Probabilistic Inductive Logic Programming

Probabilistic inductive logic programming aka. statistical relational learning addresses one of the central questions of artificial intelligence: the integration of probabilistic reasoning with machine learning and first order and relational logic representations. A rich variety of different formali...

Full description

Saved in:
Bibliographic Details
Published inProbabilistic Inductive Logic Programming Vol. 4911; pp. 1 - 27
Main Authors De Raedt, Luc, Kersting, Kristian
Format Book Chapter
LanguageEnglish
Published Germany Springer Berlin / Heidelberg 2008
Springer Berlin Heidelberg
SeriesLecture Notes in Computer Science
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Probabilistic inductive logic programming aka. statistical relational learning addresses one of the central questions of artificial intelligence: the integration of probabilistic reasoning with machine learning and first order and relational logic representations. A rich variety of different formalisms and learning techniques have been developed. A unifying characterization of the underlying learning settings, however, is missing so far. In this chapter, we start from inductive logic programming and sketch how the inductive logic programming formalisms, settings and techniques can be extended to the statistical case. More precisely, we outline three classical settings for inductive logic programming, namely learning from entailment, learning from interpretations, and learning from proofs or traces, and show how they can be adapted to cover state-of-the-art statistical relational learning approaches.
AbstractList Probabilistic inductive logic programming aka. statistical relational learning addresses one of the central questions of artificial intelligence: the integration of probabilistic reasoning with machine learning and first order and relational logic representations. A rich variety of different formalisms and learning techniques have been developed. A unifying characterization of the underlying learning settings, however, is missing so far. In this chapter, we start from inductive logic programming and sketch how the inductive logic programming formalisms, settings and techniques can be extended to the statistical case. More precisely, we outline three classical settings for inductive logic programming, namely learning from entailment, learning from interpretations, and learning from proofs or traces, and show how they can be adapted to cover state-of-the-art statistical relational learning approaches.
Author Kersting, Kristian
De Raedt, Luc
Author_xml – sequence: 1
  givenname: Luc
  surname: De Raedt
  fullname: De Raedt, Luc
– sequence: 2
  givenname: Kristian
  surname: Kersting
  fullname: Kersting, Kristian
BookMark eNqNkD9PwzAQxQ0URFv6CVi6Mhh8dmyfR4T4U6kSDDBbjuOUQJsEO-Xz47YsbNxyunf63em9CRm1XRsIuQR2DYzpG6ORCioLRjUqySlaOCKzrIqs7SU8JmNQAFSIwpz82QGMyJgJxqnRhTgjE2BKAQqF7JzMUvpguQQYqWFMrl5iV7qyWTdpaPx80VZbPzTfYb7sVnnO21V0m03Tri7Iae3WKcx--5S8Pdy_3j3R5fPj4u52SXswBVCHdcWLSgVtfMlqzytR8cCElhpDqYV0tSscOm6UqY3QwNFjltEXptSVE1MCh7upj_ltiLbsus9kgdldNjY7tcJmr3YfhM3ZZIYdmD52X9uQBht2kA_tEN3av7t-CDFZxZEZray05r-IlFohsj3yA4P5cy4
ContentType Book Chapter
Copyright Springer-Verlag Berlin Heidelberg 2008
Copyright_xml – notice: Springer-Verlag Berlin Heidelberg 2008
DBID FFUUA
DOI 10.1007/978-3-540-78652-8_1
DatabaseName ProQuest Ebook Central - Book Chapters - Demo use only
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISBN 9783540786528
354078652X
EISSN 1611-3349
Editor Kersting, Kristian
Muggleton, Stephen H
Frasconi, Paolo
De Raedt, Luc
Editor_xml – sequence: 1
  fullname: Kersting, Kristian
– sequence: 2
  fullname: Muggleton, Stephen H
– sequence: 3
  fullname: Frasconi, Paolo
– sequence: 4
  fullname: De Raedt, Luc
EndPage 27
ExternalDocumentID EBC6280976_5_9
EBC5576880_5_9
GroupedDBID 0D6
0DA
0E8
2HV
38.
AABBV
AABFA
AAUKK
ABBVZ
ABGTP
ABMNI
ACANT
ACHXG
ACKTP
AEDXK
AEJLV
AEKFX
AETDV
AEVYL
AEZAY
ALMA_UNASSIGNED_HOLDINGS
AZZ
BBABE
CZZ
E6I
FFUUA
IEZ
IW-
MA.
MMI
MW~
NUU
SBO
SVJCK
TPJZQ
TSXQS
Z5O
Z7R
Z7S
Z7U
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z81
Z82
Z83
Z84
Z85
Z87
Z88
-DT
-GH
-~X
1SB
29L
2HA
5QI
875
AASHB
ACGFS
ADCXD
AEFIE
EJD
F5P
FEDTE
HVGLF
LAS
LDH
P2P
RIG
RNI
RSU
SVGTG
VI1
~02
ID FETCH-LOGICAL-p1941-a8fd24d6e79cb0fc2d3d2e037578eb735afa4a8a2969f937128c87358c49b7da3
ISBN 9783540786511
3540786511
ISSN 0302-9743
IngestDate Tue Jul 29 20:28:09 EDT 2025
Thu May 29 16:36:40 EDT 2025
Wed May 28 23:37:46 EDT 2025
IsPeerReviewed true
IsScholarly true
LCCallNum Q334-342TJ210.2-211.
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-p1941-a8fd24d6e79cb0fc2d3d2e037578eb735afa4a8a2969f937128c87358c49b7da3
OCLC 1066183680
PQID EBC5576880_5_9
PageCount 27
ParticipantIDs springer_books_10_1007_978_3_540_78652_8_1
proquest_ebookcentralchapters_6280976_5_9
proquest_ebookcentralchapters_5576880_5_9
PublicationCentury 2000
PublicationDate 2008
PublicationDateYYYYMMDD 2008-01-01
PublicationDate_xml – year: 2008
  text: 2008
PublicationDecade 2000
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Berlin, Heidelberg
PublicationSeriesSubtitle Lecture Notes in Artificial Intelligence
PublicationSeriesTitle Lecture Notes in Computer Science
PublicationSubtitle Theory and Applications
PublicationTitle Probabilistic Inductive Logic Programming
PublicationYear 2008
Publisher Springer Berlin / Heidelberg
Springer Berlin Heidelberg
Publisher_xml – name: Springer Berlin / Heidelberg
– name: Springer Berlin Heidelberg
SSID ssj0000319571
ssj0002792
Score 2.174689
Snippet Probabilistic inductive logic programming aka. statistical relational learning addresses one of the central questions of artificial intelligence: the...
SourceID springer
proquest
SourceType Publisher
StartPage 1
SubjectTerms Artificial intelligence
Bayesian Network
Computer programming / software development
Conditional Probability Distribution
Inductive Logic
Inductive Logic Programming
Logic Program
Mathematical theory of computation
Title Probabilistic Inductive Logic Programming
URI http://ebookcentral.proquest.com/lib/SITE_ID/reader.action?docID=5576880&ppg=9
http://ebookcentral.proquest.com/lib/SITE_ID/reader.action?docID=6280976&ppg=9
http://link.springer.com/10.1007/978-3-540-78652-8_1
Volume 4911
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nj9MwELWgCInlsFBY7cLuKgcupQpqEjt2DhwQKqqq0gNqUW-W7dgSB7qoH5f99TsTO2kTEKhcotSy6sTPGc-MZ94Q8s7yTGlnXaxgP4kp4BBrzWmcCca54yZxVbGJr_N8sqTTFVsd6ndW2SU7_cHc_zGv5H9QhTbAFbNkT0C2-VNogHvAF66AMFw7ym_bzepJLzbwKWJoKzItD7EERyW6sAgvhrv7uKuf9c6EuqodflO29Kb43hxELSiAP9qf_PFCOm0cfG-7_TgLRxPzu10V8TWsq0fUwqTlbRAdb0PtbRz-hYwrOJO4yFmQoyE_C2QvWC9enFkvbnMkUcw8aWkQocnRXuxpA36T8t3ADhwK5LoEK_gxF6xHnnwaT2ffG18bZmoxfgj9QdJEf7rknyjk_Pgnftq4w_zvhqrKsxF3RmwZJp2z9EpFWbwgzzFtJcJ8Epjml-SRXffJeT3tUZj2Pjk7YqB8RQYtdKMG3ahCNzpC9zVZfhkvPk_iUD0j_pUUNImVcGVKy9zywuiRM2mZlanFksdcWM0zppyiSqi0yAuHrIipMAKahaGF5qXKLkhvfbe2lySiTLGiLA2WUqW5sCrRRrtR4sC44Fy4KzKoJ0FWZ_whsNj4V95KhlatGEkmi3_2zVMxAh3Z931fz6jErltZk2wDEjKTgISskJCAxJtTOr8lzw6r-5r0dpu9vQHtcqdvw-J5AJaOckg
linkProvider Library Specific Holdings
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.title=Probabilistic+Inductive+Logic+Programming&rft.au=De+Raedt%2C+Luc&rft.au=Kersting%2C+Kristian&rft.atitle=Probabilistic+Inductive+Logic+Programming&rft.series=Lecture+Notes+in+Computer+Science&rft.date=2008-01-01&rft.pub=Springer+Berlin+Heidelberg&rft.isbn=9783540786511&rft.issn=0302-9743&rft.eissn=1611-3349&rft.spage=1&rft.epage=27&rft_id=info:doi/10.1007%2F978-3-540-78652-8_1
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Febookcentral.proquest.com%2Fcovers%2F5576880-l.jpg
http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Febookcentral.proquest.com%2Fcovers%2F6280976-l.jpg