Model‐based frequency‐and‐phase correction of 1H MRS data with 2D linear‐combination modeling

Purpose Retrospective frequency‐and‐phase correction (FPC) methods attempt to remove frequency‐and‐phase variations between transients to improve the quality of the averaged MR spectrum. However, traditional FPC methods like spectral registration struggle at low SNR. Here, we propose a method that d...

Full description

Saved in:
Bibliographic Details
Published inMagnetic resonance in medicine Vol. 92; no. 5; pp. 2222 - 2236
Main Authors Simicic, Dunja, Zöllner, Helge J., Davies‐Jenkins, Christopher W., Hupfeld, Kathleen E., Edden, Richard A. E., Oeltzschner, Georg
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc 01.11.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Purpose Retrospective frequency‐and‐phase correction (FPC) methods attempt to remove frequency‐and‐phase variations between transients to improve the quality of the averaged MR spectrum. However, traditional FPC methods like spectral registration struggle at low SNR. Here, we propose a method that directly integrates FPC into a 2D linear‐combination model (2D‐LCM) of individual transients (“model‐based FPC”). We investigated how model‐based FPC performs compared to the traditional approach, i.e., spectral registration followed by 1D‐LCM in estimating frequency‐and‐phase drifts and, consequentially, metabolite level estimates. Methods We created synthetic in‐vivo‐like 64‐transient short‐TE sLASER datasets with 100 noise realizations at 5 SNR levels and added randomly sampled frequency and phase variations. We then used this synthetic dataset to compare the performance of 2D‐LCM with the traditional approach (spectral registration, averaging, then 1D‐LCM). Outcome measures were the frequency/phase/amplitude errors, the SD of those ground‐truth errors, and amplitude Cramér Rao lower bounds (CRLBs). We further tested the proposed method on publicly available in‐vivo short‐TE PRESS data. Results 2D‐LCM estimates (and accounts for) frequency‐and‐phase variations directly from uncorrected data with equivalent or better fidelity than the conventional approach. Furthermore, 2D‐LCM metabolite amplitude estimates were at least as accurate, precise, and certain as the conventionally derived estimates. 2D‐LCM estimation of FPC and amplitudes performed substantially better at low‐to‐very‐low SNR. Conclusion Model‐based FPC with 2D linear‐combination modeling is feasible and has great potential to improve metabolite level estimation for conventional and dynamic MRS data, especially for low‐SNR conditions, for example, long TEs or strong diffusion weighting.
AbstractList Purpose Retrospective frequency‐and‐phase correction (FPC) methods attempt to remove frequency‐and‐phase variations between transients to improve the quality of the averaged MR spectrum. However, traditional FPC methods like spectral registration struggle at low SNR. Here, we propose a method that directly integrates FPC into a 2D linear‐combination model (2D‐LCM) of individual transients (“model‐based FPC”). We investigated how model‐based FPC performs compared to the traditional approach, i.e., spectral registration followed by 1D‐LCM in estimating frequency‐and‐phase drifts and, consequentially, metabolite level estimates. Methods We created synthetic in‐vivo‐like 64‐transient short‐TE sLASER datasets with 100 noise realizations at 5 SNR levels and added randomly sampled frequency and phase variations. We then used this synthetic dataset to compare the performance of 2D‐LCM with the traditional approach (spectral registration, averaging, then 1D‐LCM). Outcome measures were the frequency/phase/amplitude errors, the SD of those ground‐truth errors, and amplitude Cramér Rao lower bounds (CRLBs). We further tested the proposed method on publicly available in‐vivo short‐TE PRESS data. Results 2D‐LCM estimates (and accounts for) frequency‐and‐phase variations directly from uncorrected data with equivalent or better fidelity than the conventional approach. Furthermore, 2D‐LCM metabolite amplitude estimates were at least as accurate, precise, and certain as the conventionally derived estimates. 2D‐LCM estimation of FPC and amplitudes performed substantially better at low‐to‐very‐low SNR. Conclusion Model‐based FPC with 2D linear‐combination modeling is feasible and has great potential to improve metabolite level estimation for conventional and dynamic MRS data, especially for low‐SNR conditions, for example, long TEs or strong diffusion weighting.
Retrospective frequency-and-phase correction (FPC) methods attempt to remove frequency-and-phase variations between transients to improve the quality of the averaged MR spectrum. However, traditional FPC methods like spectral registration struggle at low SNR. Here, we propose a method that directly integrates FPC into a 2D linear-combination model (2D-LCM) of individual transients ("model-based FPC"). We investigated how model-based FPC performs compared to the traditional approach, i.e., spectral registration followed by 1D-LCM in estimating frequency-and-phase drifts and, consequentially, metabolite level estimates.PURPOSERetrospective frequency-and-phase correction (FPC) methods attempt to remove frequency-and-phase variations between transients to improve the quality of the averaged MR spectrum. However, traditional FPC methods like spectral registration struggle at low SNR. Here, we propose a method that directly integrates FPC into a 2D linear-combination model (2D-LCM) of individual transients ("model-based FPC"). We investigated how model-based FPC performs compared to the traditional approach, i.e., spectral registration followed by 1D-LCM in estimating frequency-and-phase drifts and, consequentially, metabolite level estimates.We created synthetic in-vivo-like 64-transient short-TE sLASER datasets with 100 noise realizations at 5 SNR levels and added randomly sampled frequency and phase variations. We then used this synthetic dataset to compare the performance of 2D-LCM with the traditional approach (spectral registration, averaging, then 1D-LCM). Outcome measures were the frequency/phase/amplitude errors, the SD of those ground-truth errors, and amplitude Cramér Rao lower bounds (CRLBs). We further tested the proposed method on publicly available in-vivo short-TE PRESS data.METHODSWe created synthetic in-vivo-like 64-transient short-TE sLASER datasets with 100 noise realizations at 5 SNR levels and added randomly sampled frequency and phase variations. We then used this synthetic dataset to compare the performance of 2D-LCM with the traditional approach (spectral registration, averaging, then 1D-LCM). Outcome measures were the frequency/phase/amplitude errors, the SD of those ground-truth errors, and amplitude Cramér Rao lower bounds (CRLBs). We further tested the proposed method on publicly available in-vivo short-TE PRESS data.2D-LCM estimates (and accounts for) frequency-and-phase variations directly from uncorrected data with equivalent or better fidelity than the conventional approach. Furthermore, 2D-LCM metabolite amplitude estimates were at least as accurate, precise, and certain as the conventionally derived estimates. 2D-LCM estimation of FPC and amplitudes performed substantially better at low-to-very-low SNR.RESULTS2D-LCM estimates (and accounts for) frequency-and-phase variations directly from uncorrected data with equivalent or better fidelity than the conventional approach. Furthermore, 2D-LCM metabolite amplitude estimates were at least as accurate, precise, and certain as the conventionally derived estimates. 2D-LCM estimation of FPC and amplitudes performed substantially better at low-to-very-low SNR.Model-based FPC with 2D linear-combination modeling is feasible and has great potential to improve metabolite level estimation for conventional and dynamic MRS data, especially for low-SNR conditions, for example, long TEs or strong diffusion weighting.CONCLUSIONModel-based FPC with 2D linear-combination modeling is feasible and has great potential to improve metabolite level estimation for conventional and dynamic MRS data, especially for low-SNR conditions, for example, long TEs or strong diffusion weighting.
PurposeRetrospective frequency‐and‐phase correction (FPC) methods attempt to remove frequency‐and‐phase variations between transients to improve the quality of the averaged MR spectrum. However, traditional FPC methods like spectral registration struggle at low SNR. Here, we propose a method that directly integrates FPC into a 2D linear‐combination model (2D‐LCM) of individual transients (“model‐based FPC”). We investigated how model‐based FPC performs compared to the traditional approach, i.e., spectral registration followed by 1D‐LCM in estimating frequency‐and‐phase drifts and, consequentially, metabolite level estimates.MethodsWe created synthetic in‐vivo‐like 64‐transient short‐TE sLASER datasets with 100 noise realizations at 5 SNR levels and added randomly sampled frequency and phase variations. We then used this synthetic dataset to compare the performance of 2D‐LCM with the traditional approach (spectral registration, averaging, then 1D‐LCM). Outcome measures were the frequency/phase/amplitude errors, the SD of those ground‐truth errors, and amplitude Cramér Rao lower bounds (CRLBs). We further tested the proposed method on publicly available in‐vivo short‐TE PRESS data.Results2D‐LCM estimates (and accounts for) frequency‐and‐phase variations directly from uncorrected data with equivalent or better fidelity than the conventional approach. Furthermore, 2D‐LCM metabolite amplitude estimates were at least as accurate, precise, and certain as the conventionally derived estimates. 2D‐LCM estimation of FPC and amplitudes performed substantially better at low‐to‐very‐low SNR.ConclusionModel‐based FPC with 2D linear‐combination modeling is feasible and has great potential to improve metabolite level estimation for conventional and dynamic MRS data, especially for low‐SNR conditions, for example, long TEs or strong diffusion weighting.
Author Simicic, Dunja
Oeltzschner, Georg
Hupfeld, Kathleen E.
Zöllner, Helge J.
Davies‐Jenkins, Christopher W.
Edden, Richard A. E.
Author_xml – sequence: 1
  givenname: Dunja
  orcidid: 0000-0002-6600-2696
  surname: Simicic
  fullname: Simicic, Dunja
  organization: Kennedy Krieger Institute
– sequence: 2
  givenname: Helge J.
  orcidid: 0000-0002-7148-292X
  surname: Zöllner
  fullname: Zöllner, Helge J.
  organization: Kennedy Krieger Institute
– sequence: 3
  givenname: Christopher W.
  orcidid: 0000-0002-6015-762X
  surname: Davies‐Jenkins
  fullname: Davies‐Jenkins, Christopher W.
  organization: Kennedy Krieger Institute
– sequence: 4
  givenname: Kathleen E.
  orcidid: 0000-0001-5086-4841
  surname: Hupfeld
  fullname: Hupfeld, Kathleen E.
  organization: Kennedy Krieger Institute
– sequence: 5
  givenname: Richard A. E.
  orcidid: 0000-0002-0671-7374
  surname: Edden
  fullname: Edden, Richard A. E.
  organization: Kennedy Krieger Institute
– sequence: 6
  givenname: Georg
  orcidid: 0000-0003-3083-9811
  surname: Oeltzschner
  fullname: Oeltzschner, Georg
  email: goeltzs1@jhmi.edu
  organization: Kennedy Krieger Institute
BookMark eNpdkM1KAzEQx4NUsK0efIOAFy_b5ms_cpT6UaGLUPUcsknWpuwma7al9OYj-Iw-iWnrSRhmhpnfDDP_ERg47wwA1xhNMEJk2oZ2QhFB_AwMcUpIQlLOBmCIcoYSijm7AKO-XyOEOM_ZEJjSa9P8fH1Xsjca1sF8bo1T-1iRTkffrWIDKh-CURvrHfQ1xHNYLl-hlhsJd3azguQeNtYZGeKA8m1lnTyy7WG5dR-X4LyWTW-u_uIYvD8-vM3myeLl6Xl2t0g6XGQ8KZCiJL5REcrzCktdaKwrnPLUYIooy3JuDEs10SirlMqUqmiumGRZbSqEKR2D29PeLvj4R78Rre2VaRrpjN_2gqK8yHEWLaI3_9C13wYXr4sUT1lGaHGgpidqZxuzF12wrQx7gZE4qC2i2uKotiiX5TGhvyUAeP0
ContentType Journal Article
Copyright 2024 International Society for Magnetic Resonance in Medicine.
Copyright_xml – notice: 2024 International Society for Magnetic Resonance in Medicine.
DBID 8FD
FR3
K9.
M7Z
P64
7X8
DOI 10.1002/mrm.30209
DatabaseName Technology Research Database
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Biochemistry Abstracts 1
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle Biochemistry Abstracts 1
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Technology Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
Biochemistry Abstracts 1
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Physics
EISSN 1522-2594
EndPage 2236
ExternalDocumentID MRM30209
Genre researchArticle
GrantInformation_xml – fundername: National Institutes of Health (NIH) grants
  funderid: R00 AG062230; R21 EB033516; K99 AG080084; K00 AG068440; R01 EB016089; R01 EB023963; R01 EB032788; P41 EB031771
GroupedDBID ---
-DZ
.3N
.55
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
24P
31~
33P
3O-
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHHS
AAHQN
AAIPD
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDPE
ABEML
ABIJN
ABJNI
ABLJU
ABPVW
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFO
ACGFS
ACGOF
ACIWK
ACMXC
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AIACR
AIAGR
AITYG
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BY8
C45
CS3
D-6
D-7
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
FEDTE
FUBAC
G-S
G.N
GNP
GODZA
H.X
HBH
HDBZQ
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
I-F
IX1
J0M
JPC
KBYEO
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M65
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RGB
RIWAO
RJQFR
ROL
RWI
RX1
RYL
SAMSI
SUPJJ
SV3
TEORI
TUS
TWZ
UB1
V2E
V8K
W8V
W99
WBKPD
WHWMO
WIB
WIH
WIJ
WIK
WIN
WJL
WOHZO
WQJ
WRC
WUP
WVDHM
WXI
WXSBR
X7M
XG1
XPP
XV2
ZGI
ZXP
ZZTAW
~IA
~WT
8FD
AAMMB
AEFGJ
AEYWJ
AGHNM
AGXDD
AGYGG
AIDQK
AIDYY
FR3
K9.
M7Z
P64
7X8
ID FETCH-LOGICAL-p1869-80c32100b2397b1ad8d1db1595e13034679ee45d2d06bcc6ccb37c4a46feb0133
IEDL.DBID DR2
ISSN 0740-3194
1522-2594
IngestDate Thu Jul 10 20:43:00 EDT 2025
Fri Jul 25 12:15:06 EDT 2025
Wed Jan 22 17:16:59 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-p1869-80c32100b2397b1ad8d1db1595e13034679ee45d2d06bcc6ccb37c4a46feb0133
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-7148-292X
0000-0002-0671-7374
0000-0001-5086-4841
0000-0002-6600-2696
0000-0002-6015-762X
0000-0003-3083-9811
PQID 3095462386
PQPubID 1016391
PageCount 15
ParticipantIDs proquest_miscellaneous_3078716716
proquest_journals_3095462386
wiley_primary_10_1002_mrm_30209_MRM30209
PublicationCentury 2000
PublicationDate November 2024
20241101
PublicationDateYYYYMMDD 2024-11-01
PublicationDate_xml – month: 11
  year: 2024
  text: November 2024
PublicationDecade 2020
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
PublicationTitle Magnetic resonance in medicine
PublicationYear 2024
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2010; 53
2021; 6
2021; 86
2023; 36
2009; 20
2015; 73
2000; 43
2006; 19
1999; 42
2020; 343
2021; 241
2020; 33
2022; 87
2014; 270
2024
2022; 88
2001; 46
2017; 279
1996; 11
2010; 23
2002; 47
2010; 64
2017; 30
2022; 264
2019; 82
2019; 81
2021; 34
2013; 38
2023; 89
2021; 11
2020; 295
2021
2017; 77
2024; 91
2023; 276
1993; 30
2022; 35
2011; 24
2001; 12
2021; 85
2007; 25
2016; 44
References_xml – volume: 24
  start-page: 147
  year: 2011
  end-page: 164
  article-title: Two‐dimensional linear‐combination model fitting of magnetic resonance spectra to define the macromolecule baseline using FiTAID, a fitting tool for arrays of interrelated datasets
  publication-title: Magn Reson Mater Phys Biol Med
– volume: 42
  start-page: 636
  year: 1999
  end-page: 642
  article-title: Field‐frequency locked in vivo proton MRS on a whole‐body spectrometer
  publication-title: Magn Reson Med
– volume: 30
  start-page: 537
  year: 2017
  end-page: 544
  article-title: Automatic frequency and phase alignment of in vivo J‐difference‐edited MR spectra by frequency domain correlation
  publication-title: Magn Reson Mater Phys Biol Med
– volume: 276
  year: 2023
  article-title: Event‐related functional magnetic resonance spectroscopy
  publication-title: Neuroimage
– volume: 23
  start-page: 325
  year: 2010
  end-page: 332
  article-title: Single‐voxel MRS with prospective motion correction and retrospective frequency correction
  publication-title: NMR Biomed
– volume: 33
  year: 2020
  article-title: Correcting frequency and phase offsets in MRS data using robust spectral registration
  publication-title: NMR Biomed
– volume: 81
  start-page: 746
  year: 2019
  end-page: 758
  article-title: Investigation of the influence of macromolecules and spline baseline in the fitting model of human brain spectra at 9.4T
  publication-title: Magn Reson Med
– volume: 34
  year: 2021
  article-title: Spectral editing in 1H magnetic resonance spectroscopy: experts' consensus recommendations
  publication-title: NMR Biomed
– year: 2021
– year: 2024
– volume: 85
  start-page: 1755
  year: 2021
  end-page: 1765
  article-title: Frequency and phase correction of J‐difference edited MR spectra using deep learning
  publication-title: Magn Reson Med
– volume: 89
  start-page: 1221
  year: 2023
  end-page: 1236
  article-title: Model‐informed unsupervised deep learning approaches to frequency and phase correction of MRS signals
  publication-title: Magn Reson Med
– volume: 53
  start-page: 392
  year: 2010
  end-page: 398
  article-title: Baseline GABA concentration and fMRI response
  publication-title: Neuroimage
– volume: 11
  start-page: 89
  year: 1996
  end-page: 121
  article-title: Flexible smoothing with B‐splines and penalties
  publication-title: Stat Sci
– volume: 11
  start-page: 2094
  year: 2021
  article-title: INSPECTOR: free software for magnetic resonance spectroscopy data inspection, processing, simulation and analysis
  publication-title: Sci Rep
– volume: 34
  year: 2021
  article-title: Terminology and concepts for the characterization of in vivo MR spectroscopy methods and MR spectra: background and experts' consensus recommendations
  publication-title: NMR Biomed
– volume: 279
  start-page: 16
  year: 2017
  end-page: 21
  article-title: Difference optimization: automatic correction of relative frequency and phase for mean non‐edited and edited GABA 1H MEGA‐PRESS spectra
  publication-title: J Magn Reson
– volume: 43
  start-page: 325
  year: 2000
  end-page: 330
  article-title: Motion correction and lipid suppression for 1H magnetic resonance spectroscopy
  publication-title: Magn Reson Med
– volume: 12
  start-page: 141
  year: 2001
  end-page: 152
  article-title: Java‐based graphical user interface for the MRUI quantitation package
  publication-title: Magn Reson Mater Phys Biol Med
– volume: 47
  start-page: 1077
  year: 2002
  end-page: 1082
  article-title: Phase coherent averaging in magnetic resonance spectroscopy using interleaved navigator scans: compensation of motion artifacts and magnetic field instabilities
  publication-title: Magn Reson Med
– volume: 19
  start-page: 255
  year: 2006
  end-page: 263
  article-title: ProFit: two‐dimensional prior‐knowledge fitting of J‐resolved spectra
  publication-title: NMR Biomed
– volume: 91
  start-page: 2229
  year: 2024
  end-page: 2246
  article-title: Universal dynamic fitting of magnetic resonance spectroscopy
  publication-title: Magn Reson Med
– volume: 20
  year: 2009
  article-title: Quantitation of magnetic resonance spectroscopy signals: the jMRUI software package
  publication-title: Meas Sci Technol
– volume: 38
  start-page: 970
  year: 2013
  end-page: 975
  article-title: Subtraction artifacts and frequency (Mis‐)alignment in J‐difference GABA editing
  publication-title: J Magn Reson Imaging
– volume: 85
  start-page: 2950
  year: 2021
  end-page: 2964
  article-title: FSL‐MRS: an end‐to‐end spectroscopy analysis package
  publication-title: Magn Reson Med
– volume: 36
  year: 2023
  article-title: Multi‐echo single‐shot spectroscopy combined with simultaneous 2D model fitting for fast and accurate measurement of metabolite‐specific concentrations and T2 relaxation times
  publication-title: NMR Biomed
– volume: 87
  start-page: 11
  year: 2022
  end-page: 32
  article-title: Results and interpretation of a fitting challenge for magnetic resonance spectroscopy set up by the MRS study group of ISMRM
  publication-title: Magn Reson Med
– volume: 81
  start-page: 2878
  year: 2019
  end-page: 2886
  article-title: Robust retrospective frequency and phase correction for single‐voxel MR spectroscopy
  publication-title: Magn Reson Med
– volume: 25
  start-page: 1032
  year: 2007
  end-page: 1038
  article-title: A practical guide to robust detection of GABA in human brain by J‐difference spectroscopy at 3 T using a standard volume coil
  publication-title: Magn Reson Imaging
– volume: 270
  start-page: 658
  year: 2014
  end-page: 679
  article-title: Clinical proton MR spectroscopy in central nervous system disorders
  publication-title: Radiology
– volume: 89
  start-page: 499
  year: 2023
  end-page: 507
  article-title: The future is 2D: spectral‐temporal fitting of dynamic MRS data provides exponential gains in precision over conventional approaches
  publication-title: Magn Reson Med
– volume: 30
  start-page: 672
  year: 1993
  end-page: 679
  article-title: Estimation of metabolite concentrations from localized in vivo proton NMR spectra
  publication-title: Magn Reson Med
– volume: 64
  start-page: 672
  year: 2010
  end-page: 679
  article-title: Prospective motion correction for single‐voxel 1H MR spectroscopy
  publication-title: Magn Reson Med
– volume: 86
  start-page: 2910
  year: 2021
  end-page: 2929
  article-title: ProFit‐1D—A 1D fitting software and open‐source validation data sets
  publication-title: Magn Reson Med
– volume: 86
  start-page: 2384
  year: 2021
  end-page: 2401
  article-title: In vivo macromolecule signals in rat brain 1H‐MR spectra at 9.4T: parametrization, spline baseline estimation, and T2 relaxation times
  publication-title: Magn Reson Med
– volume: 343
  year: 2020
  article-title: Osprey: open‐source processing, reconstruction & estimation of magnetic resonance spectroscopy data
  publication-title: J Neurosci Methods
– volume: 34
  year: 2021
  article-title: Influence of fitting approaches in LCModel on MRS quantification focusing on age‐specific macromolecules and the spline baseline
  publication-title: NMR Biomed
– volume: 88
  start-page: 1959
  year: 2022
  end-page: 1961
  article-title: Community‐organized resources for reproducible MRS data analysis
  publication-title: Magn Reson Med
– volume: 44
  start-page: 1474
  year: 2016
  end-page: 1482
  article-title: Prospective frequency correction for macromolecule‐suppressed GABA editing at 3T
  publication-title: J Magn Reson Imaging JMRI
– volume: 87
  start-page: 1711
  year: 2022
  end-page: 1719
  article-title: The macromolecular MR Spectrum does not change with healthy aging
  publication-title: Magn Reson Med
– volume: 33
  year: 2020
  article-title: Parameterization of metabolite and macromolecule contributions in interrelated MR spectra of human brain using multidimensional modeling
  publication-title: NMR Biomed
– volume: 46
  start-page: 395
  year: 2001
  end-page: 400
  article-title: Restoration of motion‐related signal loss and line‐shape deterioration of proton MR spectra using the residual water as intrinsic reference
  publication-title: Magn Reson Med
– volume: 91
  start-page: 860
  year: 2024
  end-page: 885
  article-title: Diffusion‐weighted MR spectroscopy: consensus, recommendations and resources from acquisition to modelling
  publication-title: Magn Reson Med
– volume: 34
  year: 2021
  article-title: Preprocessing, analysis and quantification in single‐voxel magnetic resonance spectroscopy: experts' consensus recommendations
  publication-title: NMR Biomed
– volume: 34
  year: 2021
  article-title: Comparison of different linear‐combination modeling algorithms for short‐TE proton spectra
  publication-title: NMR Biomed
– volume: 264
  year: 2022
  article-title: Neurometabolic timecourse of healthy aging
  publication-title: Neuroimage
– volume: 6
  start-page: 3646
  year: 2021
  article-title: Spant: an R package for magnetic resonance spectroscopy analysis
  publication-title: J Open Source Softw
– volume: 85
  start-page: 13
  year: 2021
  end-page: 29
  article-title: Adaptive baseline fitting for MR spectroscopy analysis
  publication-title: Magn Reson Med
– volume: 88
  start-page: 1994
  year: 2022
  end-page: 2004
  article-title: MRSCloud: a cloud‐based MRS tool for basis set simulation
  publication-title: Magn Reson Med
– volume: 82
  start-page: 527
  year: 2019
  end-page: 550
  article-title: Methodological consensus on clinical proton MRS of the brain: review and recommendations
  publication-title: Magn Reson Med
– volume: 73
  start-page: 44
  year: 2015
  end-page: 50
  article-title: Frequency and phase drift correction of magnetic resonance spectroscopy data by spectral registration in the time domain
  publication-title: Magn Reson Med
– volume: 295
  start-page: 171
  year: 2020
  end-page: 180
  article-title: Comparison of multivendor single‐voxel MR spectroscopy data acquired in healthy brain at 26 sites
  publication-title: Radiology
– volume: 241
  year: 2021
  article-title: Frequency drift in MR spectroscopy at 3T
  publication-title: Neuroimage
– volume: 35
  year: 2022
  article-title: Comparison of seven modelling algorithms for γ‐aminobutyric acid–edited proton magnetic resonance spectroscopy
  publication-title: NMR Biomed
– volume: 77
  start-page: 23
  year: 2017
  end-page: 33
  article-title: Advanced processing and simulation of MRS data using the FID appliance (FID‐A)—an open source, MATLAB‐based toolkit
  publication-title: Magn Reson Med
– volume: 35
  year: 2022
  article-title: Comparison of linear combination modeling strategies for edited magnetic resonance spectroscopy at 3 T
  publication-title: NMR Biomed
SSID ssj0009974
Score 2.4644651
Snippet Purpose Retrospective frequency‐and‐phase correction (FPC) methods attempt to remove frequency‐and‐phase variations between transients to improve the quality...
PurposeRetrospective frequency‐and‐phase correction (FPC) methods attempt to remove frequency‐and‐phase variations between transients to improve the quality of...
Retrospective frequency-and-phase correction (FPC) methods attempt to remove frequency-and-phase variations between transients to improve the quality of the...
SourceID proquest
wiley
SourceType Aggregation Database
Publisher
StartPage 2222
SubjectTerms 2D linear‐combination model
Amplitudes
Datasets
Errors
Estimates
Estimation
frequency‐and‐phase correction
Lower bounds
magnetic resonance spectroscopy
Metabolites
Modelling
Phase variations
Registration
spectral registration
Synthetic data
Title Model‐based frequency‐and‐phase correction of 1H MRS data with 2D linear‐combination modeling
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmrm.30209
https://www.proquest.com/docview/3095462386
https://www.proquest.com/docview/3078716716
Volume 92
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB5KQfHioypWq6zgwUvaJtm88CRqKUI9VAs9CCH7CII2LWl70JM_wd_oL3Fm07TqSYQQQnYXhp2dmW935wFwJlNkqsu1pWxNJcwUt8LI9yxNpbbR4KcoUuRtced3B_x26A0rcFHGwhT5IZYHbiQZRl-TgCdi2lolDR3lo6aLYIeC98hXiwBRf5U6KoqKDMwBJz0T8TKrUNtpLUf-QJXfsakxLp0teCzJKnxKnpvzmWjKt18ZG_9J9zZsLkAnuyxWyQ5UdFaD9d7iWr0Ga8YPVE53QVNttJfP9w-yboqleeFp_Yp_kkzhe_KEDUxSTQ8TEcHGKbO7rNe_Z-RsyuhclznXjOhMchyA5OHm2_CfmbI7aCv3YNC5ebjqWotKDNaESlahGZMU69MWDsIXYScqVLYSiIQ8TTYQlW2kNfeUo9q-kNKXUriB5An3U00Hre4-VLNxpg-A-UmUoN7wFMUA27YIQw8xppP6QgVB6qR1aJQ8iRfiNI1dBIIcgVro1-F02YyCQLcbSabHc-oT0OYPnzqcGwbEkyJhR1ykZnZinPrYTH3c6_fMx-Hfux7BhoOApohDbEB1ls_1MQKSmTgxK-8LiaLe5w
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB6q4uPioyrW5woevKQ2yeYFXkQt9REPtYVeJGQfQVDTUtuDnvwJ_kZ_iTObtj5OIoQQsrsw7O7MfDs7D4ADmeGiulxbytZUwkxxK4x8z9JUahsVfoYsRd4WN36jzS87XqcEx-NYmCI_xMTgRpxh5DUxOBmkj76yhj71n6ouop1oCmaoorc5UDW_kkdFUZGDOeAkaSI-zitUc44mQ3_gyu_o1KiX-hLcjQkrvEoeqsOBqMrXXzkb_0v5MiyOcCc7KTbKCpR0Xoa5eHSzXoZZ4woqn1dBU3m0x4-3d1JwimX9wtn6Bf-kucJ37x4bmKSyHiYognUzZjdY3Lxl5G_KyLTLnDNGhKZ9HID04fnbbAFmKu-gulyDdv28ddqwRsUYrB5VrUJNJincpyYcRDDCTlWobCUQDHma1CDK20hr7ilH1XwhpS-lcAPJU-5nmmyt7jpM591cbwDz0yhF0eEpCgO2bRGGHsJMJ_OFCoLMySqwPV6UZMRRz4mLWJAjVgv9CuxPmpEX6IIjzXV3SH0COv_hU4FDswJJr8jZkRTZmZ0Epz4xU5_Ezdh8bP696x7MN1rxdXJ9cXO1BQsO4psiLHEbpgf9od5BfDIQu2YbfgJ0SOMC
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9tAEB6FIBCXQnmIlJRuJQ69OMT2em2LE2oahbaJUGikHJAs70tIgBOF5NCe-An8Rn4JM-skFE4IybIs76402p3Ht7vzADhSFhc15MbTvqESZpp7SSoiz1CpbTT4FkWKvC16ojPgP4fRsAIni1iYMj_E8sCNJMPpaxLwsbbHz0lDbye3jRDBTroCq1w0E2LpVv85d1SalimYY06KJuWLtELN4Hg59AWs_B-cOuvS3oTLBV2lU8l1YzaVDfXvVcrGdxK-BR_mqJOdlmzyESqm2Ib17vxefRvWnCOoutsBQ8XRbh7vH8i8aWYnpav1X_yTFxrf4ytsYIqKeriQCDayzO-wbv-Ckbcpo4NdFrQY0ZlPcACSh7tvxwDM1d1BY7kLg_aPP9873rwUgzemmlVoxxQF-zRlgPhF-rlOtK8lQqHIkBFEbZsawyMd6KaQSgmlZBgrnnNhDZ20hntQLUaF2Qcm8jRHxRFpCgL2fZkkEYLMwAqp49gGtgb1xZpkc3m6y0JEghyRWiJq8HXZjJJA1xt5YUYz6hPT7g-fGnxzC5CNy4wdWZmbOchw6jM39Vm333Ufn97e9Qusn7fa2e-z3q8D2AgQ3JQxiXWoTicz8xnByVQeOiZ8Agah4bo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Model%E2%80%90based+frequency%E2%80%90and%E2%80%90phase+correction+of+1H+MRS+data+with+2D+linear%E2%80%90combination+modeling&rft.jtitle=Magnetic+resonance+in+medicine&rft.au=Simicic%2C+Dunja&rft.au=Z%C3%B6llner%2C+Helge+J.&rft.au=Davies%E2%80%90Jenkins%2C+Christopher+W.&rft.au=Hupfeld%2C+Kathleen+E.&rft.date=2024-11-01&rft.issn=0740-3194&rft.eissn=1522-2594&rft.volume=92&rft.issue=5&rft.spage=2222&rft.epage=2236&rft_id=info:doi/10.1002%2Fmrm.30209&rft.externalDBID=10.1002%252Fmrm.30209&rft.externalDocID=MRM30209
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0740-3194&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0740-3194&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0740-3194&client=summon