Enhanced Photocarrier Generation with Selectable Wavelengths by M‐Decorated‐CuInS2 Nanocrystals (M = Au and Pt) Synthesized in a Single Surfactant Process on MoS2 Bilayers
A facile approach for the synthesis of Au‐ and Pt‐decorated CuInS2 nanocrystals (CIS NCs) as sensitizer materials on the top of MoS2 bilayers is demonstrated. A single surfactant (oleylamine) is used to prepare such heterostructured noble metal decorated CIS NCs from the pristine CIS. Such a feasibl...
Saved in:
Published in | Small (Weinheim an der Bergstrasse, Germany) Vol. 15; no. 8; pp. e1803529 - n/a |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
Wiley Subscription Services, Inc
22.02.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | A facile approach for the synthesis of Au‐ and Pt‐decorated CuInS2 nanocrystals (CIS NCs) as sensitizer materials on the top of MoS2 bilayers is demonstrated. A single surfactant (oleylamine) is used to prepare such heterostructured noble metal decorated CIS NCs from the pristine CIS. Such a feasible way to synthesize heterostructured noble metal decorated CIS NCs from the single surfactant can stimulate the development of the functionalized heterostructured NCs in large scale for practical applications such as solar cells and photodetectors. Photodetectors based on MoS2 bilayers with the synthesized nanocrystals display enhanced photocurrent, almost 20–40 times higher responsivity and the On/Off ratio is enlarged one order of magnitude compared with the pristine MoS2 bilayers‐based photodetectors. Remarkably, by using Pt‐ or Au‐decorated CIS NCs, the photocurrent enhancement of MoS2 photodetectors can be tuned between blue (405 nm) to green (532 nm). The strategy described here acts as a perspective to significantly improve the performance of MoS2‐based photodetectors with the controllable absorption wavelengths in the visible light range, showing the feasibility of the possible color detection.
Au‐ and Pt‐decorated CuInS2 nanocrystals (CIS NCs) are synthesized through a facile approach and demonstrated as sensitizer materials on bilayered MoS2‐based photodetectors. The enhancement of the responsivity is ≈22 times for the Pt‐CIS/MoS2 photodetector under the illumination of 405 nm and ≈40 times for Au‐CIS/MoS2 under the light of 532 nm due to efficient carrier generation and transportation compared with the pristine MoS2 device. |
---|---|
AbstractList | A facile approach for the synthesis of Au‐ and Pt‐decorated CuInS2 nanocrystals (CIS NCs) as sensitizer materials on the top of MoS2 bilayers is demonstrated. A single surfactant (oleylamine) is used to prepare such heterostructured noble metal decorated CIS NCs from the pristine CIS. Such a feasible way to synthesize heterostructured noble metal decorated CIS NCs from the single surfactant can stimulate the development of the functionalized heterostructured NCs in large scale for practical applications such as solar cells and photodetectors. Photodetectors based on MoS2 bilayers with the synthesized nanocrystals display enhanced photocurrent, almost 20–40 times higher responsivity and the On/Off ratio is enlarged one order of magnitude compared with the pristine MoS2 bilayers‐based photodetectors. Remarkably, by using Pt‐ or Au‐decorated CIS NCs, the photocurrent enhancement of MoS2 photodetectors can be tuned between blue (405 nm) to green (532 nm). The strategy described here acts as a perspective to significantly improve the performance of MoS2‐based photodetectors with the controllable absorption wavelengths in the visible light range, showing the feasibility of the possible color detection. A facile approach for the synthesis of Au‐ and Pt‐decorated CuInS2 nanocrystals (CIS NCs) as sensitizer materials on the top of MoS2 bilayers is demonstrated. A single surfactant (oleylamine) is used to prepare such heterostructured noble metal decorated CIS NCs from the pristine CIS. Such a feasible way to synthesize heterostructured noble metal decorated CIS NCs from the single surfactant can stimulate the development of the functionalized heterostructured NCs in large scale for practical applications such as solar cells and photodetectors. Photodetectors based on MoS2 bilayers with the synthesized nanocrystals display enhanced photocurrent, almost 20–40 times higher responsivity and the On/Off ratio is enlarged one order of magnitude compared with the pristine MoS2 bilayers‐based photodetectors. Remarkably, by using Pt‐ or Au‐decorated CIS NCs, the photocurrent enhancement of MoS2 photodetectors can be tuned between blue (405 nm) to green (532 nm). The strategy described here acts as a perspective to significantly improve the performance of MoS2‐based photodetectors with the controllable absorption wavelengths in the visible light range, showing the feasibility of the possible color detection. Au‐ and Pt‐decorated CuInS2 nanocrystals (CIS NCs) are synthesized through a facile approach and demonstrated as sensitizer materials on bilayered MoS2‐based photodetectors. The enhancement of the responsivity is ≈22 times for the Pt‐CIS/MoS2 photodetector under the illumination of 405 nm and ≈40 times for Au‐CIS/MoS2 under the light of 532 nm due to efficient carrier generation and transportation compared with the pristine MoS2 device. A facile approach for the synthesis of Au- and Pt-decorated CuInS2 nanocrystals (CIS NCs) as sensitizer materials on the top of MoS2 bilayers is demonstrated. A single surfactant (oleylamine) is used to prepare such heterostructured noble metal decorated CIS NCs from the pristine CIS. Such a feasible way to synthesize heterostructured noble metal decorated CIS NCs from the single surfactant can stimulate the development of the functionalized heterostructured NCs in large scale for practical applications such as solar cells and photodetectors. Photodetectors based on MoS2 bilayers with the synthesized nanocrystals display enhanced photocurrent, almost 20-40 times higher responsivity and the On/Off ratio is enlarged one order of magnitude compared with the pristine MoS2 bilayers-based photodetectors. Remarkably, by using Pt- or Au-decorated CIS NCs, the photocurrent enhancement of MoS2 photodetectors can be tuned between blue (405 nm) to green (532 nm). The strategy described here acts as a perspective to significantly improve the performance of MoS2 -based photodetectors with the controllable absorption wavelengths in the visible light range, showing the feasibility of the possible color detection.A facile approach for the synthesis of Au- and Pt-decorated CuInS2 nanocrystals (CIS NCs) as sensitizer materials on the top of MoS2 bilayers is demonstrated. A single surfactant (oleylamine) is used to prepare such heterostructured noble metal decorated CIS NCs from the pristine CIS. Such a feasible way to synthesize heterostructured noble metal decorated CIS NCs from the single surfactant can stimulate the development of the functionalized heterostructured NCs in large scale for practical applications such as solar cells and photodetectors. Photodetectors based on MoS2 bilayers with the synthesized nanocrystals display enhanced photocurrent, almost 20-40 times higher responsivity and the On/Off ratio is enlarged one order of magnitude compared with the pristine MoS2 bilayers-based photodetectors. Remarkably, by using Pt- or Au-decorated CIS NCs, the photocurrent enhancement of MoS2 photodetectors can be tuned between blue (405 nm) to green (532 nm). The strategy described here acts as a perspective to significantly improve the performance of MoS2 -based photodetectors with the controllable absorption wavelengths in the visible light range, showing the feasibility of the possible color detection. |
Author | Yen, Yu‐Ting Medina, Henry Chen, Chia‐Wei Chueh, Yu‐Lun Wei, Kung‐Hwa Tang, Shin‐Yi Yang, Tzu‐Yi |
Author_xml | – sequence: 1 givenname: Shin‐Yi surname: Tang fullname: Tang, Shin‐Yi organization: National Tsing Hua University – sequence: 2 givenname: Henry surname: Medina fullname: Medina, Henry organization: Agency for Science, Technology and Research (ASTAR) – sequence: 3 givenname: Yu‐Ting surname: Yen fullname: Yen, Yu‐Ting organization: National Tsing Hua University – sequence: 4 givenname: Chia‐Wei surname: Chen fullname: Chen, Chia‐Wei organization: National Tsing Hua University – sequence: 5 givenname: Tzu‐Yi surname: Yang fullname: Yang, Tzu‐Yi organization: National Tsing Hua University – sequence: 6 givenname: Kung‐Hwa surname: Wei fullname: Wei, Kung‐Hwa organization: National Chiao Tung University – sequence: 7 givenname: Yu‐Lun orcidid: 0000-0002-0155-9987 surname: Chueh fullname: Chueh, Yu‐Lun email: ylchueh@mx.nthu.edu.tw organization: National Tsing Hua University |
BookMark | eNpdkc1u1DAUhS3USrSFLesrsSmLKf5rEi9YlKGUSjOlUkAsIye5aVx57KntUIUVj8Cb8E48Ca5azaKre6706Zyrew7JnvMOCXnD6AmjlL-PG2tPOGUVFadcvSAHrGBiUVRc7e00oy_JYYy3lArGZXlA_p67UbsOe7geffKdDsFggAt0GHQy3sG9SSPUaLFLurUIP_TPvLibNEZoZ1j_-_3nE3Y-09hnvZwuXc3hSjvfhTkmbSMcr-EDnE2gXY5J76CeXRoxml851jjQUBt3k63rKQw6x7gE18F3GCPkA9Y--300Vs8Y4iuyP2RLfP00j8j3z-ffll8Wq68Xl8uz1WLLVKEWiKUYZF9o1Za0aFUvldBDVWg-tChkwVpW5Q_g0CtRMiqRlYKWVdsq2dNT7MUROX703QZ_N2FMzcbEDq3VDv0UG85KJZRkimf07TP01k_B5esyVUlZUVnJTKlH6t5YnJttMBsd5obR5qG85qG8ZldeU69Xq90m_gPrK5UD |
ContentType | Journal Article |
Copyright | 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
Copyright_xml | – notice: 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
DBID | 7SR 7U5 8BQ 8FD JG9 L7M 7X8 |
DOI | 10.1002/smll.201803529 |
DatabaseName | Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace MEDLINE - Academic |
DatabaseTitle | Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX MEDLINE - Academic |
DatabaseTitleList | Materials Research Database MEDLINE - Academic |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1613-6829 |
EndPage | n/a |
ExternalDocumentID | SMLL201803529 |
Genre | article |
GrantInformation_xml | – fundername: National Tsing Hua University funderid: 104N2022E1 – fundername: Ministry of Science and Technology funderid: 107‐2923‐E‐007‐002‐MY3; 107‐2112‐M‐007‐030‐MY3; 106‐2923‐E‐007‐006‐MY2; 105‐2119‐M‐009‐009; 107‐3017‐F‐007‐002 |
GroupedDBID | --- 05W 0R~ 123 1L6 1OC 33P 3SF 3WU 4.4 50Y 52U 53G 5VS 66C 8-0 8-1 8UM A00 AAESR AAEVG AAHHS AAHQN AAIHA AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCUV ABIJN ABJNI ABLJU ABRTZ ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZVAB BFHJK BHBCM BMNLL BMXJE BNHUX BOGZA BRXPI CS3 DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBD EBS EJD EMOBN F5P G-S GNP HBH HGLYW HHY HHZ HZ~ IX1 KQQ LATKE LAW LEEKS LITHE LOXES LUTES LYRES MEWTI MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM MY~ O66 O9- OIG P2P P2W P4E QRW R.K RIWAO RNS ROL RWI RX1 RYL SUPJJ SV3 V2E W99 WBKPD WFSAM WIH WIK WJL WOHZO WXSBR WYISQ WYJ XV2 Y6R ZZTAW ~S- 7SR 7U5 8BQ 8FD AAMMB AEFGJ AGHNM AGXDD AGYGG AIDQK AIDYY JG9 L7M 7X8 |
ID | FETCH-LOGICAL-p1969-ee73f4d6a9b706b9d493af86a2fbe3461b18312efd937104e173078bb94d05ed3 |
IEDL.DBID | DR2 |
ISSN | 1613-6810 1613-6829 |
IngestDate | Thu Jul 10 23:45:16 EDT 2025 Fri Jul 25 12:14:27 EDT 2025 Wed Jan 22 16:20:26 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-p1969-ee73f4d6a9b706b9d493af86a2fbe3461b18312efd937104e173078bb94d05ed3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-0155-9987 |
PQID | 2184480484 |
PQPubID | 1046358 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_2179394192 proquest_journals_2184480484 wiley_primary_10_1002_smll_201803529_SMLL201803529 |
PublicationCentury | 2000 |
PublicationDate | February 22, 2019 |
PublicationDateYYYYMMDD | 2019-02-22 |
PublicationDate_xml | – month: 02 year: 2019 text: February 22, 2019 day: 22 |
PublicationDecade | 2010 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim |
PublicationTitle | Small (Weinheim an der Bergstrasse, Germany) |
PublicationYear | 2019 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2017; 5 2010; 10 2017; 42 2013; 4 2017; 4 2010; 105 2011; 11 2008; 8 2015; 349 2013; 7 2013; 8 2012; 12 2001; 105 2013; 13 2004; 38 2010; 114 2002; 228 2010; 273 2008; 24 2011; 21 2014; 8 2012; 24 2006; 128 2012; 22 2014; 6 2005; 34 2007; 17 2015; 15 2015; 5 2017; 27 2011; 84 2015; 11 2011; 40 2016; 10 2013; 102 2013; 340 2015; 9 2011; 6 2004; 304 2011; 5 2011; 133 2001; 63 2016; 7 2016; 1 2015; 27 2003; 107 2003; 424 2001; 7 2017; 11 1991; 64 2017; 13 2009; 6 2012; 7 2016; 28 2012; 4 2016; 26 2008; 130 2014; 104 2018; 14 |
References_xml | – volume: 38 start-page: 3001 year: 2004 publication-title: Water Res. – volume: 9 start-page: 5357 year: 2015 publication-title: ACS Nano – volume: 4 start-page: 6360 year: 2012 publication-title: Nanoscale – volume: 27 start-page: 1704181 year: 2017 publication-title: Adv. Funct. Mater. – volume: 8 start-page: 3628 year: 2014 publication-title: ACS Nano – volume: 26 start-page: 6641 year: 2016 publication-title: Adv. Funct. Mater. – volume: 8 start-page: 1102 year: 2014 publication-title: ACS Nano – volume: 8 start-page: 497 year: 2013 publication-title: Nat. Nanotechnol. – volume: 11 start-page: 8768 year: 2017 publication-title: ACS Nano – volume: 304 start-page: 1787 year: 2004 publication-title: Science – volume: 105 start-page: 8810 year: 2001 publication-title: J. Phys. Chem. B – volume: 40 start-page: 4167 year: 2011 publication-title: Chem. Soc. Rev. – volume: 11 start-page: 2392 year: 2015 publication-title: Small – volume: 27 start-page: 8424 year: 2015 publication-title: Chem. Mater. – volume: 114 start-page: 11414 year: 2010 publication-title: J. Phys. Chem. C – volume: 5 start-page: 11830 year: 2015 publication-title: Sci. Rep. – volume: 10 start-page: 216 year: 2016 publication-title: Nat. Photonics – volume: 27 start-page: 1701 year: 2015 publication-title: Adv. Mater. – volume: 273 start-page: 182 year: 2010 publication-title: J. Catal. – volume: 424 start-page: 824 year: 2003 publication-title: Nature – volume: 5 start-page: 1700009 year: 2017 publication-title: Adv. Opt. Mater. – volume: 130 start-page: 16770 year: 2008 publication-title: J. Am. Chem. Soc. – volume: 12 start-page: 3695 year: 2012 publication-title: Nano Lett. – volume: 8 start-page: 9332 year: 2014 publication-title: ACS Nano – volume: 7 start-page: 11954 year: 2016 publication-title: Nat. Commun. – volume: 4 start-page: 1092 year: 2017 publication-title: ACS Photonics – volume: 7 start-page: 85 year: 2012 publication-title: Chem. ‐ Asian J. – volume: 17 start-page: 2679 year: 2007 publication-title: J. Mater. Chem. – volume: 6 start-page: 20887 year: 2014 publication-title: ACS Appl. Mater. Interfaces – volume: 105 start-page: 136805 year: 2010 publication-title: Phys. Rev. Lett. – volume: 64 start-page: 543 year: 1991 publication-title: Bull. Chem. Soc. Jpn. – volume: 27 start-page: 7969 year: 2015 publication-title: Chem. Mater. – volume: 4 start-page: 3596 year: 2013 publication-title: J. Phys. Chem. Lett. – volume: 63 start-page: 075203 year: 2001 publication-title: Phys. Rev. B – volume: 34 start-page: 1 year: 2005 publication-title: J. Electron. Mater. – volume: 8 start-page: 637 year: 2008 publication-title: Nano Lett. – volume: 42 start-page: 12254 year: 2017 publication-title: Int. J. Hydrogen Energy – volume: 11 start-page: 10321 year: 2017 publication-title: ACS Nano – volume: 84 start-page: 045409 year: 2011 publication-title: Phys. Rev. B – volume: 24 start-page: 13197 year: 2008 publication-title: Langmuir – volume: 7 start-page: 699 year: 2012 publication-title: Nat. Nanotechnol. – volume: 349 start-page: 632 year: 2015 publication-title: Science – volume: 228 start-page: 15 year: 2002 publication-title: Appl. Catal., A – volume: 14 start-page: 1704013 year: 2018 publication-title: Small – volume: 107 start-page: 7479 year: 2003 publication-title: J. Phys. Chem. B – volume: 1 start-page: 1253 year: 2016 publication-title: ACS Omega – volume: 6 start-page: 1030 year: 2009 publication-title: Phys. Status Solidi C – volume: 340 start-page: 1311 year: 2013 publication-title: Science – volume: 13 start-page: 1702177 year: 2017 publication-title: Small – volume: 22 start-page: 1385 year: 2012 publication-title: Adv. Funct. Mater. – volume: 21 start-page: 9088 year: 2011 publication-title: J. Mater. Chem. – volume: 5 start-page: 4712 year: 2011 publication-title: ACS Nano – volume: 10 start-page: 1271 year: 2010 publication-title: Nano Lett. – volume: 8 start-page: 7630 year: 2014 publication-title: ACS Nano – volume: 6 start-page: 147 year: 2011 publication-title: Nat. Nanotechnol. – volume: 8 start-page: 95 year: 2014 publication-title: Nat. Photonics – volume: 28 start-page: 4358 year: 2016 publication-title: Chem. Mater. – volume: 104 start-page: 031112 year: 2014 publication-title: Appl. Phys. Lett. – volume: 11 start-page: 2841 year: 2011 publication-title: Nano Lett. – volume: 13 start-page: 4434 year: 2013 publication-title: Nano Lett. – volume: 102 start-page: 203109 year: 2013 publication-title: Appl. Phys. Lett. – volume: 8 start-page: 12682 year: 2014 publication-title: ACS Nano – volume: 133 start-page: 16730 year: 2011 publication-title: J. Am. Chem. Soc. – volume: 24 start-page: 5832 year: 2012 publication-title: Adv. Mater. – volume: 15 start-page: 2700 year: 2015 publication-title: Nano Lett. – volume: 7 start-page: 1862 year: 2001 publication-title: Chemistry – volume: 11 start-page: 9720 year: 2017 publication-title: ACS Nano – volume: 8 start-page: 8582 year: 2014 publication-title: ACS Nano – volume: 7 start-page: 3905 year: 2013 publication-title: ACS Nano – volume: 128 start-page: 11921 year: 2006 publication-title: J. Am. Chem. Soc. – volume: 8 start-page: 8653 year: 2014 publication-title: ACS Nano |
SSID | ssj0031247 |
Score | 2.4702656 |
Snippet | A facile approach for the synthesis of Au‐ and Pt‐decorated CuInS2 nanocrystals (CIS NCs) as sensitizer materials on the top of MoS2 bilayers is demonstrated.... A facile approach for the synthesis of Au- and Pt-decorated CuInS2 nanocrystals (CIS NCs) as sensitizer materials on the top of MoS2 bilayers is demonstrated.... |
SourceID | proquest wiley |
SourceType | Aggregation Database Publisher |
StartPage | e1803529 |
SubjectTerms | Bilayers carrier generation Decoration Feasibility Gold heterostructured noble metal‐CuInS2 nanocrystals (CIS NCs) Molybdenum disulfide MoS2 Nanocrystals Nanotechnology Noble metals Performance enhancement photodetectors Photoelectric effect Photoelectric emission Photometers Photovoltaic cells Platinum responsivity Solar cells Surfactants Synthesis Wavelengths |
Title | Enhanced Photocarrier Generation with Selectable Wavelengths by M‐Decorated‐CuInS2 Nanocrystals (M = Au and Pt) Synthesized in a Single Surfactant Process on MoS2 Bilayers |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsmll.201803529 https://www.proquest.com/docview/2184480484 https://www.proquest.com/docview/2179394192 |
Volume | 15 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwELZQT3DgH7FQ0CBxgEPaJPbG8YFDKa0KahAiVPQW2bHDrlicapMcticegTfhnXgSZpLdsOUIt_z5Jxp75hvb8w1jz6WuSoV2J1CVRAdlam2g4tIEZRJKleIzoWm9I3ufnJyJd-fT860o_oEfYlxwo5nR62ua4No0-39IQ5tvC9o6iFJi9KQIPjqwRajo48gfxdF49dlV0GYFRLy1YW0M4_2rxa_gy22U2puZ41tMbzo4nC75ute1Zq-8_Iu78X_-4Da7ucagcDAMmjvsmvN32Y0tZsJ77OeRn_VnA-DDrG7R3i0psx0MJNUkS6AFXMj7LDoUfQWfNaWw8F_aWQNmBdmv7z_ekGuLWNbi9WH31ucxoDKvy-UKIemigRcZvIKDDrTHZtqXkK88wtFmfonNzj1oyLEvWHXeLSn-AscArOMaADuQ1Vjf6_lCk9Nwn50dH306PAnWuR2CCyLkCZyTvBI20crIMDHKCsV1lSY6rozjIokM6poodpUlwr5QuAhVkUyNUcKGU2f5A7bja-8eMlDcmXSaSvQcK8ETrFBaaTmvosRI7qIJ293ItlhP0KYgz1akqL7EhD0bX-PUov0S7V3d0TeovBRtk09Y3AuyuBgoQIqB7DkuSITFKMIiz05Px7tH_1LoMbuO16oPmo932U677NwThD2tedoP7d_k_v5B |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagHKAHKI-KhVKMxAEOaZPYG8cHDqW02sKmQqQV3CI7dthVF6faJIftqT-h_4T_xC9hJtkNLUe45eVHNJ6nPd8Q8lqoIpegdzxZCHBQhsZ4Msy1l0e-kDE84wrjHclxNDrlH78NV6cJMRemw4foA27IGa28RgbHgPTuH9TQ6scM9w6CGCE95W1yB8t6t17Vlx5BioH6auurgNbyEHprhdvoh7s329-wMK_bqa2iOXxA9GqK3fmSs52m1jv5xV_ojf_1Dxvk_tIMpXvdunlIbln3iKxfAyd8TH4euEl7PIB-npQ1qLw5FrejHU41kpNiDJembSEdTMCiXxVWsXDf60lF9YImvy6vPqB3C-asgev95silIQV5XubzBVils4q-Seg7utdQ5WCY-i1NFw4s0mp6AcNOHVU0hblA12kzxxQMWAZ0mdpAYQJJCf29n84U-g1PyOnhwcn-yFuWd_DOEZPHs1awgptISS38SEvDJVNFHKmw0JbxKNAgboLQFgYx-3xuA5BGItZacuMPrWGbZM2Vzj4lVDKr42EswHksOIugQ2GEYawIIi2YDQZka0XcbMmjVYbOLY9BgvEBedW_Bu7CLRPlbNngNyC_JO6UD0jYUjI771BAsg7vOcyQhFlPwixNxuP-7tm_NHpJ7o5OknE2Pjr-9Jzcg-eyzaEPt8haPW_sC7CCar3drvPfvtsCaw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9MwGLZgSIgd-J4oDDASBzhkS2I3jg8cxrpqg2aaCBO7RXbs0GrFqdrk0J34CfwT_hO_hPdN2tBxhFu-_BG937bf5yXktVBFLsHueLIQEKD0jfFkmGsvj3whY3jGFa53JKfR8Tn_cNG_2Mjib_EhugU3lIxGX6OAz0yx_wc0dPFtilsHQYyInvImucUjP0a-HnzqAKQYWK-mvAoYLQ-Rt9awjX64f739NQdz001t7MzwHlHrGbbHSy736krv5Vd_gTf-zy_cJ3dXTig9aLnmAblh3UOyvQFN-Ij8PHLj5nAAPRuXFRi8OZa2oy1KNRKT4gouTZsyOph-Rb8orGHhvlbjBdVLmvz6_mOAsS04swauD-sTl4YUtHmZz5fgk04X9E1C39GDmioHw1Rvabp04I8uJlcw7MRRRVOYC3Sd1nNMwAAmoKvEBgoTSEro7_1kqjBqeEzOh0efD4-9VXEHb4aIPJ61ghXcREpq4UdaGi6ZKuJIhYW2jEeBBmUThLYwiNjncxuALhKx1pIbv28N2yFbrnT2CaGSWR33YwGhY8FZBB0KIwxjRRBpwWzQI7tr2mYrCV1kGNryGPQX75FX3WuQLdwwUc6WNX4D2kviPnmPhA0hs1mLAZK1aM9hhiTMOhJmaTIadXdP_6XRS3L7bDDMRienH5-RO_BYNgn04S7Zqua1fQ4uUKVfNFz-G9X6ASM |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhanced+Photocarrier+Generation+with+Selectable+Wavelengths+by+M%E2%80%90Decorated%E2%80%90CuInS2+Nanocrystals+%28M+%3D+Au+and+Pt%29+Synthesized+in+a+Single+Surfactant+Process+on+MoS2+Bilayers&rft.jtitle=Small+%28Weinheim+an+der+Bergstrasse%2C+Germany%29&rft.au=Tang%2C+Shin%E2%80%90Yi&rft.au=Medina%2C+Henry&rft.au=Yen%2C+Yu%E2%80%90Ting&rft.au=Chen%2C+Chia%E2%80%90Wei&rft.date=2019-02-22&rft.issn=1613-6810&rft.eissn=1613-6829&rft.volume=15&rft.issue=8&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fsmll.201803529&rft.externalDBID=10.1002%252Fsmll.201803529&rft.externalDocID=SMLL201803529 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1613-6810&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1613-6810&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1613-6810&client=summon |