwTx_Yx2u5qC9sFQStxi2zHkSrYpNpmD9vTXpDghngQHmqfhJlkEyhHOEWJ4sj22J5vJjPfMPZKF7G2Azz9cln4ILbCBQr1XCC5s3nscusantnjWTI5jV9_FF00IeXCtPwQvcONdkZzXtMGJ4f0wW_WUErBRgOPo9GilbjOblBZbypicPi-Z5DiuDzbBKMoCqgOfcfbGPKDq-2vIMw_cWqjaMa3mO262MaXfNpf1nbfXf7F3vhfY7jN9rYwFNJ23dxh13x5l-0Ou-pv99jPD6jTPvvN-vu7lhMWxmZhcnPmYNSwTlDKJiDihVFbSKfxA63wc1AVMHzLoa7wAqaGLQUUHFKsfL2CKQWfL4B89oC282b9Jd2sv7n55usPDmclzPyS3C-Q4jRVywvoPHdgV2Cg71daV3NA5VBdrub-Pjsdj06Gk2Bb2yE4p6qggReykCpySa7QQMxlHsaxMMY5izZSgqe39lwmudWh14VAjKGstMqpKLFCDwoXPWA7ZVX6hwxQ6MpY7n2sXZxrbVUonBSItBIZGRk9Yi87yWY4ifRDxJTU_4zLAapwFdI7vJFTdt5yfGQtmzPPSEBZL6AsnR2N-rvH_9LoBdudnBxPs-nR7M0TdpOeN6mN_CnbqRdL_wwxTm2fN6v4FyXx-OY |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagSNAL76q8B4lr2qxjx_Yx2u6qhbJUQKXeIr8iVbDJasketqe9IMEN8UP4UftLGCeb0HKEU5QojmyP7flmMvMNIa9UwZQZ4OnnROEjZriNJOq5SFBrHLPO2IZn9u0kPTxlr8_42aUs_pYfone4hZ3RnNdhg89csf-HNDRkYKN9R9FmUZJfJzdYijsmwKL3PYEUxdXZ5hclSRTK0He0jTHdv9r-CsC8DFMbPTO-Q3TXwza85NPeojZ79uIv8sb_GcJdcnsDQiFrV809cs2X98mtYVf77QH59QE12me_Xv04aRlhYazn2ulzC6OGcyIkbALiXRi1ZXQaL9ASPwdVAcN3FOoKL6Br2BBAwUGIlK-XcBxCz-cQPPaAlvN69TVbr77b6frbTwrnJUz8IjhfIMNZqhZfoPPbgVmChr5fWV1NAVVDdbGc-ofkdDz6ODyMNpUdolmoCRp5LgohE5s6ieahEy5mjGttrUELKcWzW3kqUmdU7FXBEWFII4y0MkkNV4PCJjtkq6xKv0sAAYvUhnrPlGVOKSNjbgVHnJWKRIvkEXnZCTbHSQy_Q3QZ-p9TMUAFLuPwDm3ElM9aho-85XKmeRBQ3gsozyZHo_7u8b80ekFunhyM8-OjyZsnZDs8bvIa6VOyVc8X_hkCnNo8b9bwb2Tq954 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Single%E2%80%90Product+Faradaic+Efficiency+for+Electrocatalytic+of+CO2+to+CO+at+Current+Density+Larger+than+1.2%E2%80%85A%E2%80%89cm%E2%88%922+in+Neutral+Aqueous+Solution+by+a+Single%E2%80%90Atom+Nanozyme&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Huang%2C+Jia%E2%80%90Run&rft.au=Qiu%2C+Xiao%E2%80%90Feng&rft.au=Zhao%2C+Zhen%E2%80%90Hua&rft.au=Zhu%2C+Hao%E2%80%90Lin&rft.date=2022-11-02&rft.issn=1433-7851&rft.eissn=1521-3773&rft.volume=61&rft.issue=44&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fanie.202210985&rft.externalDBID=10.1002%252Fanie.202210985&rft.externalDocID=ANIE202210985 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon |