Levy flight salp swarm algorithm-based feature selection method for network intrusion detection systems

One of the primary issues in this subject is the low accuracy of existing Network Intrusion Detection Systems (IDS); this issue is exacerbated by the high dimensionality of the feature selection process prior to the creation of IDS models. This challenge is typically handled by employing feature sel...

Full description

Saved in:
Bibliographic Details
Published inAIP conference proceedings Vol. 2400; no. 1
Main Authors Saleh, Hadeel M., Hameed, Saif Saad, Abdulkareem, Ahmed B.
Format Journal Article Conference Proceeding
LanguageEnglish
Published Melville American Institute of Physics 31.10.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract One of the primary issues in this subject is the low accuracy of existing Network Intrusion Detection Systems (IDS); this issue is exacerbated by the high dimensionality of the feature selection process prior to the creation of IDS models. This challenge is typically handled by employing feature selection techniques in order to reduce dataset redundancy and improve classification performance. relevant subset of features, and reduce data dimensionality. Every Salp in the people was symbolized in binary form in this method, with 1 representing a selected feature and 0 representing a non-selected feature. The suggested feature selection approach was tested using the NSL-KDD dataset, which has 41 features. The final result of the, where 1 denotes a selected feature and 0 denotes a feature that is not selected. The suggested feature selection approach was tested using the NSL-KDD dataset, which has 41 features. The study revealed that the proposed strategy can increase the number of features picked and enhance classification accuracy.
AbstractList One of the primary issues in this subject is the low accuracy of existing Network Intrusion Detection Systems (IDS); this issue is exacerbated by the high dimensionality of the feature selection process prior to the creation of IDS models. This challenge is typically handled by employing feature selection techniques in order to reduce dataset redundancy and improve classification performance. relevant subset of features, and reduce data dimensionality. Every Salp in the people was symbolized in binary form in this method, with 1 representing a selected feature and 0 representing a non-selected feature. The suggested feature selection approach was tested using the NSL-KDD dataset, which has 41 features. The final result of the, where 1 denotes a selected feature and 0 denotes a feature that is not selected. The suggested feature selection approach was tested using the NSL-KDD dataset, which has 41 features. The study revealed that the proposed strategy can increase the number of features picked and enhance classification accuracy.
Author Saleh, Hadeel M.
Abdulkareem, Ahmed B.
Hameed, Saif Saad
Author_xml – sequence: 1
  givenname: Hadeel M.
  surname: Saleh
  fullname: Saleh, Hadeel M.
  organization: Continuous learning centre, University of Anbar
– sequence: 2
  givenname: Saif Saad
  surname: Hameed
  fullname: Hameed, Saif Saad
  email: dove_white84@uoanbar.edu.iq
  organization: Computer Networking Systems Department College of Computer Science and Information Technology, University of Anbar
– sequence: 3
  givenname: Ahmed B.
  surname: Abdulkareem
  fullname: Abdulkareem, Ahmed B.
  email: ahmedalnakep3@uoanbar.edu.iq
  organization: Continuous learning centre, University of Anbar
BookMark eNp90D1rwzAQBmBRUmiSdug_EHQrOD1JliyPJfQLAl0ydBOKJSVObcuV5IT8-yYk0K3TDe_D3fFO0KjznUXonsCMgGBPfAaEUM7kFRoTzklWCCJGaAxQ5hnN2dcNmsS4BaBlUcgxWi_s7oBdU683CUfd9DjudWixbtY-1GnTZisdrcHO6jQEi6NtbJVq3-HWpo0_Bj7gzqa9D9-47lIY4ik0Nl1YPMRk23iLrp1uor27zClavr4s5-_Z4vPtY_68yHoKTGbCgTSkcmRVghbOSC41KbkDTkrGqJFQlSCI5KKyWgIvDVROEk1NTiRlbIoezmv74H8GG5Pa-iF0x4uKFgxyACHEUT2eVazqpE9vqj7UrQ4HRUCdelRcXXr8D-98-IOqN479As5pdlc
CODEN APCPCS
ContentType Journal Article
Conference Proceeding
Copyright Author(s)
2022 Author(s). Published by AIP Publishing.
Copyright_xml – notice: Author(s)
– notice: 2022 Author(s). Published by AIP Publishing.
DBID 8FD
H8D
L7M
DOI 10.1063/5.0112538
DatabaseName Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitle Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitleList Technology Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1551-7616
Editor Abdul-Ghafoor, Esmat Ramzi
Editor_xml – sequence: 1
  givenname: Esmat Ramzi
  surname: Abdul-Ghafoor
  fullname: Abdul-Ghafoor, Esmat Ramzi
  organization: Anbar University
ExternalDocumentID acp
Genre Conference Proceeding
GroupedDBID -~X
23M
5GY
AAAAW
AABDS
AAEUA
AAPUP
AAYIH
ABJNI
ACBRY
ACZLF
ADCTM
AEJMO
AFATG
AFHCQ
AGKCL
AGLKD
AGMXG
AGTJO
AHSDT
AJJCW
ALEPV
ALMA_UNASSIGNED_HOLDINGS
ATXIE
AWQPM
BPZLN
F5P
FDOHQ
FFFMQ
HAM
M71
M73
RIP
RQS
SJN
~02
8FD
ABJGX
ADMLS
H8D
L7M
ID FETCH-LOGICAL-p2038-6f08d1cf1b90a6fd858a195f0519332d80c9061856cea8059d0cf81a2d418233
ISSN 0094-243X
IngestDate Mon Jun 30 06:39:31 EDT 2025
Fri Jun 21 00:13:20 EDT 2024
Tue Jul 04 19:17:52 EDT 2023
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License 0094-243X/2022/2400/020018/8/$30.00
Published by AIP Publishing.
LinkModel OpenURL
MeetingName 1ST VIRTUAL INTERNATIONAL CONFERENCE ON SCIENCES: VICS2021
MergedId FETCHMERGED-LOGICAL-p2038-6f08d1cf1b90a6fd858a195f0519332d80c9061856cea8059d0cf81a2d418233
Notes ObjectType-Conference Proceeding-1
SourceType-Conference Papers & Proceedings-1
content type line 21
OpenAccessLink https://aip.scitation.org/doi/pdf/10.1063/5.0112538
PQID 2730400666
PQPubID 2050672
PageCount 8
ParticipantIDs proquest_journals_2730400666
scitation_primary_10_1063_5_0112538
PublicationCentury 2000
PublicationDate 20221031
PublicationDateYYYYMMDD 2022-10-31
PublicationDate_xml – month: 10
  year: 2022
  text: 20221031
  day: 31
PublicationDecade 2020
PublicationPlace Melville
PublicationPlace_xml – name: Melville
PublicationTitle AIP conference proceedings
PublicationYear 2022
Publisher American Institute of Physics
Publisher_xml – name: American Institute of Physics
References Agrawal, Agrawal (c2) 2015; 60
Abdulwahab, Noraziah, Alsewari, Salih (c19) 2019; 7
Mirjalili, Mirjalili, Lewis (c10) 2014; 69
Xue, Zhang, Browne (c5) 2014; 18
Salih, Alsewari (c16) 2020; 32
Kamil, Saleh, Abd-Alla (c28) 2021; 1804
Bostani, Sheikhan (c4) 2015; 21
Lippmann, Haines, Fried, Korba, Das (c26) 2000; 34
Kuo, Lin (c15) 2013; 11
Salih (c23) 2019; 54
Tao, Salih, Saggi, Dodangeh, Voyant, Al-Ansari, Yaseen, Shahid (c17) 2020; 8
Yang (c11) 2009; 5792 LNCS
Chandola, Banerjee, Kumar (c1) 2012; 24
8uS. Yang (c12) 2010; 284
Alzaidi, Ahmad, Ahmed, Al Solami (c21) 2018; 2018
Jing, Yaseen, Shahid, Saggi, Tao, Kisi, Salih, Al-Ansari, Chau (c22) 2019; 13
Mirjalili, Gandomi, Mirjalili, Saremi, Faris, Mirjalili (c24) 2017; 114
Rao, Savsani, Vakharia (c13) 2011; 43
Lin, Ying, Lee, Lee (c25) 2012; 12
References_xml – volume: 69
  start-page: 46
  year: 2014
  ident: c10
  article-title: Grey wolf optimizer
  publication-title: Adv. Eng. Softw.
– volume: 21
  start-page: 1
  year: 2015
  ident: c4
  article-title: Hybrid of binary gravitational search algorithm and mutual information for feature selection in intrusion detection systems
  publication-title: Soft Comput.
– volume: 11
  start-page: 510
  year: 2013
  ident: c15
  article-title: Cultural evolution algorithm for global optimizations and its applications
  publication-title: J. Appl. Res. Technol.
– volume: 43
  start-page: 303
  year: 2011
  ident: c13
  article-title: Teaching–learning-based optimization: A novel method for constrained mechanical design optimization problems
  publication-title: Comput. Des.
– volume: 8
  start-page: 83347
  year: 2020
  ident: c17
  article-title: A Newly Developed Integrative Bio-Inspired Artificial Intelligence Model for Wind Speed Prediction
  publication-title: IEEE Access
– volume: 7
  year: 2019
  ident: c19
  article-title: An Enhanced Version of Black Hole Algorithm via Levy Flight for Optimization and Data Clustering Problems
  publication-title: IEEE Access
– volume: 24
  start-page: 823
  year: 2012
  ident: c1
  article-title: Anomaly detection for discrete sequences: A survey
  publication-title: IEEE Trans. Knowl. Data Eng.
– volume: 114
  start-page: 163
  year: 2017
  ident: c24
  article-title: Salp Swarm Algorithm: A bio-inspired optimizer for engineering design problems
  publication-title: Adv. Eng. Softw.
– volume: 5792 LNCS
  start-page: 169
  year: 2009
  ident: c11
  article-title: Firefly algorithms for multimodal optimization
  publication-title: Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics)
– volume: 284
  start-page: 65
  year: 2010
  ident: c12
  article-title: A new metaheuristic bat-inspired algorithm
  publication-title: Studies in Computational Intelligence
– volume: 60
  start-page: 708
  year: 2015
  ident: c2
  article-title: Survey on anomaly detection using data mining techniques
  publication-title: Procedia Computer Science
– volume: 1804
  start-page: 012012
  year: 2021
  ident: c28
  article-title: A Multi-Swarm Structure for Particle Swarm Optimization: Solving the Welded Beam Design Problem
  publication-title: Journal of Physics: Conference Series
– volume: 2018
  year: 2018
  ident: c21
  article-title: Sine-Cosine Optimization-Based Bijective Substitution-Boxes Construction Using Enhanced Dynamics of Chaotic Map
  publication-title: Complexity
– volume: 12
  start-page: 3285
  year: 2012
  ident: c25
  article-title: An intelligent algorithm with feature selection and decision rules applied to anomaly intrusion detection
  publication-title: Appl. Soft Comput. J.
– volume: 18
  start-page: 261
  year: 2014
  ident: c5
  article-title: Particle swarm optimisation for feature selection in classification: Novel initialisation and updating mechanisms
  publication-title: Appl. Soft Comput. J.
– volume: 32
  start-page: 10359
  year: 2020
  ident: c16
  article-title: A new algorithm for normal and large-scale optimization problems: Nomadic People Optimizer
  publication-title: Neural Comput. Appl.
– volume: 13
  start-page: 811
  year: 2019
  ident: c22
  article-title: Implementation of evolutionary computing models for reference evapotranspiration modeling: short review, assessment and possible future research directions
  publication-title: Eng. Appl. Comput. Fluid Mech.
– volume: 54
  start-page: 1
  year: 2019
  ident: c23
  article-title: A New Training Method Based on Black Hole Algorithm for Convolutional Neural Network
  publication-title: J. Sourthwest Jiaotong Univ.
– volume: 34
  start-page: 579
  year: 2000
  ident: c26
  article-title: 1999 DARPA off-line intrusion detection evaluation
  publication-title: Comput. Networks
SSID ssj0029778
Score 2.3091693
Snippet One of the primary issues in this subject is the low accuracy of existing Network Intrusion Detection Systems (IDS); this issue is exacerbated by the high...
SourceID proquest
scitation
SourceType Aggregation Database
Enrichment Source
Publisher
SubjectTerms Algorithms
Classification
Datasets
Feature selection
Intrusion detection systems
Redundancy
Title Levy flight salp swarm algorithm-based feature selection method for network intrusion detection systems
URI http://dx.doi.org/10.1063/5.0112538
https://www.proquest.com/docview/2730400666
Volume 2400
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba9RAFB50i-ibl4rVKgP6FqJJJpnMPhZtqbKtBVPYt2GurbDNLptVwV_vmcsmu-0i6EsIYUjC-U7O-c7kXBB6V4-VJFLpVPrfjEAKUmnqIqWqYJVwpZfS_dE9O6enl-WXaTUdJur56pKVfK9-76wr-R9U4Rrg6qpk_wHZ_qZwAc4BXzgCwnC8i_FOV3P0-cIljq-bxQ5ruk1dcIOJEztzcXjSidki6X6J5U0iZlfz5ffV9U3qfJlOrPFdPpPOz8ZxehHmS_tUxDbki7v-Essfbost0WYVl3Ubbc_jDgIEn4PpHZL2RbudnuATUNXmhiEEgmlR-um94DmiuazytKahWnJtT11W6m3NuWOogRmBdF3LVGBYob_LdjPs86_85HIy4c3xtLmP9gpSs3KE9o4-nU2-9RE1kNfgauOrrVtHUfKhv_VW6PAQeEVIcdhgEc1jtD_UV-KLHqon6J5pn6IHURbP0JXDCwe8sMMLe7zwLbxwxAv3eOGAFwa8cMQL93jhHi8c8dpHzclx8_E0jQMx0kWRgWOiNmM6VzaX40xQq1nFRD6urKfhpNAsU2PgZ6yiyggGxFlnyrJcFLqEMJKQ52jUzlvzAmGgvaI2uSWk0qXV8FUaUspSUUZZCSH4ATpcC41Hhe84MF1n8iHgPUBve0HyRWiLwn06AyW84lHyO1f9nC-HFXyh7cu_P-oVejTo7CEagczMa-CBK_kmasMf6rtkZQ
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=AIP+conference+proceedings&rft.atitle=Levy+flight+salp+swarm+algorithm-based+feature+selection+method+for+network+intrusion+detection+systems&rft.date=2022-10-31&rft.pub=American+Institute+of+Physics&rft.issn=0094-243X&rft.eissn=1551-7616&rft.volume=2400&rft.issue=1&rft_id=info:doi/10.1063%2F5.0112538&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0094-243X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0094-243X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0094-243X&client=summon