Effects of concurrent ozone exposure on the pathogenesis of cigarette smoke-induced emphysema in B6C3F1 mice

Episodic elevation of air pollutants may exacerbate respiratory distress associated with chronic obstructive pulmonary disease (COPD), yet few experiments have been performed to determine how continuously polluted atmospheres may contribute to the etiology of COPD, in general and pulmonary emphysema...

Full description

Saved in:
Bibliographic Details
Published inInhalation toxicology Vol. 14; no. 12; p. 1187
Main Authors March, T H, Barr, E B, Finch, G L, Nikula, K J, Seagrave, J C
Format Journal Article
LanguageEnglish
Published England 01.12.2002
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Episodic elevation of air pollutants may exacerbate respiratory distress associated with chronic obstructive pulmonary disease (COPD), yet few experiments have been performed to determine how continuously polluted atmospheres may contribute to the etiology of COPD, in general and pulmonary emphysema in particular. This study describes the effects of concurrent exposure to ozone (O(3)) in the pathogenesis of cigarette smoke (CS)-induced emphysema in the mouse. Female B6C3F1 mice were whole-body exposed either to filtered air (FA) or to mainstream CS at a concentration of 250 mg total particulate material/m(3) for 6 h/day, 5 days/wk for 15 or 32 wk. Concurrently, mice were exposed either to FA or to O(3) at 0.3 ppm for 8 h/night, 5 nights/wk for the same time periods. At necropsy, mouse lungs were lavaged, and bronchoalveolar lavage fluid (BALF) was analyzed for inflammatory cell numbers, total protein, lactate dehydrogenase (LDH) and alkaline phosphatase (AP) activities, superoxide production by isolated alveolar macrophages, glutathione content, inflammatory cytokines, and proteolytic activity. Other lungs were inflated at constant pressure for 6 h with formalin for fixation, routine histopathology, and stereology. After 32 wk of exposure, CS with or without concurrent O(3) exposure produced stereologic evidence of emphysema as previously described. Concurrent O(3) exposure did not worsen any of these parameters, nor did O(3) by itself cause stereologic changes that were consistent with emphysema. The O(3) exposure caused only slight elevations of BALF macrophages, while CS exposure caused marked increases in the numbers of both BALF macrophages and neutrophils. Neutrophils in the BALF in response to CS exposure were also more numerous at 32 wk than at 15 wk. Exposure to CS caused an increase in BALF total protein, LDH, AP, and interleukin (IL)-1beta. After 32 wk, CS exposure was associated with decreased superoxide production from isolated alveolar macrophages. The CS exposure elevated BALF total glutathione primarily at 15 wk. Overall, O(3) had little effect on endpoints that were significantly affected by CS exposure. We conclude that concurrent O(3) exposure has no effect on the induction of emphysema by CS in this animal model.
ISSN:0895-8378
1091-7691
DOI:10.1080/08958370290084818