Single‐Product Faradaic Efficiency for Electrocatalytic of CO2 to CO at Current Density Larger than 1.2 A cm−2 in Neutral Aqueous Solution by a Single‐Atom Nanozyme

Electroreduction of CO2 to CO is a promising approach for the cycling use of CO2, while it still suffers from impractical current density and durability. Here we report a single‐atom nanozyme (Ni−N5−C) that achieves industrial‐scale performance for CO2‐to‐CO conversion with a Faradaic efficiency (FE...

Full description

Saved in:
Bibliographic Details
Published inAngewandte Chemie International Edition Vol. 61; no. 44; pp. e202210985 - n/a
Main Authors Huang, Jia‐Run, Qiu, Xiao‐Feng, Zhao, Zhen‐Hua, Zhu, Hao‐Lin, Liu, Yan‐Chen, Shi, Wen, Liao, Pei‐Qin, Chen, Xiao‐Ming
Format Journal Article
LanguageEnglish
Published 02.11.2022
Subjects
Online AccessGet full text
ISSN1433-7851
1521-3773
1521-3773
DOI10.1002/anie.202210985

Cover

Loading…
Abstract Electroreduction of CO2 to CO is a promising approach for the cycling use of CO2, while it still suffers from impractical current density and durability. Here we report a single‐atom nanozyme (Ni−N5−C) that achieves industrial‐scale performance for CO2‐to‐CO conversion with a Faradaic efficiency (FE) exceeded 97 % over −0.8–−2.4 V vs. RHE. The current density at −2.4 V vs. RHE reached a maximum of 1.23 A cm−2 (turnover frequency of 69.7 s−1) with an FE of 99.6 %. No obvious degradation was observed over 100 hours of continuous operation. Compared with the planar Ni−N4 site, the square‐pyramidal Ni−N5 site has an increase and a decrease in the dz2 ${{{\rm d}}_{{z}^{2}}}$ and dxz/yz orbital energy levels, respectively, as revealed by density functional theory calculations. Thus, the Ni−N5 catalytic site is more superior to activate CO2 molecule and reduce the energy barriers as well as promote the CO desorption, thus boosting the kinetic activation process and catalytic activity. In neutral aqueous solution, a single‐atom nanozyme Ni−N5−C with enzyme‐like catalytic active sites exhibited ultra‐high current density of 1.2 A cm−2 and durability of 100 h for electroreduction of CO2 to CO.
AbstractList Electroreduction of CO2 to CO is a promising approach for the cycling use of CO2 , while it still suffers from impractical current density and durability. Here we report a single-atom nanozyme (Ni-N5 -C) that achieves industrial-scale performance for CO2 -to-CO conversion with a Faradaic efficiency (FE) exceeded 97 % over -0.8--2.4 V vs. RHE. The current density at -2.4 V vs. RHE reached a maximum of 1.23 A cm-2 (turnover frequency of 69.7 s-1 ) with an FE of 99.6 %. No obvious degradation was observed over 100 hours of continuous operation. Compared with the planar Ni-N4 site, the square-pyramidal Ni-N5 site has an increase and a decrease in the d z 2 ${{{\rm d}}_{{z}^{2}}}$ and dxz/yz orbital energy levels, respectively, as revealed by density functional theory calculations. Thus, the Ni-N5 catalytic site is more superior to activate CO2 molecule and reduce the energy barriers as well as promote the CO desorption, thus boosting the kinetic activation process and catalytic activity.Electroreduction of CO2 to CO is a promising approach for the cycling use of CO2 , while it still suffers from impractical current density and durability. Here we report a single-atom nanozyme (Ni-N5 -C) that achieves industrial-scale performance for CO2 -to-CO conversion with a Faradaic efficiency (FE) exceeded 97 % over -0.8--2.4 V vs. RHE. The current density at -2.4 V vs. RHE reached a maximum of 1.23 A cm-2 (turnover frequency of 69.7 s-1 ) with an FE of 99.6 %. No obvious degradation was observed over 100 hours of continuous operation. Compared with the planar Ni-N4 site, the square-pyramidal Ni-N5 site has an increase and a decrease in the d z 2 ${{{\rm d}}_{{z}^{2}}}$ and dxz/yz orbital energy levels, respectively, as revealed by density functional theory calculations. Thus, the Ni-N5 catalytic site is more superior to activate CO2 molecule and reduce the energy barriers as well as promote the CO desorption, thus boosting the kinetic activation process and catalytic activity.
Electroreduction of CO2 to CO is a promising approach for the cycling use of CO2, while it still suffers from impractical current density and durability. Here we report a single‐atom nanozyme (Ni−N5−C) that achieves industrial‐scale performance for CO2‐to‐CO conversion with a Faradaic efficiency (FE) exceeded 97 % over −0.8–−2.4 V vs. RHE. The current density at −2.4 V vs. RHE reached a maximum of 1.23 A cm−2 (turnover frequency of 69.7 s−1) with an FE of 99.6 %. No obvious degradation was observed over 100 hours of continuous operation. Compared with the planar Ni−N4 site, the square‐pyramidal Ni−N5 site has an increase and a decrease in the dz2 ${{{\rm d}}_{{z}^{2}}}$ and dxz/yz orbital energy levels, respectively, as revealed by density functional theory calculations. Thus, the Ni−N5 catalytic site is more superior to activate CO2 molecule and reduce the energy barriers as well as promote the CO desorption, thus boosting the kinetic activation process and catalytic activity. In neutral aqueous solution, a single‐atom nanozyme Ni−N5−C with enzyme‐like catalytic active sites exhibited ultra‐high current density of 1.2 A cm−2 and durability of 100 h for electroreduction of CO2 to CO.
Author Zhu, Hao‐Lin
Liu, Yan‐Chen
Liao, Pei‐Qin
Qiu, Xiao‐Feng
Shi, Wen
Zhao, Zhen‐Hua
Chen, Xiao‐Ming
Huang, Jia‐Run
Author_xml – sequence: 1
  givenname: Jia‐Run
  surname: Huang
  fullname: Huang, Jia‐Run
  organization: Sun Yat-sen University
– sequence: 2
  givenname: Xiao‐Feng
  surname: Qiu
  fullname: Qiu, Xiao‐Feng
  organization: Sun Yat-sen University
– sequence: 3
  givenname: Zhen‐Hua
  surname: Zhao
  fullname: Zhao, Zhen‐Hua
  organization: Sun Yat-sen University
– sequence: 4
  givenname: Hao‐Lin
  surname: Zhu
  fullname: Zhu, Hao‐Lin
  organization: Sun Yat-sen University
– sequence: 5
  givenname: Yan‐Chen
  surname: Liu
  fullname: Liu, Yan‐Chen
  organization: Sun Yat-sen University
– sequence: 6
  givenname: Wen
  surname: Shi
  fullname: Shi, Wen
  organization: Sun Yat-Sen University
– sequence: 7
  givenname: Pei‐Qin
  orcidid: 0000-0001-5888-1283
  surname: Liao
  fullname: Liao, Pei‐Qin
  email: liaopq3@mail.sysu.edu.cn
  organization: Sun Yat-sen University
– sequence: 8
  givenname: Xiao‐Ming
  surname: Chen
  fullname: Chen, Xiao‐Ming
  organization: Sun Yat-sen University
BookMark eNo9kU9v1DAQxS1UJNrClfMcuWTxnyR2jtGyhUqrLVLhHE0cpxg59uI4QulpL0hwQ3wQPtR-ErIq2tOb0TyNnt7vilz44A0hrxldMUr5W_TWrDjlnNFKFc_IJSs4y4SU4mKZcyEyqQr2glyN49fFrxQtL8nfe-sfnDkefn-MoZt0ghuM2KHVsOl7q63xeoY-RNg4o1MMGhO6OS330MP6jkMKiwAmWE8xGp_gnfGjTTNsMT6YCOkLemArfjz8qI-HX3o4_vzDwXrYmSlFdFB_m0yYRrgPbko2eGhnQDjnqlMYYIc-PM6DeUme9-hG8-q_XpPPN5tP6w_Z9u797breZntOVZGZQvZSCV12Ks9VJzua5wWi1i1nssxLWRkuy66tqKn6YqlJtbJVWomyLSrWa3FN3jz93cewxBtTM9hRG-fQn7I2XDImqKJSLNbqyfrdOjM3-2gHjHPDaHOi0pyoNGcqTb273Zw38Q9bmop8
ContentType Journal Article
Copyright 2022 Wiley‐VCH GmbH
2022 Wiley-VCH GmbH.
Copyright_xml – notice: 2022 Wiley‐VCH GmbH
– notice: 2022 Wiley-VCH GmbH.
DBID 7X8
DOI 10.1002/anie.202210985
DatabaseName MEDLINE - Academic
DatabaseTitle MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3773
EndPage n/a
ExternalDocumentID ANIE202210985
Genre article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 21890380; 21821003
– fundername: National Key Research and Development Program of China
  funderid: 2021YFA1500401
– fundername: Local Innovative and Research Teams Project of Guangdong Pearl River Talents Program
  funderid: 2017BT01C161
– fundername: Guangdong Natural Science Funds for Distinguished Young Scholar
  funderid: 2018B030306009
GroupedDBID ---
-DZ
-~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5RE
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABLJU
ABPPZ
ABPVW
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BTSUX
BY8
CS3
D-E
D-F
D0L
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
M53
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
TN5
UB1
UPT
UQL
V2E
VQA
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XSW
XV2
YZZ
ZZTAW
~IA
~KM
~WT
7X8
ABDBF
ABJNI
AEYWJ
AGHNM
AGYGG
ID FETCH-LOGICAL-p2085-e57f783c6d8448d7d0445aaccb21764679e276db90e9f55218b7b8c836b591fc3
IEDL.DBID DR2
ISSN 1433-7851
1521-3773
IngestDate Fri Jul 11 08:10:23 EDT 2025
Wed Jan 22 16:22:47 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 44
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-p2085-e57f783c6d8448d7d0445aaccb21764679e276db90e9f55218b7b8c836b591fc3
Notes These authors contributed equally to this work.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-5888-1283
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/anie.202210985
PQID 2711308073
PQPubID 23479
PageCount 8
ParticipantIDs proquest_miscellaneous_2711308073
wiley_primary_10_1002_anie_202210985_ANIE202210985
PublicationCentury 2000
PublicationDate November 2, 2022
20221102
PublicationDateYYYYMMDD 2022-11-02
PublicationDate_xml – month: 11
  year: 2022
  text: November 2, 2022
  day: 02
PublicationDecade 2020
PublicationTitle Angewandte Chemie International Edition
PublicationYear 2022
References 2021; 7
1990; 53
2018; 28
2021; 5
1991; 38
2017; 2
2021; 4
2019; 3
2018; 140
1953
2021; 143
2020; 10
2020; 32
2021; 50
2019; 141
2014; 114
2019 2019; 58 131
2019; 365
2017; 139
2022; 144
2021; 14
1994; 101
2022 2022; 61 134
2020; 5
2018; 8
2016; 1
2018; 2
2020; 3
2021; 11
2020; 30
2022; 5
2019; 24
2022; 34
2022; 12
2021 2021; 60 133
2022; 13
2019; 575
2022; 15
2022; 32
2022; 2
2017; 200
2022; 16
2014; 544
2005; 12
2018; 57
2020; 29
References_xml – volume: 12
  start-page: 537
  year: 2005
  end-page: 541
  publication-title: J. Synchrotron Radiat.
– volume: 32
  year: 2022
  publication-title: Adv. Funct. Mater.
– volume: 2
  start-page: 0099
  year: 2017
  publication-title: Nat. Chem. Rev.
– volume: 4
  start-page: 407
  year: 2021
  end-page: 417
  publication-title: Nat. Catal.
– volume: 2
  start-page: 610
  year: 2022
  end-page: 621
  publication-title: Chem Catalysis
– volume: 101
  start-page: 6570
  year: 1994
  end-page: 6576
  publication-title: J. Chem. Phys.
– volume: 3
  start-page: 584
  year: 2019
  end-page: 594
  publication-title: Joule
– volume: 57
  start-page: 2165
  year: 2018
  end-page: 2177
  publication-title: Ind. Eng. Chem. Res.
– volume: 7
  start-page: 1297
  year: 2021
  end-page: 1307
  publication-title: Chem
– volume: 11
  start-page: 11786
  year: 2021
  end-page: 11792
  publication-title: ACS Catal.
– volume: 14
  start-page: 3430
  year: 2021
  end-page: 3437
  publication-title: Energy Environ. Sci.
– volume: 5
  start-page: 737
  year: 2021
  end-page: 742
  publication-title: Joule
– volume: 34
  year: 2022
  publication-title: Adv. Mater.
– volume: 8
  start-page: 9174
  year: 2018
  end-page: 9182
  publication-title: ACS Catal.
– volume: 16
  start-page: 2110
  year: 2022
  end-page: 2119
  publication-title: ACS Nano
– start-page: 2939
  year: 1953
  end-page: 2947
  publication-title: J. Chem. Soc.
– volume: 141
  start-page: 2490
  year: 2019
  end-page: 2499
  publication-title: J. Am. Chem. Soc.
– volume: 60 133
  start-page: 22826 23008
  year: 2021 2021
  end-page: 22832 23014
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 144
  start-page: 7551
  year: 2022
  end-page: 7556
  publication-title: J. Am. Chem. Soc.
– volume: 139
  start-page: 8078
  year: 2017
  end-page: 8081
  publication-title: J. Am. Chem. Soc.
– volume: 144
  start-page: 10446
  year: 2022
  end-page: 10454
  publication-title: J. Am. Chem. Soc.
– volume: 30
  year: 2020
  publication-title: Adv. Funct. Mater.
– volume: 53
  start-page: 1253
  year: 1990
  end-page: 1295
  publication-title: Rep. Prog. Phys.
– volume: 365
  start-page: 367
  year: 2019
  end-page: 369
  publication-title: Science
– volume: 10
  start-page: 4854
  year: 2020
  end-page: 4862
  publication-title: ACS Catal.
– volume: 60 133
  start-page: 20627 20795
  year: 2021 2021
  end-page: 20648 20816
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 3
  start-page: 265
  year: 2019
  end-page: 278
  publication-title: Joule
– volume: 144
  start-page: 9661
  year: 2022
  end-page: 9671
  publication-title: J. Am. Chem. Soc.
– volume: 5
  start-page: 268
  year: 2022
  end-page: 276
  publication-title: Nat. Catal.
– volume: 144
  start-page: 4874
  year: 2022
  end-page: 4882
  publication-title: J. Am. Chem. Soc.
– volume: 28
  year: 2018
  publication-title: Adv. Funct. Mater.
– volume: 12
  start-page: 2513
  year: 2022
  end-page: 2521
  publication-title: ACS Catal.
– volume: 1
  start-page: 16009
  year: 2016
  publication-title: Nat. Rev. Mater.
– volume: 61 134
  year: 2022 2022
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 29
  start-page: 1071
  year: 2020
  end-page: 1089
  publication-title: Protein Sci.
– volume: 50
  start-page: 12897
  year: 2021
  end-page: 12914
  publication-title: Chem. Soc. Rev.
– volume: 24
  start-page: 103
  year: 2019
  end-page: 119
  publication-title: Nano Today
– volume: 140
  start-page: 4218
  year: 2018
  end-page: 4221
  publication-title: J. Am. Chem. Soc.
– volume: 3
  start-page: 487
  year: 2020
  end-page: 497
  publication-title: Matter
– volume: 143
  start-page: 7242
  year: 2021
  end-page: 7246
  publication-title: J. Am. Chem. Soc.
– volume: 200
  start-page: 530
  year: 2017
  end-page: 542
  publication-title: Appl. Catal. B
– volume: 60 133
  start-page: 4192 4238
  year: 2021 2021
  end-page: 4198 4244
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 3
  start-page: 478
  year: 2020
  end-page: 487
  publication-title: Nat. Catal.
– volume: 2
  start-page: 825
  year: 2018
  end-page: 832
  publication-title: Joule
– volume: 4
  start-page: 134
  year: 2021
  end-page: 143
  publication-title: Nat. Catal.
– volume: 139
  start-page: 14889
  year: 2017
  end-page: 14892
  publication-title: J. Am. Chem. Soc.
– volume: 38
  start-page: 103
  year: 1991
  end-page: 144
  publication-title: Prog. Surf. Sci.
– volume: 5
  start-page: 684
  year: 2020
  end-page: 692
  publication-title: Nat. Energy
– volume: 60 133
  start-page: 26622 26826
  year: 2021 2021
  end-page: 26629 26833
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 114
  start-page: 1709
  year: 2014
  end-page: 1742
  publication-title: Chem. Rev.
– volume: 13
  start-page: 3080
  year: 2022
  publication-title: Nat. Commun.
– volume: 143
  start-page: 925
  year: 2021
  end-page: 933
  publication-title: J. Am. Chem. Soc.
– volume: 58 131
  start-page: 6271 6337
  year: 2019 2019
  end-page: 6275 6341
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 15
  start-page: 2108
  year: 2022
  end-page: 2119
  publication-title: Energy Environ. Sci.
– volume: 575
  start-page: 639
  year: 2019
  end-page: 642
  publication-title: Nature
– volume: 144
  start-page: 2079
  year: 2022
  end-page: 2084
  publication-title: J. Am. Chem. Soc.
– volume: 32
  year: 2020
  publication-title: Adv. Mater.
– volume: 114
  start-page: 4081
  year: 2014
  end-page: 4148
  publication-title: Chem. Rev.
– volume: 143
  start-page: 11317
  year: 2021
  end-page: 11324
  publication-title: J. Am. Chem. Soc.
– volume: 60 133
  start-page: 18178 18326
  year: 2021 2021
  end-page: 18184 18332
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 544
  start-page: 142
  year: 2014
  end-page: 152
  publication-title: Arch. Biochem. Biophys.
– volume: 143
  start-page: 7819
  year: 2021
  end-page: 7827
  publication-title: J. Am. Chem. Soc.
SSID ssj0028806
Score 2.6386802
Snippet Electroreduction of CO2 to CO is a promising approach for the cycling use of CO2, while it still suffers from impractical current density and durability. Here...
Electroreduction of CO2 to CO is a promising approach for the cycling use of CO2 , while it still suffers from impractical current density and durability. Here...
SourceID proquest
wiley
SourceType Aggregation Database
Publisher
StartPage e202210985
SubjectTerms CO2 Reduction
Electrocatalysis
Industrial-Level Current
Orbital Splitting
Single-Atom Catalysts
Title Single‐Product Faradaic Efficiency for Electrocatalytic of CO2 to CO at Current Density Larger than 1.2 A cm−2 in Neutral Aqueous Solution by a Single‐Atom Nanozyme
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202210985
https://www.proquest.com/docview/2711308073
Volume 61
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELaqXuiFV0HQUjRIvabNOg_bx2i7q4Jgi4BKvUV-RaroJtU2e9ie9oIEN9Qf0h-1v4SZZBNajuWURIoj22N7vpnMfMPYvipiZQZ4-jlR-CA2iQ0k6rlAcGtcbJ2xDc_sp0l6fBp_OEvO7mTxt_wQvcONdkZzXtMG1-bq8C9pKGVgo33H0WZRkrLMKWCLUNGXnj-K4-Js04uiKKAq9B1rY8gP7ze_hy_votRGzYyfMN11sI0u-X4wr82Bvf6Hu_F_RvCUPV5jUMjaRfOMbfjyOXs07Eq_bbPbr6jQLvxq-ftzSwgLYz3TTp9bGDWUE5SvCQh3YdRW0WmcQAv8HFQFDE841BVeQNew5n-CIwqUrxfwkSLPZ0AOe0DDebX8ka2Wv-x09fOGw3kJEz8n3wtkOEvV_Ao6tx2YBWjo-5XV1RRQM1TXi6l_wU7Ho2_D42Bd2CG4pJKggU9EIWRkUyfROnTChXGcaG2tQQMpxaNbeS5SZ1ToVZEgwJBGGGlllJpEDQobvWSbZVX6VwwQr0htuPexsrFTysgwsSJBmJWKSIvoNXvXCTbHSaS_Ibqk_udcDFB_y5De4Y2Y8suW4CNvqZx5TgLKewHl2eT9qH_aeUijXbZF900uI3_DNuvZ3O8hqKnN22bh_gHnIvTM
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwELagHMql_It_Bolr2qwTx_Yx2u5qC9sFQStxi2zHkSrYpNpmD9vTXpDghngQHmqfhJlkEyhHOEWJ4sj22J5vJjPfMPZKF7G2Azz9cln4ILbCBQr1XCC5s3nscusantnjWTI5jV9_FF00IeXCtPwQvcONdkZzXtMGJ4f0wW_WUErBRgOPo9GilbjOblBZbypicPi-Z5DiuDzbBKMoCqgOfcfbGPKDq-2vIMw_cWqjaMa3mO262MaXfNpf1nbfXf7F3vhfY7jN9rYwFNJ23dxh13x5l-0Ou-pv99jPD6jTPvvN-vu7lhMWxmZhcnPmYNSwTlDKJiDihVFbSKfxA63wc1AVMHzLoa7wAqaGLQUUHFKsfL2CKQWfL4B89oC282b9Jd2sv7n55usPDmclzPyS3C-Q4jRVywvoPHdgV2Cg71daV3NA5VBdrub-Pjsdj06Gk2Bb2yE4p6qggReykCpySa7QQMxlHsaxMMY5izZSgqe39lwmudWh14VAjKGstMqpKLFCDwoXPWA7ZVX6hwxQ6MpY7n2sXZxrbVUonBSItBIZGRk9Yi87yWY4ifRDxJTU_4zLAapwFdI7vJFTdt5yfGQtmzPPSEBZL6AsnR2N-rvH_9LoBdudnBxPs-nR7M0TdpOeN6mN_CnbqRdL_wwxTm2fN6v4FyXx-OY
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagSNAL76q8B4lr2qxjx_Yx2u6qhbJUQKXeIr8iVbDJasketqe9IMEN8UP4UftLGCeb0HKEU5QojmyP7flmMvMNIa9UwZQZ4OnnROEjZriNJOq5SFBrHLPO2IZn9u0kPTxlr8_42aUs_pYfone4hZ3RnNdhg89csf-HNDRkYKN9R9FmUZJfJzdYijsmwKL3PYEUxdXZ5hclSRTK0He0jTHdv9r-CsC8DFMbPTO-Q3TXwza85NPeojZ79uIv8sb_GcJdcnsDQiFrV809cs2X98mtYVf77QH59QE12me_Xv04aRlhYazn2ulzC6OGcyIkbALiXRi1ZXQaL9ASPwdVAcN3FOoKL6Br2BBAwUGIlK-XcBxCz-cQPPaAlvN69TVbr77b6frbTwrnJUz8IjhfIMNZqhZfoPPbgVmChr5fWV1NAVVDdbGc-ofkdDz6ODyMNpUdolmoCRp5LgohE5s6ieahEy5mjGttrUELKcWzW3kqUmdU7FXBEWFII4y0MkkNV4PCJjtkq6xKv0sAAYvUhnrPlGVOKSNjbgVHnJWKRIvkEXnZCTbHSQy_Q3QZ-p9TMUAFLuPwDm3ElM9aho-85XKmeRBQ3gsozyZHo_7u8b80ekFunhyM8-OjyZsnZDs8bvIa6VOyVc8X_hkCnNo8b9bwb2Tq954
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Single%E2%80%90Product+Faradaic+Efficiency+for+Electrocatalytic+of+CO2+to+CO+at+Current+Density+Larger+than+1.2%E2%80%85A%E2%80%89cm%E2%88%922+in+Neutral+Aqueous+Solution+by+a+Single%E2%80%90Atom+Nanozyme&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Huang%2C+Jia%E2%80%90Run&rft.au=Qiu%2C+Xiao%E2%80%90Feng&rft.au=Zhao%2C+Zhen%E2%80%90Hua&rft.au=Zhu%2C+Hao%E2%80%90Lin&rft.date=2022-11-02&rft.issn=1433-7851&rft.eissn=1521-3773&rft.volume=61&rft.issue=44&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fanie.202210985&rft.externalDBID=10.1002%252Fanie.202210985&rft.externalDocID=ANIE202210985
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon