Probabilistic Inductive Logic Programming
Probabilistic inductive logic programming aka. statistical relational learning addresses one of the central questions of artificial intelligence: the integration of probabilistic reasoning with machine learning and first order and relational logic representations. A rich variety of different formali...
Saved in:
Published in | Probabilistic Inductive Logic Programming Vol. 4911; pp. 1 - 27 |
---|---|
Main Authors | , |
Format | Book Chapter |
Language | English |
Published |
Germany
Springer Berlin / Heidelberg
2008
Springer Berlin Heidelberg |
Series | Lecture Notes in Computer Science |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Probabilistic inductive logic programming aka. statistical relational learning addresses one of the central questions of artificial intelligence: the integration of probabilistic reasoning with machine learning and first order and relational logic representations. A rich variety of different formalisms and learning techniques have been developed. A unifying characterization of the underlying learning settings, however, is missing so far.
In this chapter, we start from inductive logic programming and sketch how the inductive logic programming formalisms, settings and techniques can be extended to the statistical case. More precisely, we outline three classical settings for inductive logic programming, namely learning from entailment, learning from interpretations, and learning from proofs or traces, and show how they can be adapted to cover state-of-the-art statistical relational learning approaches. |
---|---|
AbstractList | Probabilistic inductive logic programming aka. statistical relational learning addresses one of the central questions of artificial intelligence: the integration of probabilistic reasoning with machine learning and first order and relational logic representations. A rich variety of different formalisms and learning techniques have been developed. A unifying characterization of the underlying learning settings, however, is missing so far.
In this chapter, we start from inductive logic programming and sketch how the inductive logic programming formalisms, settings and techniques can be extended to the statistical case. More precisely, we outline three classical settings for inductive logic programming, namely learning from entailment, learning from interpretations, and learning from proofs or traces, and show how they can be adapted to cover state-of-the-art statistical relational learning approaches. |
Author | Kersting, Kristian De Raedt, Luc |
Author_xml | – sequence: 1 givenname: Luc surname: De Raedt fullname: De Raedt, Luc – sequence: 2 givenname: Kristian surname: Kersting fullname: Kersting, Kristian |
BookMark | eNqNkD9PwzAQxQ0URFv6CVi6Mhh8dmyfR4T4U6kSDDBbjuOUQJsEO-Xz47YsbNxyunf63em9CRm1XRsIuQR2DYzpG6ORCioLRjUqySlaOCKzrIqs7SU8JmNQAFSIwpz82QGMyJgJxqnRhTgjE2BKAQqF7JzMUvpguQQYqWFMrl5iV7qyWTdpaPx80VZbPzTfYb7sVnnO21V0m03Tri7Iae3WKcx--5S8Pdy_3j3R5fPj4u52SXswBVCHdcWLSgVtfMlqzytR8cCElhpDqYV0tSscOm6UqY3QwNFjltEXptSVE1MCh7upj_ltiLbsus9kgdldNjY7tcJmr3YfhM3ZZIYdmD52X9uQBht2kA_tEN3av7t-CDFZxZEZray05r-IlFohsj3yA4P5cy4 |
ContentType | Book Chapter |
Copyright | Springer-Verlag Berlin Heidelberg 2008 |
Copyright_xml | – notice: Springer-Verlag Berlin Heidelberg 2008 |
DBID | FFUUA |
DOI | 10.1007/978-3-540-78652-8_1 |
DatabaseName | ProQuest Ebook Central - Book Chapters - Demo use only |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Computer Science |
EISBN | 9783540786528 354078652X |
EISSN | 1611-3349 |
Editor | Kersting, Kristian Muggleton, Stephen H Frasconi, Paolo De Raedt, Luc |
Editor_xml | – sequence: 1 fullname: Kersting, Kristian – sequence: 2 fullname: Muggleton, Stephen H – sequence: 3 fullname: Frasconi, Paolo – sequence: 4 fullname: De Raedt, Luc |
EndPage | 27 |
ExternalDocumentID | EBC6280976_5_9 EBC5576880_5_9 |
GroupedDBID | 0D6 0DA 0E8 2HV 38. AABBV AABFA AAUKK ABBVZ ABGTP ABMNI ACANT ACHXG ACKTP AEDXK AEJLV AEKFX AETDV AEVYL AEZAY ALMA_UNASSIGNED_HOLDINGS AZZ BBABE CZZ E6I FFUUA IEZ IW- MA. MMI MW~ NUU SBO SVJCK TPJZQ TSXQS Z5O Z7R Z7S Z7U Z7V Z7W Z7X Z7Y Z7Z Z81 Z82 Z83 Z84 Z85 Z87 Z88 -DT -GH -~X 1SB 29L 2HA 5QI 875 AASHB ACGFS ADCXD AEFIE EJD F5P FEDTE HVGLF LAS LDH P2P RIG RNI RSU SVGTG VI1 ~02 |
ID | FETCH-LOGICAL-p1941-a8fd24d6e79cb0fc2d3d2e037578eb735afa4a8a2969f937128c87358c49b7da3 |
ISBN | 9783540786511 3540786511 |
ISSN | 0302-9743 |
IngestDate | Tue Jul 29 20:28:09 EDT 2025 Thu May 29 16:36:40 EDT 2025 Wed May 28 23:37:46 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
LCCallNum | Q334-342TJ210.2-211. |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-p1941-a8fd24d6e79cb0fc2d3d2e037578eb735afa4a8a2969f937128c87358c49b7da3 |
OCLC | 1066183680 |
PQID | EBC5576880_5_9 |
PageCount | 27 |
ParticipantIDs | springer_books_10_1007_978_3_540_78652_8_1 proquest_ebookcentralchapters_6280976_5_9 proquest_ebookcentralchapters_5576880_5_9 |
PublicationCentury | 2000 |
PublicationDate | 2008 |
PublicationDateYYYYMMDD | 2008-01-01 |
PublicationDate_xml | – year: 2008 text: 2008 |
PublicationDecade | 2000 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Berlin, Heidelberg |
PublicationSeriesSubtitle | Lecture Notes in Artificial Intelligence |
PublicationSeriesTitle | Lecture Notes in Computer Science |
PublicationSubtitle | Theory and Applications |
PublicationTitle | Probabilistic Inductive Logic Programming |
PublicationYear | 2008 |
Publisher | Springer Berlin / Heidelberg Springer Berlin Heidelberg |
Publisher_xml | – name: Springer Berlin / Heidelberg – name: Springer Berlin Heidelberg |
SSID | ssj0000319571 ssj0002792 |
Score | 2.174689 |
Snippet | Probabilistic inductive logic programming aka. statistical relational learning addresses one of the central questions of artificial intelligence: the... |
SourceID | springer proquest |
SourceType | Publisher |
StartPage | 1 |
SubjectTerms | Artificial intelligence Bayesian Network Computer programming / software development Conditional Probability Distribution Inductive Logic Inductive Logic Programming Logic Program Mathematical theory of computation |
Title | Probabilistic Inductive Logic Programming |
URI | http://ebookcentral.proquest.com/lib/SITE_ID/reader.action?docID=5576880&ppg=9 http://ebookcentral.proquest.com/lib/SITE_ID/reader.action?docID=6280976&ppg=9 http://link.springer.com/10.1007/978-3-540-78652-8_1 |
Volume | 4911 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nj9MwELWgCInlsFBY7cLuKgcupQpqEjt2DhwQKqqq0gNqUW-W7dgSB7qoH5f99TsTO2kTEKhcotSy6sTPGc-MZ94Q8s7yTGlnXaxgP4kp4BBrzWmcCca54yZxVbGJr_N8sqTTFVsd6ndW2SU7_cHc_zGv5H9QhTbAFbNkT0C2-VNogHvAF66AMFw7ym_bzepJLzbwKWJoKzItD7EERyW6sAgvhrv7uKuf9c6EuqodflO29Kb43hxELSiAP9qf_PFCOm0cfG-7_TgLRxPzu10V8TWsq0fUwqTlbRAdb0PtbRz-hYwrOJO4yFmQoyE_C2QvWC9enFkvbnMkUcw8aWkQocnRXuxpA36T8t3ADhwK5LoEK_gxF6xHnnwaT2ffG18bZmoxfgj9QdJEf7rknyjk_Pgnftq4w_zvhqrKsxF3RmwZJp2z9EpFWbwgzzFtJcJ8Epjml-SRXffJeT3tUZj2Pjk7YqB8RQYtdKMG3ahCNzpC9zVZfhkvPk_iUD0j_pUUNImVcGVKy9zywuiRM2mZlanFksdcWM0zppyiSqi0yAuHrIipMAKahaGF5qXKLkhvfbe2lySiTLGiLA2WUqW5sCrRRrtR4sC44Fy4KzKoJ0FWZ_whsNj4V95KhlatGEkmi3_2zVMxAh3Z931fz6jErltZk2wDEjKTgISskJCAxJtTOr8lzw6r-5r0dpu9vQHtcqdvw-J5AJaOckg |
linkProvider | Library Specific Holdings |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.title=Probabilistic+Inductive+Logic+Programming&rft.au=De+Raedt%2C+Luc&rft.au=Kersting%2C+Kristian&rft.atitle=Probabilistic+Inductive+Logic+Programming&rft.series=Lecture+Notes+in+Computer+Science&rft.date=2008-01-01&rft.pub=Springer+Berlin+Heidelberg&rft.isbn=9783540786511&rft.issn=0302-9743&rft.eissn=1611-3349&rft.spage=1&rft.epage=27&rft_id=info:doi/10.1007%2F978-3-540-78652-8_1 |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Febookcentral.proquest.com%2Fcovers%2F5576880-l.jpg http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Febookcentral.proquest.com%2Fcovers%2F6280976-l.jpg |